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ABSTRACT

Mixed-critical platforms require an on-chip interconnect and
a memory controller capable of providing sufficient timing
independence for critical applications. Existing real-time
memory controllers, however, either do not support mixed
criticality or still fail to ensure negligible allow a certain
degree of interference between applications.

On the other hand, Networks-on-Chip manage the traf-
fic injection rate mainly by employing complex techniques;
either back-pressure based flow-control mechanisms or rate-
control of traffic load (i.e. traffic shaping). This work pro-
poses such a Traffic Shaper Module that supports both mon-
itoring and traffic control at the on-chip network interface
or the memory controller.

The advantage of this Traffic Shaper Module is that at sys-
tem level it provides guaranteed memory bandwidth to the
critical applications by limiting traffic of non-critical tasks.

The system is developed in the Xilinx ZYNQ7000 System-
on-Chip while the measurements were captured on a Zed-
board development board. By enabling the Traffic Shaper
in our architecture we achieved fine-grain bandwidth control
with negligible overhead, while providing bandwidth of only
0.5-5 percent less than the theoretical specified bandwidth.
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1. INTRODUCTION

Nowadays, the modern Systems-on-Chips (SoCs) present
a complex growth. Power, area and cost constraints [13], due
to resource sharing, occur since the amount of applications
mapped to a single system have been increasing. Applica-
tions characterized by real-time constraints exist alongside
with applications with no constraints thus creating mixed
time-criticality systems. Large numbers of applications run
simultaneously in different combinations or use-cases and
are dynamic, therefore they can be dynamically stopped or
started. In order to guarantee satisfaction in application re-
quirements, the system has the need to be verified for each of
the use-cases. The verification complexity grows exponen-
tially with the number of applications if they can be com-
bined arbitrarily.

In the case of the active use-case change, in order to adapt
to the new set of applications and requirements, the hard-
ware components may have to be reconfigured. Even during
reconfiguration, the running applications must demonstrate
correct behavior. For this reason, the transitions between
use-cases result in additional analysis complexity. Finding
a common analysis model has been proved difficult when
mixed time-critical applications and different models of com-
putation are combined. Even if such a model exists, a single
change in an application requires all use-cases, in which the
application is active, to be re-verified in general.

A recent trend in real-time systems is to integrate tasks
and components of different criticality levels on the same
hardware platform. The objective of such mixed-criticality
systems [1], [2] is to save space, weight, or energy by re-
ducing the number of computation platforms, and at the
same time to provide safety guarantees for the critical com-
ponents of the system. Timing predictability is an impor-
tant property when designing such systems, especially for
the safety-critical components. Worst-case execution time
(WCET) analysis [3], [4] becomes significantly easier if the
hardware is more predictable. Many researchers have ex-
plored the possibility of designing predictable processors [5,
6, 7] and predictable memory hierarchies [9].

To provide guarantees for time-critical applications it is
mandatory to precisely control the usage of system resources.
This work describes a methodology for bandwidth man-



agement on Network-on-Chip (NoC) interfaces and system
memory traffic, by using custom circuitry with minimal over-
head. In particular, we demonstrate how to achieve this
with the use of a specialized hardware Traffic Shaper Mod-
ule (TSM); through attaching a TSM instance at any initia-
tor Network Interface (NI) we control the number of accesses
based on configured bandwidth and regulate the flow of traf-
fic. We present a prototype system based on the ZYNQ7000
Processing System-on-Chip [12]. More specifically, we make
the following contributions:

e introduce a low overhead Traffic Shaper Module at
register-transfer level (RTL) that allows precise fine-
grain traffic control in bytes/clock cycle; the block may
provide the possibility for both monitoring, as well as
for guaranteeing maximum bandwidth at an initiator
on-chip network interface

e propose a technique that can be used to enforce bi-
trates different than what a physical interface is capa-
ble of

e prove that, by enabling the Traffic Shaper Module in
our architecture, we achieve a performance overhead of
just 0.5-5%, in contrast to the theoretical bandwidth

The rest of this paper is organized as follows. In Section II
this work is positioned with respect to related works. Section
IIT presents the proposed architecture and the developed
traffic control methodologies, while experiments are shown
in Section IV, and finally Section V concludes the paper.

2. RELATED WORK

There is a range of previous works for creating systems
that support quality of service with mixed-criticality tech-
niques both in register-transfer level and in the operating
system and kernel level. For instance, several techniques for
predictable real-time DRAM controllers have been proposed
in previous works, although not all are suitable for mixed-
criticality systems, since non-critical task performance can-
not be sacrificed too much for critical task predictability. In
a real-time system, bounded latency and interference must
be considered, in addition to overall throughput and fair-
ness. Kim et al [14] exhibited a DRAM controller that is
able to separate the critical from the non-critical memory
access groups (MAGs). They define algorithms for com-
puting safe and tight upper bounds of worst-case latencies,
resulting in predictable memory accesses for critical MAGs.
In [15] developers designed a reconfigurable SDRAM con-
troller. This controller offers both predictable and composs-
able service, making it a suitable SDRAM resource for use
in virtual platforms. Composability is enabled by the use
of composable memory patterns combined with TDM ar-
bitration, and they show that the worst-case performance
degradation is negligible. The work in [16] deals with the
problem of mixed time criticality workloads in the context
of an SDRAM controller. The main idea is to allow the com-
mand scheduler to exploit locality that presents itself within
the time window that naturally exists between opening and
closing a row. The controller can exploit a fraction of the
locality available in the request stream, without increasing
the worst-case schedule length. Compared to a close-page
policy (keeping a DRAM bank in idle state), the average
execution time of the benchmark applications is reduced by

7.9% using the conservative open-page, while still satisfying
the constraints of the Field Resource Tracker (FRT) appli-
cation (guarantee enough worst-case performance to satisfy
requirements).

Another technique is the one presented in [17]. This paper
presents FlexPRET, a fine-grained multi-threaded processor
designed to exhibit architectural techniques useful for mixed
criticality systems (e.g. scratchpad memories). The design-
ers claim that their system provides hardware-based isola-
tion to hard real-time threads while allowing soft real-time
threads to efficiently utilize processor resources. There are
also timing instructions, extending the RISC-V ISA, that
enable cycles to be reallocated to other threads when not
needed to satisfy a temporal constraint. They even provide
a concrete soft-core FPGA implementation, which is evalu-
ated for resource usage.

A further option that can also be combined with our pro-
posed mechanisms from our perspective is the implemen-
tation of algorithms for Mixed Criticality Optimization as
in [18], where the optimization of mapping and partitioning
is performed at the same time, and not separately.

3. TRAFFIC CONTROL METHODOLOGY

Initially, we introduce the design of a modern heteroge-
neous SoC to support a mixture of critical and non-critical
computing entities with the requirement to provide appli-
cation isolation, in terms of usage of system resources, e.g.,
memory bandwidth.

3.1 System Architecture

We target embedded devices that can host applications
with different requirements in terms of bandwidth either of
system memory or of other on-chip components. We as-
sume a Network-on-Chip viewed as an interconnect intel-
lectual property module with conventional read and write
semantics; the network interface offers read /write and block
transfers. Our architecture is based on ZYNQ System-on-
Chip of Xilinx. We utilize both the Processing System that
consists of the dual ARM Cortex-A9 CPU [12], as well as
the Programmable Logic (PL) area, wherein we integrate
the Traffic Shaper Module (TSM). More precisely, our ar-
chitecture involves the following components and attributes.

e It utilizes the Processing System (PS) Direct Memory
Access (DMA) controller that is used for burst trans-
actions.

e The CPU routes accesses to the memory through the
GP port to the PS DDR3 memory. A central intercon-
nect is located within the PS that comprises multiple
switches in order to connect to the system resources by
using the AXI point-to-point channels for communicat-
ing addresses, data, and response transactions between
master and slave ports [12]. This ARM AMBA 3.0 in-
terconnect implements a full array of the interconnect
communications capabilities and overlays for QoS, de-
bug, and test monitoring. The interconnect manages
multiple outstanding transactions and is architected
for low-latency paths for the ARM CPUs and for the
PL master controllers. The accesses from the PS DMA
cross only one GP Port and HP port (HPO), as shown
in Fig. 1.

e The device integrates a Microblaze soft-processor [10]



that is used to monitor resources that are used by
the main processor (A9 CPU) and to collect informa-
tion from the AXI performance monitor. Even though
monitoring and controlling of system resources, i.e.
NoC and memory bandwidth must be implemented
with customized hardware to offer fine-grain control
and response times, a software-oriented approach (us-
ing MicroBlaze) offers a coarser-grain solution but more
flexible.

e The device uses a custom Address Remap Block, to
remap addresses that arrive through the PS and redi-
rects them to the DDR.

e Custom circuitry is integrated at RTL level, which pro-
vides the ability of monitoring, control and supplying
guaranteed bandwidth for critical applications.
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Figure 1: Architecture layout supporting precise
bandwidth shaping through the use of the hardware
Traffic Shaper and embedded microcontrolled man-
ager in a dedicated MicroBlaze soft-processor (MB);
memory traffic flows through the GP port to the
DDR3 memory while TSM monitors and controls
at byte granularity
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Figure 2: Traffic Shaper Module (TSM) internals
as implemented in ZYNQ-7000; TSM configuration
can occur on the fly and takes effect only after the
current time window

3.2 Traffic Shaper Module (TSM)

Shaping is a QoS (Quality-of-Service) technique that we
can use to enforce pre-specified bitrates, different than what
the physical interface is capable of. TSM is a hardware block
that implements control of incoming data traffic which ac-
tually consists of read and write transactions, following the
AXI4 protocol [22]. More precisely, the developed TSM con-
trols the number of accesses based on configured /programmed
bandwidth and regulates the flow of traffic, in order to apply
restrictions on the consumed bandwidth. Figure 1 shows the
prototype system that integrates the TSM. The proposed ar-
chitecture contains the registers that are listed in Table I.
The designer’s options are, a) to attach it on a Master In-
terface and control it via the main CPU, b) to connect the
TSM control port and establish the overall management of
the TSM to another independent core, which thus offloads
the burden to dynamically monitor and evaluate QoS per
connection or per process; the main CPU (ARM Cortex-A9)
communicates with that core only to provide configuration
parameters. In this work we chose the second method.

TSM utilizes a separate AXI-lite interface for configura-
tion. The TSM main components are shown in Figure 2.
The TSM configuration is done via the MicroBlaze. The pro-
gramming of registers determines the maximum data trans-
fer bytes to transfer in a time window. The AzLen signals,
AxSize and AzValid are responsible for indicating a new
transaction and whether this is a single word or a burst. The
DMA inside the PS supports AXI burst lengths of 1 to 16
transfers, for all burst types [3]. However, the AXI4 protocol
extends the burst length support for the INCR burst type
to support 1 to 256 transfers. The burst length for AXI3 is
defined as, Burst_Length = AXLEN[3:0] + 1, while the burst
length for AXI4 is defined as, Burst_Length = AxLEN([7:0]
+ 1, to accommodate the extended burst length of the INCR
burst type in AXI4.

Table 1: Description of Traffic Shaper Module basic
components

Register | Description
maxcc | Stores the Maximum time limit (cycles)
maxbw | Stores the maximum transfer bytes limit, max-

imum bytes to transfer in mazcc time interval

acc Accumulating counter adding the new trans-
action bytes, should be less than maxbw limit

totalacc | Sums all the new accaAZs and keep the values
after the reset
burst Stores each new AXI4 transaction, burst or
single word
ccent Clock cycle counter; in each clock cycle ccent

increases by 1 measuring total clock cycles

4. EVALUATION
4.1 Methodology

Several different ways and methods exist, so as to monitor
the activity of a processor or a module. As we presented
previously this can be done by designing a controller that
supports mixed-criticality service. Software techniques also
exist, which support control at task level or at OS level [19].



Our methodology supports both control and monitoring
on the Network-on-Chip (NoC) Interface, without requir-
ing the re-design or tampering with the NoC routers or the
memory controller [20]. The Traffic Shaper Module provides
guaranteed bandwidth to the critical applications by limit-
ing consumed bandwidth of the non-critical tasks.

We used a tightly system-coupled configuration to run our
applications. Tightly system-coupled software means rou-
tines (modules or full applications) that work on only one
type of system since these are dependent on each other and
on the system configuration. For example, the driver of
an embedded cyber-physical system device requires exten-
sive programming changes to work in another environment,
but is usually optimized to offer predictability, minimal la-
tency and even fault-tolerance. We ran two stand-alone
(baremetal) applications in A9 CPU and MicroBlaze. The
MicroBlaze is responsible to monitor and control the config-
uration of the T'SM registers. The A9 CPU can be config-
ured to be in control of this block (start, restart, counters
initialization and monitoring), but the main goal is to dedi-
cate the processor only to the application running on it. In
our case the accesses cross only one GP port (GP0) towards
the slave PS interconnect (as shown in Fig. 1). If the DMA
engine is utilized to perform bulk data transfers, then the
DMA sequence of operations is as follows:

e DMA Configuration

Setup DMA Interrupt

DMA Initialization

e DMA Start Transfer
e DMA Check handler done

e DMA Stop and reset

If, we want to exploit the maximum theoretical bandwidth
that manufacturers specify [12], then the NoC specificities
and the memory controller properties should be carefully ex-
ploited. For instance, in the ZYNQ architecture any trans-
action must use specific ports and route along the intercon-
nection scheme to avoid conflicts. The maximum supported
bus clock is 533 MHz in the DDR3 module for all speed
grades, reaching a theoretical maximum bus bandwidth of
1333 Mb/s. All DMA transactions use AXI interfaces to
move data between the on-chip memory, the DDR memory
and the slave peripherals in the PL.

Initially, in evaluating the accuracy of bandwidth monitor-
ing we used a software only approach. We used a baremetal
application executing on the MicroBlaze which, with the aid
of a hardware AXI performance monitor, captures the ac-
tivity of the AXI interconnect. The A9 CPU drives the PS
DMA to send traffic over this interconnect. As Figures 3 and
4 show, when fine-grain resolution is adopted the software
monitoring delivers poor results, while when the hardware
TSM is activated the mean error is negligible.

There are many options and routes to transfer data in an
advanced SoC such as ZYNQ. Two typical DMA transaction
examples include: 1) memory to memory (On-chip memory
to DDR memory) 2) memory to/from a PL peripheral (DDR
memory to PL peripheral). The incoming traffic arrives only
from one GP Port crossing the AXI HPO port and the S2
OCM port [12].
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Figure 3: Comparison of accuracy when scaling the
time window using varying data unit size
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Figure 4: For four different time intervals (1500,
1000, 500, 250 cycles) we measure the error rate
that raises between the theoretical and the mea-
sured traffic bandwidth without activation of the
TSM. For each interval we count three different data
size transfers (20, 24, 36 bytes). For example, as we
observe in the graph, for 1500 cycles the average
difference arises to 17.48% of bandwidth that was
measured compared to the theoretical values that
were calculated. By enabling the TSM the error
rate in the worst case reaches 6.07%

We developed two applications to move data using the
first configuration. In one scenario, one alleged critical ap-
plication runs on the A9 CPU in a baremetal fashion and
the MicroBlaze enables the TSM and generates traffic. As
Figure 5 shows, in the first scenario the MicroBlaze writes
to the memory by using the DMA engine, thus reaching
23.5MB/sec. We also notice that the traffic from the A9
CPU towards the DDR is not affected, and this is because
the TSM provides the maximum throughput to the critical
application. In the second scenario in Figure 6 we clearly ob-
serve that the process on the A9 CPU that makes the Reads
and Writes is influenced. The traffic generator running in
the Microblaze is activated at specific times and significantly
affects the bandwidth received by the A9 CPU.

As long as the Traffic Shaper Module is in a ‘disable’
mode, the DMA can reach up to a limit depending on AxLen
(Burst size and Length). Moreover, as we have observed the
GP Port performs poorly in throughput, as it also appears
in Figure 5. When the TSM is enabled the shaper can be
configured to regulate the traffic until the consumed band-
width is less than or equal to the maximum bandwidth that



can be reached when the shaper is disabled.
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Figure 5: Nearly perfectly unaffected bandwidth
served in control of the TSM
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Figure 6: System impact when the TSM is deac-
tivated; random DMAs cause irregular and uncon-
trolled memory bandwidth consumption

4.2 Use Case for Healthcare Application Ex-
ample

Healthcare devices that integrate Bluetooth version 4.0
[21] may be found in three different locations on the pa-
tient’s body, which transmit to a gateway device similar
to the ZYNQ-based one that we presented previously. In
this particular scenario we consider such a device to run
a critical application that can process streaming data that
reach 25Mbit/sec or 3 MB/sec each [21]. Consequently, we
could reach up to N devices*3iIJiS/sec theoretical aggre-
gate throughput. The gateway device utilizes only a sin-
gle Bluetooth interface to communicate with each external
healthcare device.

In our use-case scenario that is depicted in Figure 7, the

incoming data traffic can reach up to the maximum of 3MB/sec

and the gateway forwards this traffic with at least equal
speed. Consequently the maximum aggregate bandwidth is

6MB/sec, i.e 3MB/sec incoming traffic and 3 MB/sec out-
going traffic.

Best Efon
1“" :'. .;g:%r} .
| LB,
ai]] ;ﬂr — '?"ﬂé, v

-F-
b ¥ %

yrveah
e EF Yy
MJF-" ﬁ- ﬁ_
] ] '
% u.l
[} t& _/ [} Etherne L
JWIFI =
Write |:[ Head
transactions transactions
BW: 3MB/Ss DDR BW: IMB/s

Figure 7: Healthcare use-case for a gateway of blue-
tooth enabled sensors

In addition, best-effort applications can be executing in
parallel that also demand additional memory throughput.
As we have analyzed in the previous section, when the Cor-
tex A9 CPU communicates through the AXI. GP0/1 ports
to the system memory we can achieve 10.797 MB/sec max-
imum throughput. The Bluetooth communicates via the
ZYNQ gateway in order to feed the information to the user
via a local Ethernet or WIFI connection.

When enabling the Traffic Shaper Module, we can throttle
the throughput of the best effort applications so as to pro-
vide guaranteed BW for the critical function of conveying
the devicesaAZ data, which may contain important mes-
sages for the patients that must receive guaranteed delivery
to the user. The TSM can be configured so that it can sup-
port the desired service level even to the maximum through-
put (9 MB/sec).
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Figure 8: Healthcare device internal organization; a
SoC with controlled resource usage

4.3 Simulation of use case scenario using a ran-
dom traffic generator
The above scenario was implemented by creating a Ran-
dom Traffic Generator (RTG), as shown in Figure 8, which
can generate up to 3MB/sec read/write traffic in total. The



RTG runs on the Microblaze whereas a non-critical applica-
tion with its own demands in throughput runs in parallel on
the A9 CPU with none impact to its performance.

In addition, notice that even in the case where the Mi-
croblaze has the need to consume the maximum bandwidth
(3MB/Sec), the TSM ensures that the application’s demands
in terms of throughput, which runs in parallel on the A9
CPU, is not affected by the needed bandwidth that is con-
sumed by the Microblaze.

5. CONCLUSIONS

A multicore embedded system is demonstrated in this pa-
per, where the bandwidth is controlled by establishing a
hardware Traffic Shaper Module. In such systems, in or-
der to ensure system predictability and applications’ prop-
erties such as criticality, we have to control the usage of sys-
tems resources. We achieve this by using a Traffic Shaper
Module; its goal is to accurately control the number of ac-
cesses to provide the desired configured bandwidth. We
presented a methodology for bandwidth management suit-
able for NoC interface and memory controller with the us-
age of custom circuitry and a minimal software monitor-
ing application. The system was prototyped using the Xil-
inx ZYNQ7000 System-on-Chip and the measurements ex-
tracted from a zedboard development board. By enabling
the Traffic Shaper in our architecture we achieved very fine-
grain control with negligible overhead, while providing band-
width of only 0.5-5 percent less than the theoretical band-
width specified.
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