
Go-RealTime: A Lightweight Framework for Multiprocessor
Real-Time System in User Space ∗

Zhou Fang
†

University of California
San Diego

Mulong Luo
University of California

San Diego

Fatima M. Anwar
University of California

Los Angeles

Hao Zhuang
University of California

San Diego

Rajesh K. Gupta
University of California

San Diego

ABSTRACT
We present the design of Go-RealTime, a lightweight frame-
work for real-time parallel programming based on Go lan-
guage. Go-RealTime is implemented in user space with
portability and efficiency as important design goals. It takes
the advantage of Go language’s ease of programming and
natural model of concurrency. Goroutines are adapted to
provide scheduling for real-time tasks, with resource reser-
vation enabled by exposing Linux APIs to Go. We demon-
strate nearly full utilization on 32 processors scheduling pe-
riodic heavy tasks using Least Laxity First (LLF) algorithm.
With its abstraction and system support, Go-RealTime greatly
simplifies the set up of sequential and parallel real-time pro-
grams on multiprocessor systems.

Keywords
real-time systems; multiprocessor systems; parallel program-
ming; Go language; scheduling algorithms

1. INTRODUCTION
Multiprocessing is now the primary means of improving

performance on diverse platforms from embedded systems
to data-centers. Many frameworks and the associated tools
make parallel programming easier, such as compiler support
(OpenMP1), language extension (Intel Cilk Plus2) and li-
brary (Intel Thread Building Block (TBB)3). These tools
provide easy-to-use programming support to construct par-
allel tasks, and orchestrate execution details behind the scene.
Yet, the goal of minimizing execution time is only partially
achieved due to the lack of resource reservation. This is
particularly limiting for real-time (RT) applications.

The majority of prior work on real-time systems is focused
on operating system (OS) support for scheduling of sequen-
tial tasks on uniprocessor models. Multiprocessor systems
are attracting increasing research interest, which have more
complex schedulers. Among notable multiprocessor system
implementations, Calandrino et. al. proposed LITMUSRT

[7], a Linux based testbed for real-time multiprocessor sched-
ulers. Based on LITMUSRT, several different implementa-
tions of global Earliest Deadline First (EDF) algorithm [15]
were tested and compared [6]. The drawback of global EDF

∗Copyright retained by the authors
†Email: zhoufang@ucsd.edu
1http://www.openmp.org
2https://www.cilkplus.org
3https://www.threadingbuildingblocks.org

algorithm on multiprocessor system is that schedulability
of heavy utilization task is degraded dramatically [9]. Dy-
namic priority algorithms, such as Least Laxity First (LLF)
[13, 17] and P-fairness [3], are able to achieve higher utiliza-
tion than EDF on multiprocessor systems. However, they
induce larger system cost due to frequent context switching
and cache pollution.

Prior to scheduling, because there are many choices to de-
compose a parallel task into a group of sequential sub-tasks,
parallel task scheduling algorithms have additional complex-
ity on top of sequential scheduling. Lakshmanan et. al. [11]
studied fork-join tasks and proposed the task stretch trans-
form to reduce scheduling penalty. For a general class of
parallel tasks, Saifullah et. al. [18] proposed to decompose a
parallel task into several sequential sub-tasks with carefully
computed deadlines, which are then scheduled using global
EDF. This algorithm was then implemented by Ferry et. al.
[1]. Due to lack of a direct API to make a thread switch, in
[1] it indirectly switches threads by changing their priority.
This indirect approach results in a complex implementation
and limits the performance.

In this work, we propose a new RT framework, Go-RealTime
to solve the above challenges using Go language4. It sup-
ports both real-time scheduling and parallel programming
with a set of APIs. Go provides native support for concur-
rency by means of goroutines. We leverage this advantage of
Go for real-time programs running on concurrency units in
user space. OS thread scheduler is integrated into Go run-
time and adopted for resource reservation. In Go-RealTime,
we import OS APIs (thread scheduler, CPU affinity and
timer) into Go, modify Go runtime to enable direct gor-
outine switch, and build external Go packages to support
asynchronous events, parallel programming and real-time
scheduling. Go-RealTime is able to make a given portion
of processors (or a fraction of one processor) real-time and
keep the rest unchanged, thus it supports implementation
of mixed criticality systems. This approach is also safer and
more portable than earlier works [7, 6] because no modifica-
tions to the OS kernel are needed.

In Go-RealTime, a user can program a parallel task as
Directed Acyclic Graph (DAG) [16] of sub-tasks. Sub-tasks
are executed by subroutines, so the overhead of process-level
concurrency is saved. It supports multiple scheduling algo-
rithms for different tasks running at the same time. Different
types of tasks are scheduled by the suitable algorithm (EDF
[15], LLF [13]). The total processor resources are partitioned
dynamically among all schedulers by the resource balancing

4https://www.golang.org



mechanism. Implementation results show that our frame-
work is lightweight, flexible and efficient to deploy real-time
programs on platforms ranging from embedded devices to
large-scale servers.

The main contributions of our work are: (1) we design
a real-time parallel framework using Go language without
modifying OS kernel; (2) we present the resource balancing
approach to execute multiple scheduling algorithms in par-
allel; (3) we implement system support for handling asyn-
chronous event in user space; (4) we implement a multipro-
cessor LLF scheduler with a simple tie breaking method,
which can achieve near full utilization for randomly gener-
ated heavy task set (0.5 ≤ µtask ≤ 0.9) on a 32-processor
machine; (5) we evaluate the implementation of EDF and
LLF in Go-RealTime through analyzing system overhead
and taking schedulability tests.

The rest of the paper is organized as follows. We intro-
duce the system architecture of Go-RealTime in Section 2.
It presents Go-RealTime’s APIs, system model, resource
balancing, and asynchronous event handling. Programming
parallel task in the framework is presented in Section 3. The
design, implementation and evaluation of real-time sched-
ulers are presented in Section 4. Section 5 gives the conclu-
sion and future works.

2. THE GO-REALTIME ARCHITECTURE
In this section we introduce the overall system architec-

ture, APIs and data structure of Go-RealTime. It is cur-
rently implemented on top of Linux version of Go 1.4. Go-
RealTime works concurrently with the original runtime of
Go language. It creates RT goroutines which run real-time
tasks. The threads carrying RT goroutines are separated
from native Go threads (no goroutine migration). In the
following discussion, threads and goroutines are created by
Go-RealTime unless otherwise stated.

Go-RealTime is targeting for applications which require
millisecond level timing precision. The requirement is given
by δasync, the upper bound of tolerable asynchronous event
timing uncertainty. A real-time asynchronous event han-
dler is designed to meet the requirement dynamically. The
framework turns off Go’s garbage collector to reduce timing
uncertainty. In the current implementation, memory usage
is managed by recycling dynamically allocated objects. Re-
placing the Go garbage collector by a more controllable ap-
proach which meets real-time requirement lies in the future
work.

2.1 Go-RealTime’s APIs
Go language’s concurrency is enabled through goroutines

and invoked with keyword go. A user creates a goroutine
and associates it with a program using go func(arg). After
creation, go runtime scheduler automatically allocates gor-
outines to run on OS threads. Each thread created by the Go
runtime keeps a runnable queue of goroutines. In the orig-
inal Go runtime, a simple scheduling algorithm is adopted:
each thread keeps a runnable goroutine queue in First-In-
First-Out (FIFO) order. It tries to make a goroutine switch
per 10ms. User can yield the execution of a goroutine us-
ing the API GoSched(). Compared to Linux’s Completely
Fair Scheduler (CFS), this design is more lightweight and
scalable. It is also much easier to use than thread libraries
such as POSIX threads (Pthreads). However, the Go run-
time completely hides system details from the programmer,
thus making it difficult to carry out RT task scheduling due
to lack of control over threads and processors. Go-RealTime
modifies Go by adding resource and scheduling APIs (Table
1). These include:

Table 1: Go-RealTime APIs

Type Method Description

Resource
SetSched(thread, policy,
priority)

Linux thread
scheduler

BindCPU(CPU) processor affinity
SetTimerFd(file descriptor,
time)

Linux timer

Scheduling GoSwitch(goroutine) switch to a gorou-
tine

Task
NewWorker(Nw) create Nw workers
task.SetTimeSpec(ts, tp,
td, tr)

set timing specifi-
cation

task.Run(func, arg) start a RT task

• SetSched: use Linux system call sched setscheduler to
change the scheduling policy of a Go thread from time-
sharing (CFS as default) to RT (FIFO, Round-Robin).

• BindCPU: bind a Go thread to a processor using the
system call sched setaffinity. Then Go thread runs ex-
clusively on the processor.

• GoSwitch: directly switch to a specific target gorou-
tine. It is implemented by modifying Go runtime source
code.

These modifications and additions make the execution of
goroutines fully controllable in user space. The APIs can
reserve a fraction f of one processor as well: two Linux
timers are used to set Go thread RT at trt and set it back
to time-sharing at tts. Given the period of timers ttimer,
it satisfies tts − trt = f · ttimer, so the Go thread occupies
fraction f of the processor deterministically. It is useful to
run RT tasks on uniprocessor systems. In this work we focus
on taking Ncpu processors completely for RT tasks.

Go-RealTime relies on these APIs to implement RT sched-
ulers in Section 4. As an alternative to directly using these
APIs, the users can also use the easier Task APIs (Table 1),
which assign the timing specifications and submit tasks to
the RT scheduler.

2.2 Go-RealTime’s System Model
The system model of Go-RealTime consists of three ob-

jects: worker, task and goroutine, as shown in Figure 1. A
worker is a thread created by Go-RealTime. It is an ab-
straction of reserved processor resource. A Go-RealTime
program creates a group of workers via NewWorker(Nw)
method. The number of workers (Nw) is usually equal to
Ncpu to maximize parallelism.

Figure 1: System model of Go RealTime. A worker is the ab-
straction of a thread with one processor resource reservation.
Goroutines are sorted in a few priority queues. A parallel
task is decomposed into DAG of sequential sub-tasks.

Task is the object to describe a RT program. It has the
following features:



• Time specification: starting time ts, period tp, dead-
line td, and worst case running budget tr, set by the
API task.SetTimeSpec(ts, tp, td, tr).

• Utilization: µtask = tr/tp (µtask can be larger than 1
for parallel tasks).

Goroutine is the concurrency unit. A new RT goroutine
is created by calling task.Run(func, arg). task then starts
to run on the new goroutine. A group of workers shares
some runnable queues of goroutines. Nqueue, the number of
queues, is a parameter of Go-RealTime scheduler. Priority
queue is used to sort goroutines by a key (“deadline” in EDF,
“laxity” in LLF). We use the lock free priority queue data
structure [10] to reduce the cost of parallel access contention.

Workers fetch the head goroutine in queue to execute.
When a worker becomes idle, it fetches the first goroutine
in queue. The scheduler is preemptive: if a goroutine g0
becomes runnable and its priority is higher than g1 which
is running, the scheduler switches off g1 and let g0 run. A
sequential task is executed by one goroutine. A parallel
task is decomposed into sequential sub-tasks described by
DAG model, executed by a group of goroutines. Since no
preemption happens among sub-tasks of the same parallel
task, they are implemented simply as subroutines.

2.3 Resource Balancing in Go-RealTime
Go-RealTime is able to keep more than one goroutine

queue to support multiple scheduling algorithms in parallel.
This approach has two benefits: (1) it supports partitioned
scheduling policy, and different algorithms can be deployed
for different sets of tasks; (2) scheduling algorithm can be
changed on-the-fly without interrupting running tasks.

An example with two queues is shown in Figure 2, one
queue uses EDF algorithm, and the other uses LLF. Load
imbalance happens when the total task utilization of EDF
and LLF queues do not match their allocated processor re-
sources, which induces utilization loss. Load balancing tech-
nique such as work stealing [5] is a solution. Whereas for RT
scheduling, work stealing becomes complex because it must
respect task priority during stealing. Otherwise it may run
lower priority tasks but leave higher priority tasks waiting.
Go-RealTime uses resource balancing instead of load bal-
ancing. Because all tasks are periodic and their utilization
µtask are known, total utilization of a queue is simply the
sum µqueue =

∑
µtask. It is the amount of processor re-

source the queue should get. The total resources, Nw work-
ers, are allocated to the queues proportionally according to
µqueue.

When the load of one queue (µqueue) changes, the number
of workers allocated to each queue (Nqueue

w ) is recomputed.
Go-RealTime dynamically assign workers to queues accord-
ing to Nqueue

w . In most cases, Nqueue
w is not an integer, so a

queue may be assigned a fraction of a worker. In this exam-
ple (Figure 2), worker 1 is allocated to both queues. A frac-
tion fEDF of this worker should be allocated for EDF queue,
and fLLF for LLF queue (fEDF + fLLF = 1). Worker 1
tries to give the right fractions of total running time to both
queues. It records the total running time of each queue.
When it becomes idle and is going to grab a goroutine, it
firstly checks the current fraction of total running time of
each queue, and selects the queue which has received the
smallest fraction. Go-RealTime asynchronously checks and
enforces resource balancing while goroutine is running, re-
peated by a given time interval tbalance. The implementation
will be explained in the next section.

2.4 Handling of Asynchronous Events

Figure 2: Resource balancing: allocating the correct fraction
of the workers to goroutine queues.

Go-RealTime handles asynchronous events via check async
method. It checks all asynchronous events (timeout, mes-
sage, etc.) and responds to the events which should have
occurred. The challenge is how to call check async method
repeatedly in an asynchronous manner. Our current im-
plementation is to insert check async calls in the program
until the interval between two consecutive checks is less
than δasync. By skipping some of these checks, we can con-
trol the timing precision. Algorithm 1 gives an example
of instrumenting a ConvertGray function with check async.
The function converts a colored image in memory to gray
scale. The three locations to insert check async (@out, @lpy,
@lpx) result in different timing precisions and overheads. To
tune precision in a finer way, it can skip a fixed number of
check async calls using a counter. For example, it can call
check async once every ten times when the program runs to
location lpy (denote as “lpy, 1/10”).

Algorithm 1 Instrumented ConvertGray

1: function ConvertGray
2: @out: check async()
3: for Loop over Y coordinate do
4: @lpy: check async()
5: for Loop over X coordinate do
6: @lpx: check async()
7: SetPixelGray(image, x, y)
8: end for
9: end for

10: end function

The check async facility is used in a number of compo-
nents in Go-RealTime as discussed below.

2.4.1 Timer
Go-RealTime implements a software timer upon check async.

It keeps a priority queue of active timers at each worker. The
queue uses“time”value to assign priorities. The current run-
ning goroutine on a worker is responsible for checking the
timers. check timer method gets called inside check async.
It compares the head timer in queue with the current clock
time. If any timeout is due, it calls the handler function
of the timer and removes the timer from the queue. We
use timer uncertainty to evaluate timing precision of the
framework. Timer uncertainty is computed as ∆timer =
tnotify − texpect. texpect is the expected timeout of timer.
tnotify is when the program is notified and responds to the
timer.

We compare timers of Linux (notify via file descriptor),
Go and Go-RealTime. ∆timer is measured by repeatedly
setting a timer and computing tnotify − texpect. All tests
are running on real-time threads on a server with 32 In-
tel Xeon E5-2640 2.6GHz CPUs running CentOS 6.6. The
statistics of ∆timer is shown in Figure 3. The x-coordinate



is the value of ∆timer and the y-coordinate gives the cumu-
lative probability function. The overhead of Go-RealTime
timer is given near the curve. The results show that the
uncertainty of the Linux timer is around 100µs. The na-
tive Go timer daemon is running on a goroutine, which may
be influenced by other goroutines. In order to test its per-
formance under load, we create a few dummy goroutines
running on the same thread as the timer goroutine (load=1
means one dummy goroutine). We see that 10 goroutines
increase the uncertainty to sub-second level, which means
the native Go timer can not guarantee its precision. The
precision of Go-RealTime timer depends on program details
(check async location). We use the program in Figure 1 for
the test. Because all Go-RealTime goroutines are check-
ing the timers generated by other goroutines as well, run-
ning multiple goroutines does not influence the timer preci-
sion. The result shows check async method is able to achieve
millisecond-level precision with small overhead (2.9ms/s for
lpy, 0.3ms/s for lpy 1/10). Go-RealTime timer does not
rely on OS timer. Compared to the Linux timer, it provides
the ability to tune precision and overhead in a large range.

Figure 3: Timer uncertainty comparison of Linux, Go and
Go-RealTime. Each test contains 500 samples.

2.4.2 Messages
Passing asynchronous messages and getting on-time re-

sponses is important in RT systems. In Go-RealTime, each
worker has a message queue to be updated by asynchronous
events. The current running goroutine checks the messages
when check async runs. In this way the running goroutine
can respond to asynchronous messages quickly. As an in-
stance, for EDF and LLF scheduling, an asynchronous mes-
sage is sent to the running task when a new task becomes
runnable. Upon receiving the message, the running task
compares its priority with the new one, then the task with
higher priority continues to run.

2.4.3 Other Events
Go-RealTime implements a few other asynchronous events

based on check async. Two representative examples are (i)
checking resource balancing is done in check async method
every tbalance, and (ii) in LLF scheduling, all goroutines ac-
tively update and compare laxity in check async method ev-
ery tllf .

3. PARALLEL TASKS IN GO-REALTIME
Go language provides goroutine and channel constructs

to build scalable concurrent programs. Parallel program-
ming in Go is studied in [19] using a dynamic programming
example that we will use to illustrate the advantages of Go-
RealTime. The example addresses a search method: given
Nkey keys and the probability of each key, find the optimal

binary search tree that minimize average search time. The
graph of computing nodes is shown in Figure 5 (a). It starts
from the diagonal nodes and ends at the right upper cor-
ner node. The program is parallelized by grouping nodes as
sub-task as Figure 5 (b). In the reference implementation in
[19], each sub-task is executed as a goroutine. Because there
is a fixed dependency among all sub-tasks, there is no need
for each sub-task to exclusively occupy a concurrency unit,
which costs resource and increases switch time. Executing
each sub-task as a subroutine is more efficient.

Go-RealTime models a parallel task as a DAG of sub-
tasks. It stores runnable sub-tasks in a global pool protected
by a spin lock. A sub-task is pushed into the runnable pool
after all its predecessors have completed. When a gorou-
tine is idle, it fetches a sub-task to execute in the pool of
its associated parallel task. A goroutine sleeps if the pool is
empty and is woken up when new sub-tasks are runnable.
Go-RealTime creates a group of goroutines for a parallel
task. It includes a initializing goroutine, a finalizing gorou-
tine, and a few goroutines to execute the parallel section,
constructed in the fork-join pattern, as shown by Figure 4.
A goroutine is blocked until all its predecessors finish. The
initializing goroutine is responsible for preparing for parallel
computation, such as loading data and initializing sub-task
pool. The finalizing goroutine does clearing work and han-
dles computation result. The API to construct a parallel
task is the subtask object: users create a set of sub-tasks,
assign each sub-task a sequential program to run and a list
of predecessor/follower in the DAG.

Figure 4: In this example, a parallel reduction task is decom-
posed into a DAG of sequential sub-tasks. It is executed by
a group of goroutines constructed in the fork-join pattern.

The topology of a DAG is decided by the decomposition
of a parallel task. A finer grain of decomposition leads
to better parallelization. But it also induces larger system
overhead of sub-task switching and contention at spin lock.
For the example in Figure 5, we denote the number of sub-
tasks on the diagonal as Np, the total number of sub-tasks
is Np · (Np + 1)/2. Figure 5 (b) illustrates that Np = 8
leads to better utilization of parallel resource than Np = 4.
We test the program on 16 processors using different val-
ues of Np with Nkey = 1024. As shown in Figure 6 (a),
when Np = 16 the parallel resource can not be effectively
utilized. When Np becomes 128, as Figure 6 (b) shows,
the parallel resource is well utilized. The span is largely
reduced by around 4 times. User should decide the most
suitable granularity considering both span and cost. The
scheduling problem of a set of finely parallelized tasks, for
which sequential sections are ignorable, can be simplified as
uniprocessor scheduling problem, thus global EDF allows us
to achieve optimal scheduler implementation.

4. REAL-TIME SCHEDULER
Our goal was to design a RT scheduler for Go-RealTime

that manages both sequential and parallel tasks concur-



Figure 5: Parallel programming example. (a) dynamic pro-
gramming grids are group into boxes as sub-tasks, (b) DAG
of sub-tasks and (c) impact of decomposition granularity.

(a) (b)

Figure 6: Parallelize dynamic programming on 16 processors
with Np as (a) Np = 16 and (b) Np = 128.

rently. With the help of the resource balancing design,
several different scheduling algorithms can work in parallel
with correct portions of processors. To simplify the imple-
mentation of parallel scheduling, Go-RealTime uses EDF to
schedule all parallel tasks. It is optimal for finely paral-
lelized programs. In this section, we focus on the sequential
scheduling problem. We present our EDF/LLF implementa-
tion, and demonstrate the gains due to on-the-fly scheduling
algorithm change in Go-RealTime.

4.1 Scheduling Algorithms
EDF is a fixed priority scheduling algorithm. Given a

set of Ntask tasks, the total number of switching is at most
Ntask. However, for multiprocessor system, a single sequen-
tial task can not utilize parallel resources. Keeping a high
number of concurrent runnable tasks is important to better
utilize parallel resources. LLF uses laxity instead of deadline
as the metric of priority. Laxity tlaxity is the latest starting
time to meet deadline, calculated by tlaxity = td − tr + te
(it follows the same definition in [17]). te is the time that
a task has already been executed. LLF scheduler uses the
worst case tr given by user. When a task is running, its
laxity increases. Laxity ties happen when two tasks have
the same laxity and repeatedly switch to each other. The-
oretically LLF may induce infinite task switching because
of tie. Previous work on LLF proposed several strategies to
break laxity ties and bound switching times [17], but they
are designed for single processor and do not utilize parallel
resources. Go-RealTime breaks laxity ties in a simple way:
it compares laxities of the running task with the head task
in queue in check async method. A switch is allowed only
after tllf since the previous. Therefore tllf is the minimal
interval of task switching caused by LLF. tllf = 10ms is
used by default.

We test the EDF and LLF algorithms using 4 and 32
processors, respectively. The test program is a simple in-
finite loop. It checks timer queue every 1ms. Period and
utilization of tasks are randomly generated from an uniform
distribution. Period tp ranges in 100ms ≤ tp ≤ 300ms. Two
types of tasks are considered: light task (0.1 ≤ µtask ≤ 0.5)
and heavy task (0.5 ≤ µtask ≤ 0.9). In the test we run each
set of tasks for 10s, which has a random total utilization
µset. We calculate the ratio of successfully scheduled sets
(sets without deadline miss) rsched for small ranges of µset.
The result is given in Figure 7. It shows that for sets of light
tasks (Figure 7 (a)(c)), EDF and LLF can achieve high uti-
lization close to upper bound, on both 4 and 32 processors.
Performance of EDF is slightly worse than LLF. For heavy
tasks, LLF still achieves high utilization, whereas a large
ratio of task sets is not schedulable using EDF (Figure 7
(b)(d)). The result confirms with the bad performance of
EDF for high utilization tasks. LLF is the first choice for
higher utilization in such scenarios. However, frequent gor-
outine switching induced by LLF may incur large system
overhead. Next we quantify the overhead to comprehen-
sively understand the performance of schedulers.

(a) (b)

(c) (d)

Figure 7: Real-Time scheduler performance. The tests for
EDF on heavy tasks contain 400 samples. The other tests
contain 100 samples each. (a) 4-processor, light tasks, (b)
4-processor, heavy tasks, (c) 32-processor, light tasks and
(d) 32-processor, heavy tasks.

4.2 System Cost
System cost is an important consideration for the timing

overhead it represents. The cost includes direct and indirect
components. Direct cost consists of time consumed by the
framework code and goroutine switch. Indirect cost that we
consider is mainly cache pollution.

4.2.1 Direct Cost
We classify direct cost into three sources: queueing, switch-

ing and timer. Queueing cost is the time consumed by sched-
uler code, the majority comes from the cost of insert and
fetch operations on goroutine queues. Increasing number
of concurrent tasks leads to higher queueing cost. Shorter
period of tasks also increases the queueing cost. This is be-
cause goroutine queueing operation is more frequent, which
results in intense contention of parallel access. Switching
cost is the direct cost of goroutine switch. The overhead of



timer is mainly induced by check timer call, decided by its
calling interval. It also includes the cost of operations on
timer queue such as insertion.

The histogram of direct cost on 32-processor tests is given
in Figure 8. Beside light and heavy tasks, we consider ultra
light tasks which has 0.01 ≤ µtask ≤ 0.1, to study the queue-
ing cost with a large number of tasks in queue. The result
shows that the direct cost is still small when 500 ultra light
tasks run on 32 processors (smaller than 0.055%, shown in
(a)). As the number of tasks reduces and period increases
(like most application cases), the direct cost becomes even
smaller and can be ignored.

Figure 8: System cost of EDF and LLF scheduler on a 32-
processor machine: (a) ultra light tasks, (b) light tasks and
(c) heavy tasks.

4.2.2 Cache Pollution
When goroutine switch happens, the current cache status

may be invalid due to context change of data and code.
The time required to update cache from memory is called
cache pollution. The cost highly depends on programs and
machines, thus it is hard to be exactly quantified. The cost
reported by [14] is in the range of milliseconds. Therefore it
should be considered as a major cost. We use the number
of goroutine switch as the metric of indirect cost. Figure 9
gives the histogram of average number of goroutine switches
per second·processor. It shows the switch induced by LLF is
evidently larger than EDF. Because of similar performance
in scheduling ultra light and light tasks, EDF is preferred in
these cases to reduce switching cost.

Figure 9: Average count of goroutine switching per
second·processor: (a) ultra light tasks, (b) light tasks and
(c) heavy tasks.

4.3 Schedulability Evaluation
We give the details of schedulability evaluation of Go-

RealTime using EDF and LLF. We use the convention in

[2, 12, 4, 8] to generate the test sets. That is, starting with
zero task in the task set, we randomly generate tasks with
uniformly distributed period and utilization, then add this
task to the current task set. We check the total utilization of
this task set, if it is less than the lower bound of the prede-
termined utilization, we continue to add new task into this
task set until the total utilization is in the range, then this
task set is tagged as valid for schedulability test. If the total
utilization exceeds the upper bound, we abandon this task
set and start with a new task set with zero task. For the
total utilization of each task set, we set it to be within 2.0
to 3.9. The period of each task is uniformly distributed be-
tween 100ms to 300ms. For light tasks, the utilization per
task is uniformly distributed between 0.1 to 0.5, for heavy
tasks the utilization per task is uniformly distributed be-
tween 0.5 to 0.9. We generate 5000 task sets for each case
of testing.

Figure 10 shows the results of schedulability experiments.
To be specific, Figure 10(a) shows the number of schedula-
ble task sets with only light tasks. For light tasks, the num-
ber of tasks for each total utilization is almost uniformly
distributed. We can see that for both EDF and LLF algo-
rithms, all the task sets are schedulable. Figure 10(b) shows
the number of schedulable task sets with heavy tasks. For
heavy tasks, the distribution of tasks under different total
utilization is not uniform. It first increases with the total
utilization then decreases with it. We see that for EDF,
the number of successful task sets drops quickly with the
increase of total utilization. While for LLF, the number of
successful task sets decreases slowly. This implies that LLF
performs better than EDF for this settings in Go-RealTime.

(a) (b)

Figure 10: Number of schedulable task sets for (a) light and
(b) heavy tasks out of 5000 task sets on 4 processors.

4.4 On-the-fly Scheduling Algorithm Change
The support for multiple schedulers in Go-RealTime is the

key to combine advantages of different algorithms, such as
EDF’s low cost and LLF’s high schedulability. The other
benefit of the design is that one scheduling algorithm can be
changed to another on-the-fly, when the features of the task
set become different. For example, when the total utilization
increases, the scheduler should change from EDF to LLF in
order to avoid deadline miss. During the changing process,
both EDF and LLF goroutine queues are kept. Each task is
inserted into LLF queue at the beginning of its next period,
while the current state (state may be“running”, “runnable in
EDF queue” or “idle until next period starting”) of the task
remains unchanged. An example of this process is shown in
Figure 11. Scheduler changes from EDF to LLF at time 4s.
It can be found that after the change, the schedulability of
the task set is improved upon more frequent task switches.



Figure 11: On-the-fly scheduling algorithm change: a task
is represented by a colored box. The box boarder means an
attempt of task switch. For EDF, this attempt is only made
when a current task ends or a new task is runnable. LLF
makes a switch attempt per tllf (tllf = 20ms used here).
For both EDF and LLF, an attempt successes if a current
task ends or a new task has higher priority. An arrow stands
for the time when a deadline miss happens.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we present the design and implementation

of Go-RealTime, a real-time parallel programming frame-
work implemented in user space using Go programming lan-
guage. Important design choices related to resource reser-
vation, asynchronous event handling and programming in-
terface make it possible for the application developer to em-
bed strong timing requirements and ensure their satisfaction
through a flexible runtime scheduler. It also supports DAG-
based parallel programming to deploy parallel program on
multiprocessor system.

Go-RealTime is implemented by modifying open source
Go runtime, implementing Go packages and by importing
important Linux system calls into Go. It uses Linux thread
scheduler for resource reservation. Goroutine running on
top of thread is the unit of concurrency. Our framework
greatly simplifies the implementation and deployment of RT
programs, and improves the flexibility in system extension.

Our prototype of Go-RealTime is moving forward in the
following directions: (1) design a strategy to automatically
place check async method based on timing profile of pro-
grams; (2) design a controllable approach to run garbage
collection which respects the priority of RT tasks.

6. REFERENCES
[1] K. Agrawal, C. Gill, J. Li, M. Mahadevan, D. Ferry,

and C. Lu. A Real-Time Scheduling Service for
Parallel Tasks. In Proceedings of the 19th IEEE
Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 261–272, 2013.

[2] T. P. Baker. Comparison of Empirical Success Rates
of Global vs. Partitioned Fixed-Priority and EDF
Scheduling for Hard Real Time. FSU Technical
Report, TR-050601, 2005.

[3] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A.
Varvel. Proportionate Progress: A Notion of Fairness
in Resource Allocation. In Proceedings of the 25th
Annual ACM Symposium on Theory of Computing,
pages 345–354, 1993.

[4] M. Bertogna, M. Cirinei, and G. Lipari. Schedulability
Analysis of Global Scheduling Algorithms on
Multiprocessor Platforms. IEEE Transactions on
Parallel and Distributed Systems, 20(4):553–566, April
2009.

[5] R. D. Blumofe and C. E. Leiserson. Scheduling
Multithreaded Computations by Work Stealing.
Journal of the ACM, 46(5):720–748, Sept. 1999.

[6] B. B. Brandenburg and J. H. Anderson. On the
Implementation of Global Real-Time Schedulers. In
Proceedings of the 30th IEEE International Real-Time
Systems Symposium (RTSS), pages 214–224, Dec 2009.

[7] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi,
and J. H. Anderson. LITMUSRT: A Testbed for
Empirically Comparing Real-Time Multiprocessor
Schedulers. In Proceedings of the 27th IEEE
International Real-Time Systems Symposium (RTSS),
pages 111–126, 2006.

[8] M. Cirinei and T. P. Baker. EDZL Scheduling
Analysis. In Proceedings of the 19th Euromicro
Conference on Real-Time Systems (ECRTS), pages
9–18, 2007.

[9] J. Goossens, S. Funk, and S. Baruah. Priority-Driven
Scheduling of Periodic Task Systems on
Multiprocessors. Real-Time Systems, 25(2-3):187–205,
Sept. 2003.

[10] T. L. Harris. A Pragmatic Implementation of
Non-blocking Linked-Lists. In Proceedings of the 15th
International Conference on Distributed Computing,
pages 300–314, 2001.

[11] K. Lakshmanan, S. Kato, and R. Rajkumar.
Scheduling Parallel Real-Time Tasks on Multi-core
Processors. In Proceedings of the 31st IEEE
International Real-Time Systems Symposium (RTSS),
pages 259–268, 2010.

[12] J. Lee and I. Shin. EDZL Schedulability Analysis in
Real-Time Multicore Scheduling. IEEE Transactions
on Software Engineering, 39(7):910–916, July 2013.

[13] J. Y. T. Leung. A New Algorithm for Scheduling
Periodic, Real-Time Tasks. Algorithmica,
4(1):209–219, 1989.

[14] C. Li, C. Ding, and K. Shen. Quantifying the cost of
context switch. In Proceedings of the 2007 Workshop
on Experimental Computer Science, 2007.

[15] C. L. Liu and J. W. Layland. Scheduling Algorithms
for Multiprogramming in a Hard-Real-Time
Environment. Journal of the ACM, 20(1):46–61, Jan.
1973.

[16] M. McCool, A. D. Robison, and J. Reinders.
Structured Parallel Programming: Patterns for
Efficient Computation. Morgan Kaufmann Publishers,
2012.

[17] S.-H. Oh and S.-M. Yang. A Modified
Least-Laxity-First Scheduling Algorithm for
Real-Time Tasks. In Proceedings of the 15th
International Conference on Real-Time Computing
Systems and Applications (RTAS), pages 31–36, 1998.

[18] A. Saifullah, K. Agrawal, C. Lu, and C. Gill.
Multi-core Real-Time Scheduling for Generalized
Parallel Task Models. In Proceedings of the 32nd
International Real-Time Systems Symposium (RTSS),
pages 217–226, 2011.

[19] P. Tang. Multi-core Parallel Programming in Go. In
Proceedings of the 1st International Conference on
Advanced Computing and Communications, 2010.


