
Task-Set Generator for Schedulability Analysis using the
TACLeBench benchmark suite

Yorick De Bock
imec, IDLab, Faculty of

Applied Engineering
University of Antwerp, Belgium

yorick.debock@uantwerpen.be

Sebastian Altmeyer
Faculty of Science

University of Amsterdam, The
Netherlands

altmeyer@uva.nl

Thomas Huybrechts
imec, IDLab, Faculty of

Applied Engineering
University of Antwerp, Belgium
thomas.huybrechts@uantwerpen.be

Jan Broeckhove
imec, IDLab, Department of
Mathematics and Computer

Science
University of Antwerp, Belgium
jan.broeckhove@uantwerpen.be

Peter Hellinckx
imec, IDLab, Faculty of

Applied Engineering
University of Antwerp, Belgium

peter.hellinckx@uantwerpen.be

ABSTRACT
Currently, real-time embedded systems evolve towards com-
plex systems using new state of the art technologies such as
multi-core processors and virtualization techniques. Both
technologies require new real-time scheduling algorithms.
For uniprocessor scheduling, utilization-based evaluation
methodologies are well-established. For multi-core systems
and virtualization, evaluating and comparing scheduling tech-
niques using the tasks’ parameters is more realistic. Evalu-
ating such scheduling techniques requires relevant and stan-
dardised task sets. Scheduling algorithms can be evaluated
at three levels: 1) using a mathematical model of the algo-
rithm, 2) simulating the algorithm and 3) implementing the
algorithm on the target platform. Generating task sets is
straightforward in the case of the first two levels; only the
parameters of the tasks are required. Evaluating and com-
paring scheduling algorithms on the target platform itself,
however, requires executable tasks matching the predefined
standardised task sets. Generating those executable tasks is
not standardized yet.

Therefore, we developed a task-set generator that gener-
ates reproducible, standardised task sets that are suitable
at all levels. Besides generating the tasks’ parameters, it
includes a method that generates executables by combining
publicly available benchmarks with known execution times.
This paper presents and evaluates this task-set generator.

CCS Concepts
•Computer systems organization → Real-time sys-
tems; Embedded software; •General and reference →
Empirical studies; Measurement;

Keywords
Real-Time Systems, Embedded Systems, Schedulability Anal-
ysis, Benchmarks, Task-Set Generator, Software Tool

EWiLi’16, October 6th, 2016, Pittsburgh, USA.
Copyright retained by the authors

1. INTRODUCTION
Current evolutions of mechatronics show an exponential

growth in the number of embedded systems used for con-
trol due to the shift from mechanical control towards elec-
tronic control. This evolution creates new opportunities for
more advanced software based control. On the downside,
it introduces new challenges regarding safety and reliabil-
ity. Both opportunities and challenges will result in more
complex software and hence higher computational require-
ments. These requirements can be tackled by using state of
the art technologies on embedded system. Multi-core pro-
cessors are a solution to increase the computational power
in a single chip. Virtualization techniques can be applied to
handle the complexity of the software by decomposing the
software into components which can be analysed indepen-
dently of each other. For real-time systems, most applica-
tions are composed of recurring tasks with periods, deadlines
and execution times. Such a collection of tasks is called a
task set. The schedulability of task sets is very important.
Uniprocessor scheduling algorithms are evaluated and com-
pared based on the maximum task set utilization that can
be achieved by the scheduler. For multiprocessor scheduling
algorithms, however, the complexity of the analysis method-
ologies increases dramatically. This is due to the concurrent
execution of tasks and the indeterminism of most multi-core
architectures. Virtualization introduces a two-level hierar-
chical scheduling structure that renders the traditional anal-
ysis inapplicable. The many open issues and the practical
importance of these technologies make it a topic of active
research.

Parameter-based analysis uses the tasks’ parameters dur-
ing analysis. This results in an one-to-one mapping of task-
set and scheduling algorithm; the schedulability can be anal-
ysed for a specific task set using a certain scheduling al-
gorithm. The parameter-based analysis is more realistic
for multiprocessor scheduling algorithms, and at this mo-
ment the only analysis method for the hierarchical schedul-
ing structure in virtualization technology. The schedulabil-
ity of a task set is the key criterion for the evaluation and
comparison of scheduling algorithms. Other criteria such as
the number of pre-emptions, energy consumption, scheduler

overhead, cache performance etcetera provide an additional
basis for comparison. The schedulability and other crite-
ria can be evaluated at an early stage of the design process
of the mechatronic system. At this stage, the complexity
and cost are relatively low compared to later stages of the
process. However, at the later stages more evaluation cri-
teria can be evaluated and compared with other scheduling
algorithms.

The performance of scheduling algorithms can be evalu-
ated on three levels:

• Formal proof: schedulability can be formaly proven
by the mathematical model of the scheduling tech-
nique.

• Simulation-based analysis: schedulability is vali-
dated based on the simulation model of the scheduling
technique. This technique simulates a task set schedul-
ing based on specific input parameters covering the tar-
get hardware (number of cores, ...) and the simulator
settings (stepsize, simulation time, ...).

• Implementation-based analysis: real-time tasks
are deployed on the target platform. To schedule the
tasks on the target platform, a scheduler and hence
a Real-Time Operating System (RTOS) are required.
The scheduler uses the scheduling algorithm to define
the order of execution of the tasks.

Evaluating scheduling algorithms requires input data. A
set of real-time tasks is needed to evaluate and compare dif-
ferent scheduling mechanisms. Depending on the evaluation
level the content and format of the tasks and task set dif-
fer considerably. At the first two levels, synthetic task sets
are required. This implies that the task model should only
include the tasks’ parameters (Worst-Case Execution Time
(WCET), period and deadline) of the different tasks. It is es-
sential that the generated values of those parameters are not
biased against any scheduling algorithm. At the third level,
however, the task model includes executable code, which has
to match the existing task parameters. The executable tasks
should be created taking into account the WCET parameter
of the task. The WCET of a task is expressed in time units
and will differ when deployed on different target platforms.
Therefore the task model should be injected by different sets
of task code when deployed on different platforms. The lat-
ter feature is missing in current evaluations of scheduling
algorithms making it hard to compare or reproduce their
results across platforms.

Our goal, in this paper, is to create executable tasks, based
on the synthetic task set, for a broad set of different archi-
tectures and to examine and compare the performance of
the scheduling algorithms. The execution time of the tasks
will be equal to the WCET of the tasks to test the worst-
case scenario for the scheduler.

We present a task set-generator tool, which not only gen-
erates synthetic task sets, but also the executable tasks for
a given target platform using publicly available benchmark
programs. This tool can be used to generate task sets suit-
able to evaluate and compare scheduling algorithms at all
evaluation levels using standardized, reproducible and trans-
parent task-set generation techniques. The task-set genera-
tor tool is part of the COBRA framework. A framework to

optimize the (worst-case) resource consumption on multiple
research levels: timing, scheduling and parallelism.

The remainder of the paper is organized as follows. The
COBRA framework is described in Section 2. The related
work on generating synthetic task sets and executable tasks
is briefly reviewed in Section 3. The task-set generator tool
and its different components are discussed in Section 4. Sec-
tion 5 describes an experimental evaluation of the tool. We
conclude the paper and give a brief overview of future re-
search in Section 6.

2. COBRA FRAMEWORK
COBRA (COde Behaviour fRAmework) is an open source

framework (Figure 1) that allows developers to optimize
(worst-case) resource consumption. Currently it focusses
mainly on computational resources, but it will soon be ex-
tended with power consumption and other resources to op-
timize. The COBRA framework combines multiple research
domains to optimize the resource consumption on multiple
levels (timing, scheduling and parallelism):

• WCET analysis. To determine the Worst-Case Ex-
ecution Time (WCET), different techniques are avail-
able. The COBRA framework implements both static
and dynamic timing analysis, and even new hybrid
techniques which combines the existing static and dy-
namic analysis techniques. These techniques are es-
sential to characterise the resource consumption.

• Scheduler optimization towards real-time perfor-
mance and/or power consumption. Energy and time
(computing units) are both important resources, this
part of the framework analyses and optimizes schedul-
ing algorithms towards these resources given a specific
application. The analysis methodology to find this op-
timal scheduling algorithm, includes the three evalua-
tion levels, described in Section 1. This gives us the
opportunity to select a set of algorithms at the be-
ginning of the design process and to narrow it down
towards the end.

• Design pattern based performance optimization
for multi-core processors. Executing an applica-
tion on a multi-core processor can have a speed-up due
to parallelism. However finding and implementing the
right design patterns to find parallelism is time con-
suming. This process can be repeated at multiple lev-
els, from code-based parallelism towards instruction-
level parallelism. This framework tries to automate
this process to find the best design patterns for paral-
lelism at the right level.

As described in Figure 1, the COBRA framework1 con-
sists of three parts which can be used separately. The first
part delivers input for the second part to be manipulated or
to be directly used as input data for the experiments in the
third part. The second part transforms the input of the first
part to specific applications with user-defined parameters to
test a specific case for the analysis techniques. The third
1
The COBRA framework and all of its components, are available at

our website (http://cobra.idlab.uantwerpen.be). The task-set gener-
ator can be downloaded together with the TACLeBench benchmark
programs. This website also provides installation guidelines and a
user manual for the task-set generator.

Figure 1: The COBRA Framework: the three parts are visualized by the dotted lines. The first parts, located on the left, contains the different
sources of the input data. In the middle, the second parts provides a set of tools which modify the input data of the first parts and provide the
output to the analysis tools in the third part. However, the input data of the first part can also be a direct input for the analysis tools in most
instances. The third part, on the right, contains the analysis tools. Above the WCET analysis techniques, with the new hybrid technique. In
the middle the analysis methodology to find the optimal scheduling algorithm and below the design pattern based performance optimization for
multi-core processors.

part analyses and optimizes the resource consumption for
the different research domains discussed above.

The input in the first part consists of (1) the TACleBench
benchmark suite [4], (2) Generic Input Programs and (3)
specific applications given a specific hardware configuration.
The second part contains multiple tools to process and mod-
ify the input data of the first part. These tools provide their
processed output data in the same format for every analysis
tool, despite the format of the raw input. Because of this
standardization, the only requirement for new analysis tools
to be added to the COBRA framework is to support this
format. The third part contains for each research domain
an analysis tool or combination of tools. Each analysis tool
optimizes the resource consumption by implementing new
analysis techniques and methodologies.

The task-set generator discussed in this paper is part of
the COBRA framework and the generated task sets (both
synthetic and executable) are used in the multiple research
domains explained above (WCET analysis, scheduling opti-
mization and design pattern based optimization for multi-
core processors). The task-set generator is a tools that be-
longs to the second part. It formats, converts and processes
raw input data into a standardized format supporting re-
producible analysis experiments. Its modus operandi will
be described in more detail in this paper.

3. RELATED WORK
Research on task-set generation tools that generate exe-

cutable tasks is rather limited. TIMES [1], by Amnell et
al., is a tool specifically designed for symbolic schedulability
analysis and synthesis of executable code with predictable
behaviours for real-time systems. It includes a task-set gen-
erator to integrate a set of tasks provided by the user into
specific hardware architectures. Starting from a set of tasks
and their runtimes, it will analyse schedulability given a
specific scheduling method and hardware architecture. Af-
ter successful analysis it will generate wrapping code around
predefined tasks to create a compilable source code project
for that specific type of hardware.

In [5] Kramer et al. present a new benchmark generator
methodology for automotive applications. The automotive
industry is characterized by its strong intellectual property
(IP) protection. This results in a lack of realistic real-world
benchmark applications. Kramer et al. propose to solve this
problem by creating new benchmark applications based on
code snippets coming from a well protected database con-
taining IP protected automotive applications. The tool how-
ever was not yet available at the time of writing.

Wägemann et al. proposed GenE [8], a tool to generate
benchmarks for timing analysis. It combines code patterns
from real-time applications that are both representative for
real-time applications and sufficiently challenging to WCET
analysis tools. In addition to the source code, the gener-
ator also provides the flow facts of the benchmark. Based

on this information it is straightforward to derive an accu-
rate WCET that can be used as a reference to evaluate and
compare the performance of WCET analysis techniques and
technologies.

4. TASK-SET GENERATOR TOOL
The tool presented in this paper will generate task sets for

the evaluation of scheduling algorithms at the three levels
of abstraction in the design process. For formal and simula-
tion based analysis, synthetic task sets are generated given
a global utilization range for the task sets. A task set S con-
sists of a set of n independent real-time tasks {τ1, τ2, ..., τn}.
Let τi indicate any given task of the task set. Each task
has three parameters: the WCET C, the relative deadline
D and the period T . The utilization of a task set is defined
as:

Ut =

n∑
i=0

Ui =

n∑
i=0

Ci

Ti
(1)

where Ci is the WCET of task τi and Ti the period of task τi.

For implementation-based analysis, the tasks of the syn-
thetic task sets are extended with an executable instance.
These executable tasks are created by combining benchmark
programs from the TACLeBench benchmark suite [4]. The
benchmark suite is a collection of benchmark programs used
to evaluate timing analysis tools. The task-set generator tool
calculates for each task a combination of benchmark pro-
grams. The summation of the execution time of the selected
benchmark programs equals the required execution time of
the task (within a pre-defined error margin). The tool dis-
tinguishes two types of user-defined input parameters: task
set specific parameters and program specific parameters. The
former are used to generate the synthetic task sets, the latter
are used to select a set of benchmarks which fits the require-
ments of the user and the target platform. The selected set
is used to calculate the sequence of benchmark programs for
each tasks of the generated synthetic task set.

The tool is structured into three major parts which can
operate independently. The first part creates the synthetic
task sets, the second part selects the combination of bench-
mark programs for each task and the last part generates the
source code and the makefile to create the executable tasks.

4.1 The Synthetic Task-Set Generator
To generate task sets to evaluate and compare scheduling

algorithms, the distribution of the utilization of the tasks
must be unbiased towards any scheduling algorithm [3]. The
generator generates periodic tasks with implicit deadlines.
These are tasks with a deadline D equals to the period T
which means that the the task releases a job at every time
interval T . To generate the synthetic task sets, the tool
uses the task set specific parameters as input. The following
parameters are a minimum set of parameters:

• the range of the task set utilization ([Utmin, Utmax])

• the step value between two utilizations (Utstep);

• the number of task sets per utilization (k);

• the number of tasks per task set (n);

• the lower and upper bound on the period (Tl, Tu);

• the level of granularity of the period (T∆);

• the seed value for pseudorandom generators. (s)

In a first step, a utilization Ui for each task τi in the task
set S is defined based on the constraint that

∑n
i=0 Ui = Ut

where Ut is the target utilization. The UUnifast-Discard
algorithm is used to generate the task-specific utilizations.
The input of this algorithm is the utilization of the task set
Ut and the number of tasks in the task set n.

In the second step, the period of each task is defined and
the execution time is calculated for each task. The period
is randomly selected between the given lower bound Tl and
upper bound Tu. Based on the generated period T and
task utilization U , the execution time C is calculated. The
mininum difference between periods of two different tasks is
defined as T∆. To evaluate the effect of an input param-
eter, pseudorandom generators are used to generate these
values. This implies that, for example, two identical task
sets, in terms of task utilization, can be generated, but with
a different lower and upper bound of the period. By keep-
ing all other parameters fixed, all confounding effects are
avoided [2].

The number of generated task sets (m) depends on the
number of utilization steps and the number of task sets per

utilization, m =
(

Utmax−Utmin
Utstep

+ 1
)
× k. Another advan-

tage of the pseudorandom generator is its ability to repro-
duce identical tests. An identical set of task sets can be
generated by other parties in the same domain when using
the same input parameters. The generated synthetic task
sets are used to generated the benchmark program sequence
in the second part.

4.2 Benchmark Program Sequence
After the synthetic task sets are generated, a benchmark

program sequence is calculated for every task. The tool uses
the TACLeBench benchmark suite as a source for the bench-
mark programs [4]. The benchmark programs are formatted
using the same code formatting rules, this results in a main
function consisting of three function calls. These functions
are present in every benchmark program:

• {benchmark program name} init()

• {benchmark program name} main()

• {benchmark program name} return()

The first function initializes the benchmark program, the
second executes the main functionality and the third func-
tion returns a variable for sanity checks. If the benchmark
program is selected for a task, the first and second func-
tion execute multiple times in each job of that task. This
insures that the benchmark program always has the same
input data each time it executes. Furthermore, almost all
benchmarks are platform-independent and can be compiled
to and evaluated on any kind of target platform. To use the
benchmark programs in the task-set generator, information
regarding each benchmark must be accessible for the tool.
This is realized by a complementary description file for each

benchmark. This description file contains all necessary in-
formation of the benchmark (location, execution time,...).
Based on the information in the description file and the se-
lection criteria given by the user, the tool checks whether the
benchmark program is suitable to be used in the benchmark
program sequence. The first round of selection is based on
the architecture of the target hardware; if the description
file includes timing information (execution cycles) of the
benchmark program on the given architecture, the bench-
mark program is selected. This selection results in a subset
of the benchmark programs which are used to calculate the
benchmark program sequence for each task. By adding more
information about the benchmark programs in their descrip-
tion file, a more precise selection of benchmark programs
is possible. To prevent non-reproducible behaviour, each
benchmark program should run at least a minimum number
of times in a row; due to cache effects and other micro-
architectural features, a program’s execution time may vary
strongly. Yet, when executed in sequence, the execution
time eventually stabilizes. Hence, we also derive the min-
imum number of executions until a stable execution time
occurs. This means that when a benchmark program is se-
lected, the number of times a benchmark program is ex-
ecuted lies between its minimum number and infinity. A
minimum number of consecutive executions is necessary to
get a reproducible execution time. For each benchmark pro-
gram, the minimum number of executions is different and
does not only depends on the code of the benchmark pro-
gram, but also on the architecture of the target hardware.
The value of this minimum number of executions, has to
be obtained in a measurement based approach by executing
the benchmark program in a loop and varying the loop size.
This minimum number of executions is included in the de-
scription file of the benchmark program. To calculate the
program sequence for each task, we use an Integer Linear
Programming (ILP) model [7] to describe the optimization
problem. This model tries to match the sum of the bench-
mark program execution times with the target WCET of the
task. The number of times a benchmark program is used,
equals or is greater than zero. To build this model, the ex-
ecution time of the benchmark programs must be known.
These are calculated by dividing the number of execution
cycles of a benchmark program by the clock frequency of
the processor of the target platform. The model must also
be aware of the minimum required number of executions of
each benchmark program. This is included in the model as
an initial cost function. If a benchmark program is selected,
a cost c (minimum number of execution multiplied by the
execution time of the benchmark program) is added once.
The model is represented by the the following equations:

maximize

k∑
i=1

(ciyi + eili) (2)

subject to

k∑
i=1

(ciyi + eili) ≤ E, i = 1, ..., k (3)

li ∈ Z≤0, i = 1, ..., k (4)

yi =

{
0 for li = 0

1 for li > 0
, i = 1, ..., k (5)

yi ∈ {0, 1} , i = 1, ..., k (6)

where e0, ..., ek is the set of execution times of the subset

of benchmark programs. The number of times a benchmark
program must be executed is represented by l0, ..., lk, and
E represents the targeted execution time of the task. The
initial cost of each benchmark program is represented by
c0, ..., ck. The ILP tries to maximize Equation 2, but it is
subject to Equations 3-6. Equation 3 bounds Equation 2 to
a maximum value, the wanted exection time E. Equation 4
implies for only positive integers as values for li. To add the
initial cost value only once and when the benchmark pro-
gram is selected (li > 0), yi can only be 0 or 1 depending
the value of li. This is realized by Equations 5 en 6. The
output of the ILP is for each benchmark program the value
of l; if l is bigger than zero, the minimum number of exe-
cutions for that benchmark program is added to l and the
benchmark program is selected. The tool uses the GNU Lin-
ear Programming Kit (GLPK) [6] to calculate the ILP. The
output of this part is an XML file per task set, containing
the selected benchmark programs and the number of exe-
cutions of each program. Based on the selected benchmark
programs and the number of executions, the source code is
generated.

4.3 Generating Executable Tasks
The final part of the tool-chain generates the source code

for each task and a makefile for every task set. It uses the
task sets from Section 4.2 as input. For each task of a task
set the initialization and main function of all selected bench-
marks are called from within the code of the task. After-
wards a makefile is generated that compiles the tasks for the
target platform. Each benchmark program is called within
a for-loop statement, where l is the loop bound. After the
code of the benchmark programs is appended, additional
lines of code are inserted at the beginning and the end of
the code, depending on the user requirements. This header
and footer code can be added and/or changed in the tem-
plate file. Listing 1 shows an example of generated source
code. Compiling the source code files using the makefile,
results in a set of executables which can be executed on the
target hardware.

Listing 1: Example of generated code of a Task with minimal
header and footer code

// h e a d e r b e g i n
int task (void){
// header end

int i ;
for (i = 0 ; i <606; i ++){

b i t o n i c i n i t () ;
b i ton i c main () ;

}
for (i = 0 ; i <103; i ++){

h2 64 de c i n i t () ;
h264dec main () ;

}
// f o o t e r b e g i n
}
// f o o t e r e n d

In this section we have introduced a task-set generator
tool that can be used to generate tasks for the formal proof,
analysis by simulation and for the analysis on the imple-
mentation level. In the next section, we will evaluate the
generated executable tasks by executing them on the target

platform and by comparing measured and targeted execu-
tion times of the tasks.

5. EXPERIMENTAL EVALUATION
In this section, we report on the experiments using the

task-set generator and the results of these experiments. To
compare the performance of the scheduling algorithm on dif-
ferent evaluation levels, the utilization of the generated task
sets must be identical on each level. Consequently, the ex-
ecution time of each task must be equal to the targeted
WCET of the task as used in the the first two evaluation
levels, or at least within an acceptable margin. The aim
of our experiment is to examine the deviations of the task
behaviour at the three evaluation levels: (i) the formal anal-
ysis, (ii) the simulation based analysis, and (iii) the analysis
at the implementation level.

We have generated a number of synthetic task sets and
executables using the task-set generator. To create the exe-
cutables, we first need to derive the timing behaviour of the
benchmark programs. To this end, we have executed and
measured 10 benchmark programs to obtain their execution
times and their minimum required number of executions.
After updating the description files, the task-set generator
calculates the benchmark program sequence of each task.

5.1 Experiment Setup
We have conducted our experiments on a platform with an

Intel(R) Xeon(R) CPU E5-2420 v2 processors at 2.20 GHz.
Xen 4.5 was patched with the latest version of RT-Xen2.
The guest domain was installed with a para-virtualized ker-
nel. Dom0 is booted with two VCPUs, each pinned on a
PCPU, and 4GB memory. The remaining ten cores where
used to run the guest domain. The scheduling algorithm of
the guest OS, patched by LITMUSRT, is a global Earliest
Deadline First (EDF) algorithm. In our experiments tasks
are generated based on the base task from the LITMUSRT

library. For tracing the tasks in the feather-trace tool, in-
cluded by LITMUSRT, was used.

5.2 Execution Cycles of the Benchmarks
We selected 10 benchmark programs from the TACLeBench

benchmark suite. Before these programs can be used to cre-
ate executable tasks, the execution time of the benchmark
must be known. To create reproducible task times, a mini-
mum number of executions is required for each benchmark
program (Section 4.2). For this, we analyse the execution
time of a benchmark program by executing the benchmarks
a statistically relevant number of times l. Typically for each
benchmark we do l = {10, 50, 100, 500, 1000, 2000} measure-
ments. Besides the execution times, we calculate the mean
execution time T . Based on the above measurements a value
l′ exists: ∀l > l′ : l · T ≈ Tl with Tl denoting the execution
time of running the benchmark l times. This value l′ is de-
fined as the minimum required executions for the benchmark
program. This results in an execution time T and a min-
imum required executions l′ for each benchmark program.
We analysed the execution of each benchmark program, and
observed that the execution time has a standard deviation
of less than 1% if the benchmark program is executed for at
least l′ times. To correct for the fluctuation of a task’s ex-

2https://sites.google.com/site/realtimexen/

Figure 2: Example of a benchmark program description file

ecution time, an extra safety margin M has to be added to
the number of execution cycles of the benchmark programs.
We have found that a safety margin M = 2% suffices to
ensure that the execution time does not exceed the WCET
of the task. The calculated execution times and the mini-
mum required executions for the corresponding architecture
(in this case x86) are added to the description file of the
benchmark program. See Figure 2.

5.3 Creating and Executing Tasks
After updating the description files, we generated the syn-

thetic task sets and the executable tasks. We generated 5
randomized synthetic task sets S1, ..., S5, each with 20 tasks.
For each task we executed the ILP program and generated
the source code based on the benchmark sequence of the
task. For our experiment, we have compiled the tasks as
shared libraries to call the task function (Listing 1) in each
job of the real-time task in LITMUSRT. Because the focus
of the experiment lies on measuring the execution time of
tasks, we used one guest with one dedicated core and pinned
the virtual cpu to a physical cpu and executed the tasks one
by one. The runtime of the experiment per task is 10 seconds
and we repeat the experiment 10 times. Since the aim of the
experiment is deriving the execution times of the tasks, the
period of each task is fixed to 1 second, this gives us an equal
number of measurements for each task. This results in 100
measurements for every task of the 5 task sets.

5.4 Results
The results are shown in Figure 3. The experiments shows

that the calculated WCET of the ILP program of each task
has a deviation of less than 0.00001% compared the target
WCET generated in the first part of the task-set generator.
Comparing the execution time of the tasks on the target
platform to the target WCET demonstrates that the execu-
tion time does not exceed the target WCET of the tasks.
Secondly, the task with the lowest minimum execution time
is task τ9 of task set S5 (see Figure 3) with an execution time
of 96.4% of the target WCET. Decreasing the safety margin
M would result in an higher lower bound of the execution
time. The upper bound of the execution time, however,
would exceed the WCET and could result in an overload
situation.

6. CONCLUSION AND FUTURE WORK
This paper presents a next generation task-set generator

tool. It generates reproducible task sets for the three evalu-
ation levels to evaluate and compare scheduling algorithms
for state of the art technologies. For the first two levels,
synthetic task sets are generated that do not bias against
any scheduling algorithm. Pseudo-random generated val-
ues make it possible to generate reproducible task sets. For
the third level, a new task set generator method to create
executable tasks for measurement-based analysis has been
introduced. Using publicly available benchmark programs,
making test sets reproducible and also making this tool open

Figure 3: Task Set S5

source enables the possibility to standardize the proposed
methodology. We have evaluated the task-set generator tool
in a number of experiments. We establish that the execu-
tion time of the tasks do not exceed the targeted WCET
of the task, and has a lower bound of 96.4% of the WCET.
The development of the task-set generator tool is a ongo-
ing process. At this moment a first version of this tool is
publicly available under the GPL license. This version of
the tool can be used to generate task sets with executable
tasks for the x86 architecture using 10 benchmark programs.

As this is the first version of a task-set generator, there is
room for many improvements and extensions. We will focus
on the two topics with the highest priority:

1. Synthetic task-set generator:

• Extend the number of supported task models.
The concept is that users should be able to tune
the input parameters in a sense that the gener-
ated task sets support their research goals.

• Extend the number of supported task set genera-
tor algorithms. The intention is to create a frame-
work in which current but also future algorithms
can be plugged in.

2. Benchmark selection:

• Improve the method to create a stable execution
time due to cache effects. This would result in
more stable execution times, and would decrease
the safety margin M while not exceeding the tar-
geted WCETs of the tasks.

• Increase the number of processor architectures.
This would give us and other researchers the pos-
sibility to evaluate and compare scheduling algo-
rithms on different target platforms using identi-
cal synthetic task sets.

• Make the selection of the benchmark programs
not only based on the architecture of the target
platform, but also on other criteria. After prese-
lecting the benchmark programs with support of
the chosen architecture, the user will be able to
select an adjusted set of benchmarks. Possible se-
lection criteria are the use of floating point units,
the size of the benchmarks, or the domain of the
benchmarks.

7. ACKNOWLEDGMENT
This study was funded by the Agency for Innovation by

Science and Technology in Flanders (IWT).

8. REFERENCES
[1] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson,

and W. Yi. TIMES: A Tool for Schedulability Analysis
and Code Generation of Real-Time Systems. In Formal
Modeling and Analysis of Timed Systems (FORMATS).
Springer Berlin Heidelberg, 2003.

[2] R. I. Davis and A. Burns. A Survey of Hard Real-Time
Scheduling for Multiprocessor Systems. ACM
Computing Surveys, 1(4), 2009.

[3] P. Emberson, R. Stafford, and R. I. Davis. Techniques
for the synthesis of multiprocessor tasksets. In the 1st
International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems
(WATERS), 2010.

[4] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper,
W. Puffitsch, C. Rochange, R. B. S. Schoeberl,
P. Waegemann, and S. Wegener. TACLeBench: A
Benchmark Collection to Support Worst-Case
Execution Time Research. In 16th International
Workshop on Worst-Case Execution Time Analysis
(WCET 2016), 2016.

[5] S. Kramer, D. Ziegenbein, and A. Hamann. Real World
Automotive Benchmarks For Free. In the 6th
International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems
(WATERS), 2015.

[6] A. Makhorin. GNU Linear Programming Kit (GLPK),
2012.

[7] J. P. Vielma. Mixed Integer Linear Programming
Formulation Techniques. Society for Industrial and
Applied Mathematics (SIAM), 57(1), 2015.

[8] P. Wägemann, T. Distler, T. Hönig, V. Sieh, and
W. Schröder-preikschat. GenE : A benchmark
generator for WCET analysis. Open Access Series in
Informatics (OASIcs), 47, 2015.

