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ABSTRACT

Nowadays Heterogeneous System Architectures (HSAs) are
becoming very attractive in the embedded and mobile mar-
kets thanks to the possibility to select the best computa-
tional resource among the available compute units to op-
timize the performance per Watt figure of merit. In this
scenario, OpenCL is becoming the standard paradigm for
heterogeneous computing supporting the programming of
all types of units with a single abstraction level. However,
the decision of the resource to use together with its archi-
tectural tuning is still left to the programmer; this issue is
even more exacerbated when considering the fact that the
choice depends also on the actual conditions in which the
system is operating. This work aims at proposing a runtime
controller, integrated in Linux Operating System (OS), for
optimizing the power efficiency of a running OpenCL appli-
cation deciding the system configuration. Our experimental
results over a set of applications from the Polybench suite
on the Odroid XU3 board show that our controller is able
to obtain a power efficiency of more than 90% of the one
achievable via offline profiling.

1. INTRODUCTION
HSAs [7] are becoming nowadays an attractive solution

for achieving an optimal trade-off between performance and
power/energy consumption thanks to the availability of dif-
ferent kinds of resources, such as Central Processing Units
(CPUs), Graphic Processing Units (GPUs), Digital Signal
Processors (DSPs) and other kinds of possibly reconfigurable
HW accelerators. Examples are the Samsung Exynos 5 Octa
chip [17], hosting an ARM big.LITTLE asymmetric octa-
core CPU and an ARM Mali GPU, and the Xilinx Zynq [21],
integrating an ARM dual-core CPU and a reconfigurable
Field Programmable Gate Array (FPGA) unit.

However this increase in heterogeneity comes at the cost of
new issues in programmability and runtime management of
these resources to achieve the pursued performance/power
consumption trade-off. In particular, various kind of pro-
cessing units imply different type of programming languages
and models thus introducing new implementation and in-
tegration challenges. Nevertheless, this abundance of re-
sources has to be properly managed in the execution of the
workload, since each type of processing unit offers a different
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level of performance/power efficiency to each single applica-
tion and part of it.

In 2009, Khronos Group, including Apple, ARM, Samsung
and many other industrial partners, has defined OpenCL [11],
a cross-platform programming model designed around the
Single Instruction Multiple Thread (SIMT) computational
paradigm, to exploit data parallelism on heterogeneous ac-
celerators. OpenCL, that has been implemented as an exten-
sion of C/C++ languages, enables the programmability and
the usage of a large variety of processing units with a single
programming model. However, even if enabling functional
portability between different processing units, the OpenCL
API still requires the programmer to explicitly select and
tune the resources to be used for the execution of the appli-
cation. This still constitutes a limitation since each applica-
tion may have different optimal operating points on differ-
ent platforms, and, also on the same platform, the optimal
configuration may also vary on the basis of performance re-
quirements expressed by the user or on the overall working
conditions of the board; e.g., the system may be in a low-
battery mode. Thus, there is a quest in self-adaptation of
OpenCL applications to identify in each working scenario
the optimal working point.

In this paper, we present a runtime controller integrated
within OpenCL applications running on Linux, which en-
ables the monitoring of system status and the automated
adaptation of the application itself1. We also propose a
novel policy integrated within this controller allowing the
application to self-tuning by acting on the mapping and
the Dynamic Voltage and Frequency Scaling (DVFS) of the
processing units to optimize the performance/power con-
sumption trade-off. Experimental sessions carried out on a
widely-used OpenCL benchmark suite, called Polybench [4],
show the efficiency of the controller to quickly converge to
the optimal solution with less than 10% of error.

The rest of the paper is organized as follows. Section 2
briefly discusses the related work. Then, Section 3 intro-
duces the working scenario and states the addressed op-
timization problem. The implementation of the proposed
integrated runtime controller and of the mapping decision
policy are provided in the Sections 4 and 5, respectively.
After that, an experimental evaluation of the approach is
provided in the subsequent Section 6, and, finally, Section 7
concludes the paper.

1The source code is publicly available at https://bitbucket.
org/necst/opencl-cgroups-library-release



2. RELATED WORK
Many OpenCL runtime supports have been defined by

vendors for their designed processing units; examples are In-
tel for last generations of Pentium, Xeon and HD Graphics
units [8], NVIDIA and ARM for GPU devices [14, 1], AMD
for their multi-core CPUs, GPUs and Accelerated Process-
ing Units (APUs), and Xilinx for FPGAs [20]. Moreover,
other open source runtime supports, such as [3, 10, 9], have
been designed to overcome the unavailability of commercial
solutions especially for some type of CPUs. Finally, OpenCL
ICD loaders (e.g., [19]) have been also implemented to dy-
namically discover and use at the same time in the same
application various runtime supports in computing systems
containing devices from different vendors. When consider-
ing the mobile and embedded scenario, the main limitation
of these OpenCL solutions is the lack of an advanced sup-
port to the widely-used ARM big.LITTLE device. In fact,
ARM does not provide any runtime for the CPUs [1], while
the mentioned open source solutions handle such a multi-
core as a single device and spawn threads indistinctly on all
the cores. Thus, the presence of two highly-different clusters
that could be used separately is neglected.

Approaches for tuning and optimizing OpenCL applica-
tions on HSAs have been recently investigated by a number
of works, such as [15, 16, 12]. In [15] a design space ex-
ploration is performed to identify the most efficient solution
in terms of OpenCL kernel tuning (e.g. the workgroup size)
and subsequent task mapping. Then, in [16], the authors de-
fine another design exploration approach to identify the op-
timal partition point for the amount of data to be processed
by a single OpenCL kernel in order to parallelize the elabora-
tions among CPU and GPU. Finally, in [12] a Domain Spe-
cific Language and a companion source-to-source compiler
are proposed to generate an OpenCL kernel specifically op-
timized for a target architecture and at the same time trans-
parently managing parallelization and data transfer among
resources. Since all these works are based on design-time ac-
tivities, they require a specific design optimization for each
considered architectural platform and, nevertheless, do not
feature runtime controllers able to adapt to changes in the
working conditions.

Further works (e.g., [2, 22, 18, 13]) have proposed run-
time controllers to perform dynamic resource management.
Their goal is to optimize the trade-off between performance
and power/energy consumption by adapting to the currently
running workload and related execution requirements spec-
ified by the user. Unfortunately, none of such frameworks
support OpenCL applications. In particular, the approaches
in [2, 22] do not provide any mapping mechanism compliant
with asymmetric CPUs. The approach in [18] defines a map-
ping mechanisms based on the Linux sched_set_affinity()
to support the OpenMP parallelization for CPUs that is not
compatible with OpenCL and, at the same time, cannot be
extended to GPU. The same mapping mechanism is adopted
in [22]. Finally, even if in [13] it is defined another mech-
anism exploiting Linux cgroups, that is more flexible than
the previous one, unfortunately again the approach does
not consider OpenCL code and therefore it does not sup-
port acceleration on GPU. As a conclusion, the goal of this
work is to overcome all the discussed limitations and to pro-
pose a comprehensive controller supporting the mapping of
OpenCL applications on all the types of devices and at the
same time featuring a fast runtime decision policy.
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Figure 1: Architecture of the Samsung Exynos 5422.

3. PROBLEM DEFINITION
This section presents the working scenario considered in

this paper, by introducing the target architectural platform
and the class of executed applications. Then, we formu-
late the optimization problem addressed in the runtime con-
troller we propose.

3.1 Target Architecture and Applications
In this work we consider an HSA as the Samsung Exynos

5422 [17]. As depicted in Figure 1, this chip features an
ARMA15 quad-core cluster (called big) and an ARMA7 one
(called LITTLE). The big cluster, targeted for performance-
demanding tasks, can run at frequencies in the ranges from
200 to 2000 MHz, while the LITTLE one, suited for low-
power mode, at frequencies in the 200-1300 MHz range.
Moreover, the architecture contains an ARM MALI GPU
which frequency can be configured in a range between 177
and 600 MHz. DVFS can be used to change the frequency at
runtime with a per-cluster granularity. Moreover, the chip
is provided with power monitoring sensors. Both sensors
and actuators are accessible though standard interfaces pro-
vided by the loaded Linux OS. As a final note, our solution
is valid for any alternative HSAs with a similar architecture
and running a Linux OS.

Regarding the target applications, a set of computational
kernels that is of great interest in the context of embed-
ded and mobile systems is the family of polyhedral applica-
tions. Polyhedral applications comprise algorithms for video
processing, filters and algebraic transformations which are
at the basis of control, infotainment and augmented reality
software. These applications are characterized by a com-
putational intensive kernel continuously executed in a loop
on incoming data, such as the frames in a video to be pro-
cessed. In this work we considered the OpenCL implemen-
tation of Polybench [4] benchmark suite as a representative
set of polyhedral applications.

3.2 Problem Formulation
The addressed problem consists in the identification of the

best operating point in terms of Performance per Watt for a
single given application running on the considered architec-
ture. In particular, we want to identify at runtime, without
previous profiling information, which is the best processing
unit to use and the related frequency level.

In a more formal way, let us consider a controlled applica-
tion A running on the target architecture featuring three dif-
ferent kind of processing units P = {BIG,LITTLE,GPU}.
Each processing unit is characterized by a set of operating



frequencies (in MHz), that can be selected at runtime:

fBIG = {200, 300, . . . , 1900, 2000}

fLITTLE = {200, 300, . . . , 1200, 1300}

fGPU = {177, 266, 350, 420, 480, 543, 600}

The running application will be characterized for each op-
erating point (defined in terms of the used processing unit
and the selected frequency level), by two direct metrics the
throughput, Thr, and the overall power consumption W ,
and a derived metric called the power efficiency EFF :

EFFp,f =
Thrp,f

Wp,f

, p ∈ P, f ∈ fp

The goal tackled in this work is to find p̂ ∈ P and f̂ ∈ fp̂
such that:

EFFp̂,f̂ ≥ EFFp,f , ∀p ∈ P ∧ ∀f ∈ fp

In order to solve this optimization problem we need to
address a set of technical issues related to the monitoring
and controllability of the running application on the target
system; specifically, we need i) the support for OpenCL for
all the processors with the possibility to constrain and move
the execution at runtime; ii) to measure the throughput of
one iteration of the application and its power consumption;
iii) a smart algorithm to explore the power efficiency curves
and rapidly identify the best operating point.

4. CONTROLLER IMPLEMENTATION
The self-adaptive approach proposed in this paper has

been implemented in a specific controller C++ class directly
instantiated within the application source code. Figure 2
depicts the overall structure of the controller and its inte-
gration within the system. Moreover, in order to enable the
actuation of the mapping on all OpenCL devices, the appli-
cation has to be implemented according to a specific tem-
plate. Listing 1 shows the defined application template and
how the controller is instantiated and used. All the details
of the controller in Figure 2 are discussed in the following
paragraphs.

OpenCL runtime. To enable the support for all the
devices available in the Exynos chip, we have installed both
ARMOpenCLMali SDK [1] and Portable OpenCL library [9],
and we have enabled the concurrent discovery of both the
platforms with the OpenCL ICD Loader provided by [19].
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Figure 2: Overview of the implemented system.

OpenCL template. The defined application structure is
shown in Listing 1; it slightly enhances the standard OpenCL
template. In particular, the latter one requires the program-
mer to select and configure the desired platform and device
to be used to execute the kernel. We extend this template
to allow the defined controller to dynamically select at each
iteration of the application which device to use.

To enable this capability, in the OpenCL initialization
step, all platforms and devices are discovered and set up,
as shown in the piece of code reporting the cl_init() func-
tion (Lines 8-19). In particular, the function iterates on
all platforms and sets up all devices2 and related OpenCL
objects, such as the context, the memory objects and the
program objects; all these objects are stored in arrays.

Then, a specific variable, curr_device, is used to specify
the index of the current device to be used in the execution
of the kernel. Thus, the run_kernel() function uses the
execution context specified in such a variable to run the
kernel (Lines 21-38).

Cgroups actuation. In order to enable cluster-level
mapping on the big.LITTLE CPU, we have exploited OS
facilities for task mapping to force the usage of a subset
of the cores. Linux OS provides two different mechanisms:
sched_set_affinity() and cgroups. sched_set_affinity()
cannot be used in OpenCL applications, since it needs to
know thread IDs; indeed, threads are generated within the
OpenCL runtime and their IDs are not visible externally. In-
stead, cgroups offers the possibility to assign a set of cores,
and, more in general, further resources such as CPU quota
and memory amount, by specifying only the application
PID; all the threads spawned by that PID are then man-
aged automatically. Therefore, as in [13] we have integrated
cgroups in the proposed controller.

Performance monitor. Instruction per Cycle (IPC) or
other classical low-level metrics computed by the OS do not
represent a useful information to the final user to perceive
the actual progress of an application. As an example, IPC
is not able to show if the video application in execution is
providing a minimum Quality of Service (QoS) in terms of
frame/s. Therefore, to enable run-time performance mon-
itoring, we have integrated in the controller the Heartbeat
mechanism [6], a state-of-the-art solution to acquire high-
level information from the application.

The basic idea of the Heartbeat mechanism is to measure
the throughput of periodic application by i) measuring the
duration of the execution of each single loop of the applica-
tion and ii) computing the ratio between the amount of pro-
cessed data and such a duration. Therefore, the controller
initialized all necessary data structures (timers and accumu-
lators) during the initialization (Line 47). Then, at the end
of the loop (Line 52), the invoked send_heartbeat() func-
tion collects the new timestamp and the size of the processed
data (directly specified by the programmer) and based on
such information computes the current throughput.

Power monitor. The considered Exynos chip integrated
various sensors to monitor the status of the hardware plat-
form, such as power consumption and temperature of the
various clusters. Such sensors are exposed to the program-
mer through the virtual file systems of Linux OS.

In order to trace the power consumption of the big and
LITTLE clusters and of the GPU, we have implemented

2For the sake of space, in the listing at Line 14 it is assumed
to have a single device per platform.



Listing 1: Application template
1 //OpenCL ob j e c t s
2 c l p l a t f o rm i d p l a t f o rm id s [MAXPLATFORMS] ;
3 c l d e v i c e i d d e v i c e i d s [MAX DEVICES ] ;
4 . . .
5 c l u i n t num platforms ;
6 c l u i n t num devices ;
7

8 void c l i n i t ( ) {
9 int i ;

10 // setup OpenCL environment for a l l dev ices
11 c lGetPlatformIDs (0 , NULL, &num platforms ) ;
12 c lGetPlatformIDs ( num platforms , p l a t f o rm ids ,

NULL) ;
13 for ( i =0; i<num platforms ; i++){
14 c lGetDeviceIDs ( p l a t f o rm id s [ i ] ,

CL DEVICE TYPE ALL, 1 , &d e v i c e i d s [ i ] ,
&num devices ) ;

15 // setup other OpenCL ob j e c t s for device [ i ]
16 // i . e . context , queues , memory , programs
17 . . .
18 }
19 }
20

21 void run ke rne l ( int currDevice ){
22 // load app l i ca t i on data
23 . . .
24 // setup the workgroup s i z e s
25 loca lWorkSize [ 0 ] = . . .
26 globalWorkSize [ 0 ] = . . .
27 //wri te memory ob j e c t s
28 clEnqueueWriteBuffer ( cmdQueue [ currDevice ] ,

mem obj [ currDevice ] , CL TRUE, . . . ) ;
29 . . .
30 // Set the arguments of the kerne l
31 c lSetKerne lArg ( c lKerne l [ currDevice ] , 0 ,

s izeof ( cl mem ) , (void ∗)&mem obj [
currDevice ] ) ;

32 . . .
33 // execute kerne l
34 clEnqueueNDRangeKernel ( cmqQueue [ currDevice ] ,

c lKerne l [ currDevice ] , 2 , NULL,
globalWorkSize , localWorkSize , 0 , NULL,
NULL) ;

35 c lF i n i s h (cmdQueue [ currDevice ] ) ;
36 //read memory ob j e c t s
37 clEnqueueReadBuffer ( cmdQueue [ currDevice ] ,

mem obj2 [ currDevice ] , CL TRUE, . . . ) ;
38 }
39

40 int main ( ) {
41 int cu r r dev i c e , i ;
42 Cont ro l l e r c o n t r o l l e r ;
43 // app l i ca t i ons va r i a b l e s and ob j e c t s
44 . . .
45 c l i n i t ( ) ;
46 // setup CGroup , Heartbeat and po l i cy
47 c o n t r o l l e r . i n i t ( ) ;
48 // app l i ca t i on ’ s main loop
49 for ( int i =0; i<i t e r a t i o n s ; i++){
50 cu r r d ev i c e = c o n t r o l l e r . g e t c u r r c o n f i g ( ) ;
51 run ke rne l ( c u r r d ev i c e ) ;
52 c o n t r o l l e r . s end hear tbeat (DATA SIZE) ;
53 }
54 // de l e t e a l l o b j e c t s
55 c o n t r o l l e r . des t roy ( ) ;
56 . . .
57 }

an external monitor acting as a separate process daemon
and periodically (i.e. every 50ms) collecting power values
from the interface provided by the sys virtual file system of
Linux OS. The external monitor can be triggered via a mes-
sage over a named pipe (a Linux interprocess communication
mechanism) and instructed to collect power information ag-
gregating them over a period of time. Another message on

the same pipe can stop the acquisition returning the average
power consumption over the considered period.

DVFS actuation. The setting of the current frequency
level for each CPU cluster or the GPU is performed by means
of the interface provided by Linux OS through the sys vir-
tual file system or by using the cpufreq-set utility.
Controller. The controller has been implemented in a

single class encapsulating all the discussed mechanism and
the decision policy. It exposes the following methods:

• init(), invoked at Line 47, sets up the environment
by initializing the data structures of the Heartbeat,
cgroups and of the decision policy; moreover the func-
tion connects to the external power monitor by means
of the named pipe.

• get_curr_config(), invoked at Line 50, analyzes all
collected metrics (power and throughput) and executes
the decision policy to identify on which device to run
the application kernel during the current loop itera-
tion; moreover, it actuates on the cgroup library.

• send_heartbeat(), invoked at Line 52, processes cur-
rent Heartbeat at the end of the main loop to compute
the throughput.

• destroy(), invoked at Line 55, deallocates all data
structures.

5. CONTROLLER POLICY
This section describes the controller policy that allows to

solve the problem tackled in this paper, defined in Section 3.
We will first discuss a preliminary profiling phase carried out
on the target applications in order to understand which con-
trol strategy should be adopted, and, then, we will describe
the policy itself.

5.1 Preliminary Analysis
In a preliminary phase, we carried out an experimental

evaluation of the behavior of such applications on the con-
sidered heterogeneous platform. We measured the execution
time, power consumption and power efficiency of each con-
sidered application on each processing unit (big, LITTLE
and GPU) at each available frequency level.

During this analysis, we noticed that the power profile is
almost the same for all the considered applications present-
ing a quadratic relation with respect to the frequency, as
shown for GEMM application in Figure 3(a). In the same
way the execution time of the applications follows the same
trend for all the benchmarks where an increase in the fre-
quency level turns into an improvement of the execution
time up until a certain value, as shown in Figure 3(b) for
the GEMM application.

Combining these two curves we found how the power effi-
ciency of the benchmarks varies (Figure 4). Also in this case,
the trend of the curves is similar for all the benchmarks. An
interesting aspect is that, depending on the actual values of
the execution time and power consumption, three different
situations can be found where either the big, the LITTLE,
or the GPU outperforms the other units (as shown in Fig-
ure 4). Finally, all these curves present a maximum which is
located around the middle of the frequency range for all ar-
chitectures. The goal of the policy is then to find at runtime
this maximum without any previous profiling information.
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Figure 4: Power efficiency of three different Polybench applications.

5.2 Policy Definition
The controller policy is triggered each time the user code

requests a configuration to use (i.e. at the beginning of each
iteration of the application loop).

Considering the structure of the power efficiency curves,
if we fix a device, we can use a ternary search algorithm
to solve our optimization problem. In fact, this algorithm
allows to find a maximum of a mathematical continuous
function F (with a single maximum point), and, actually,
the curves characterizing the computational efficiency of the
considered applications (refer to Figure 4) present such a
shape.

The algorithm needs to find three initial points a, b, c | a <

b < c ∧ F (b) ≥ F (a) ∧ F (b) ≥ F (c); to do this we execute
the first three iterations of the application loop on a given
device at its minimum, maximum and middle frequencies.
Once the three initial points are evaluated, the search space
is divided in two parts: the interval [a, b], and the interval
[b, c], where the point b represents the current estimate for
the configuration having the best performance/Watt ratio.
During an iteration step a new candidate is selected from
one of the two intervals. Our implementation of this se-
lection algorithm picks as candidate point the intermediate
frequency of the interval and it gives priority to the interval
[a, b] until it converges and then selects the new candidate
from the interval [b, c].

Figures 5 and 6 illustrate a typical step of the algorithm.
The new candidate frequency, x in the figure, is selected and
used to execute the next execution of the application. Once
the execution terminates the policy knows, the value f(x) for
the candidate point. Figure 5 (a) illustrates the case where
x is chosen from [a, b], while Figure 6 (a) shows when x is
selected from [b, c]. Once the performance/Watt value of the
new point is measured, the selection of the a′, b′, c′ points
for the next iteration is done by selecting from the points a,
b, c, x the point with the maximum performance/Watt as
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Figure 5: Ternary search: when the new point x is
selected in [a, b] (a) and corresponding outcome (b).
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b′ and the points to its left and right (when sorted based on
frequency) as a′ and c′. Figures 5 (b) and 6 (b) illustrate
the selection of the new a′, b′, c′ points from the 4 available.
Both the figures assume that b is still the best estimate of
the frequency attaining the best performance/Watt ration
and for this reason the points next to it are selected.

The iterative execution continues until the points a, b, c
are contiguous and there is no possibility to select a new
point in the two intervals. When the algorithm converges,
the point b represents the frequency that allows to attain the
best performance/Watt on the device currently analyzed.

The ternary search algorithm has been implemented in



Listing 2: Selection of next configuration
1 Conf igurat ion Cont r o l l e r : : g e tCon f i gura t i on ( ) {
2 for (auto d : d e v i c e sL i s t ){
3 i f ( ! d−>hasConverged ( ) )
4 return d−>getNextConf igurat ion ( ) ;
5 }
6

7 std : : vector<std : : pair<f loat , int>>

b e s tE f f i c i e n c y ;
8

9 for ( int i =0; i<d ev i c e sL i s t . s i z e ( ) ; i++){
10 f loat xMax , yMax ;
11 xMax = dev i c e sL i s t [ i ]−>maxEstimation ;
12 yMax = dev i c e sL i s t [ i ]−>

getEstimationAtFrequency (xMax) ;
13 b e s tE f f i c i e n c y . push back ( std : : pair<f loat ,

int>(yMax , i ) ) ;
14 }
15

16 std : : s o r t ( b e s tE f f i c i e n c y . begin ( ) ,
b e s tE f f i c i e n c y . end ( ) ) ;

17 std : : pair<f loat , int> bestDevice =
b e s tE f f i c i e n c y [ b e s tE f f i c i e n c y . s i z e ( ) −1];

18

19 return d ev i c e sL i s t [ bestDevice . second]−>

getNextConf igurat ion ( ) ;
20 }

a function called getNextConfiguration() that is used to
pick for a given device the frequency to use. This function
is then used in the getConfiguration() routine (Listing 2)
that decides which device to use to execute the application
kernel alongside its frequency. In the getConfiguration()

function, the controller checks for all the available devices
(devicesList) whether there exists an estimation for the
best efficiency. If such estimation does not exist the con-
troller uses the ternary search on the device to find the maxi-
mum as explained before (Line 2). When all the estimations
are available, the algorithm selects the device with the best
power efficiency (Lines 9-14) and asks that device for the
next configuration (Line 16).

The whole configuration decision process is invoked when
the application code calls the get_curr_config() (Line 50
in Listing 1). The code of this function, which bridges the
application code with the controller policy is represented in
Listing 3. The API calls the get_curr_config() function
and then invokes the function to set the desired configura-
tion: only the frequency for the GPU, both frequency and
cgroups configuration for the CPU. Finally, it returns to the
user the device id to use when invoking the OpenCL kernel,
as explained in the application template section.

6. EXPERIMENTAL RESULTS
This section illustrates the results of our controller. Ex-

periments have been conducted on an Odroid XU3 board [5]
hosting an Exynos 5420 chip. We used a set of 7 applications
from the Polyhedral benchmark suite [4], namely 3DCONV,
3MM, ATAX, BICG, GEMM, MVT, SYR2K. All these ap-
plications have been extended with the inclusion of the con-
troller proposed in this work.

In order to test the performance of our controller, we mod-
ified each application to execute the computational kernel for
a fixed number of 50 iterations to see if the controller was
able to converge to the most power efficient solution pos-
sible. The best configuration for power efficiency has been
identified with an offline profiling phase which performed an

Listing 3: Code of the get curr config() API
1 unsigned int OpenClControl ler : : g e t c u r r c o n f i g

( ) {
2 this−>cur r entCon f i gu ra t i on = getCon f i gura t i on

( ) ;
3

4 // Set frequency using e i t h e r cpufreq−s e t for
CPU or using f i l e s y s t em for GPU

5 // For CPU dev ices a l so c a l l s the proper
cgroups funct ions

6 this−>cur r entCon f i gu ra t i on . d−>
s e tCon f i gu ra t i on ( this−>
cur r entCon f i gu ra t i on . f requency ) ;

7

8 // Return the device id to use in the
app l i ca t i on

9 return this−>cur r entCon f i gu ra t i on . device−>
openCl dev ice Id ;

10 }

exhaustive exploration of all the possible configurations.
Figure 7 illustrates the comparison among the profiled

power efficiency and the one found at runtime by our con-
troller. Note that the power measures are subject to a lit-
tle variability due to different working condition (i.e. back-
ground system processes, out of our control). As the fig-
ure shows, the runtime power efficiency adheres for all the
benchmarks to the best power efficiency found during the
profiling phase. In particular, for the first five benchmarks
(from 3DCONV to GEMM) we have that the GPU has the
best power efficiency and the controller is able to converge
and use the same device at runtime. In the last two bench-
marks we have that MVT has the best efficiency on the BIG
processors while SYR2K3 is optimal on the LITTLE ones;
nonetheless the controller found also in these situations a
solution near to the optimum. More in details the controller
reaches a power efficiency which is at least 90% of the best
value found in profiling. The reason behind the 10% error
is due to runtime measurements variability. This causes the
policy to converge to a frequency that is near to the optimal
one; e.g. GEMM converges to 350 instead of 480 MHz.

In all these experiments the time needed to execute our
policy is included in the execution time of the kernel itera-
tion and concurs in defining the power efficiency of the ap-
plication. Since all the controller functionalities are invoked
also when the policy has converged, we can state that the
overhead introduced by our solution is negligible.

Concerning the convergence time we have that the con-
troller converges by testing less than 20 different configura-
tions; this represents about 50% of the overall design space
(that is composed of 38 configurations) as shows in Table 1.
At the opposite, the offline profiling strategy has always to
explore all the 38 configurations. Furthermore, we have to
keep in mind that the offline profiling requires that the work-
ing conditions are exactly the same at the moment the appli-
cation is in execution. At the opposite, runtime adaptation
allows to converge also when the working conditions change.

7. CONCLUSIONS AND FUTURE WORK
This paper has presented a novel runtime controller inte-

grated within an OpenCL application. The controller fea-

3All the SYR2K power efficiency values have been multiplied
by 100 for sake of clarity.



Table 1: Time to converge for the applications.
Benchmarks Iterations

ATAX 20

BICG 19

3DCONV 17

GEMM 19

3MM 19

MVT 18

SYR2K 20

0.0

0.5

1.0

1.5

2.0

3DCONV 3MM ATAX BICG GEMM MVT SYR2K
Polybench

P
er

fo
rm

an
ce

/W
at

t 
[1

/(
s 

*
 W

)]

Target BIG GPU LITTLE RUNTIME

Power Efficiency

Figure 7: Comparison of the solution found by our
controller with profiled information.

tures a novel policy allowing the application to autonomously
adapt by acting on the mapping and the DVFS of the pro-
cessing units to optimize the performance/power consump-
tion trade-off. Experimental results have demonstrated the
efficiency of the controller to quickly converge to the opti-
mal solution with less than 10% of error. Future work deals
with the adoption of further actuation knobs for resource
usage, such as quota assignment and finer-grained mapping,
the improvement of the proposed policy and controller to
support the concurrent execution of several applications.
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