
Optimal Priority and Threshold Assignment for
Fixed-priority Preemption Threshold Scheduling

Leo Hatvani
Technische Universiteit

Eindhoven (TU/e)
The Netherlands

l.hatvani@tue.nl

Sara Afshar
Mälardalen University (MDH)

Västerås, Sweden
sara.afshar@mdh.se

Reinder J. Bril
Technische Universiteit

Eindhoven (TU/e)
The Netherlands

Mälardalen University (MDH)
Västerås, Sweden
r.j.bril@tue.nl

ABSTRACT
Fixed-priority preemption-threshold scheduling (FPTS) is a
generalization of fixed-priority preemptive scheduling (FPPS)
and fixed-priority non-preemptive scheduling (FPNS). Since
FPPS and FPNS are incomparable in terms of potential
schedulability, FPTS has the advantage that it can schedule
any task set schedulable by FPPS or FPNS and some that
are not schedulable by either. FPTS is based on the idea that
each task is assigned a priority and a preemption threshold.
While tasks are admitted into the system according to their
priorities, they can only be preempted by tasks that have
priority higher than the preemption threshold.

This paper presents a new optimal priority and preemption
threshold assignment (OPTA) algorithm for FPTS which in
general outperforms the existing algorithms in terms of the
size of the explored state-space and the total number of worst
case response time calculations performed. The algorithm is
based on back-tracking, i.e. it traverses the space of potential
priorities and preemption thresholds, while pruning infeasible
paths, and returns the first assignment deemed schedulable.
We present the evaluation results where we compare the

complexity of the new algorithm with the existing one. We
show that the new algorithm significantly reduces the time
needed to find a solution. Through a comparative evaluation,
we show the improvements that can be achieved in terms of
schedulability ratio by our OPTA compared to a deadline
monotonic priority assignment.

CCS Concepts
•Computer systems organization ! Embedded soft-
ware; •Software and its engineering!Real-time schedu-
lability;

1. INTRODUCTION
Scheduling theory has been widely studied over the years

to provide e↵ective scheduling solutions for real-time em-
bedded systems. Scheduling algorithms can be divided into
fixed-priority and dynamic-priority, where the priorities of
tasks stay the same throughout the execution of the system
for the former ones and change depending on some parameter
for the latter ones. Even though it can be said that they lack
the flexibility of dynamic-priority algorithms, fixed-priority
scheduling algorithms are a de facto standard in industry

EWiLi’16, October 6th, 2016, Pittsburgh, USA.
Copyright retained by the authors.

due to their lower implementation and execution overhead
compared to dynamic-priority algorithms.

Another way of classifying scheduling algorithms is whether
they allow a task that is currently executing to be preempted
or not, these are preemptive and non-preemptive schedul-
ing algorithms. Recently, new scheduling approaches have
been proposed as an alternative to the extremes of fully pre-
emptive and non-preemptive scheduling. One such schedul-
ing approach is called fixed-priority preemption threshold

scheduling (FPTS) [13, 12] where each task ⌧i is annotated
by a preemption threshold ✓i besides its priority ⇡i. The
preemption threshold for a task specifies which tasks can
preempt it and is always greater than or equal to the priority
of that task. If and only if a task’s priority is higher than
the preemption threshold of the currently executing task, it
is allowed to preempt the executing task. This means that
as soon as the task starts executing, its e↵ective priority is
increased to its preemption threshold.
There are two special cases of the FPTS scheduling algo-

rithm. First, when the preemption threshold of every task is
equal to the task’s priority, FPTS becomes equivalent to the
FPPS scheduling algorithm. Second, when all preemption
thresholds are equal to the highest priority in the system,
FPTS becomes equivalent to FPNS, as no task can preempt
any other task.
FPTS improves the schedulability compared to both ap-

proaches by leveraging the preemption of higher priority tasks
under FPPS and the blocking incurred by non-preemptive
execution of lower priority tasks under FPNS. An optimal pri-

ority and threshold assignment (OPTA) algorithm for FPTS
is any algorithm that for a given set of tasks determines
if it can be scheduled by means of FPTS and when it can
be scheduled provides task priorities and thresholds. The
original OPTA for FPTS has been introduced by Wang and
Saksena [13]. However, the high computation time required
to find a feasible solution using this algorithm, if such exists,
warrants research into more efficient approaches [6]. In this
paper, we introduce a new OPTA algorithm for FPTS which
e↵ectively can decrease the computation time of finding a
feasible solution. Our algorithm is based on (i) backtracking,
(ii) pruning to reduce the search space, and (iii) a heuristic
to traverse the search space.

Contributions: In this paper we propose an algorithm for
optimal priority and threshold assignment. Moreover, we
show by means of experimental results that the computation
time for finding a priority and threshold assignment for a set

of tasks that can make them schedulable, if such a combina-
tion exists, is growing considerably slower compared to the
existing solution when the number of tasks increases. Fur-
ther, we present the schedulability results of comparing our
proposed algorithm with FPPS and FPTS under a deadline
monotonic assignment. Finally, we present a comparative
evaluation of FPTS with a deadline monotonic priority as-
signment and optimal preemption thresholds and our OPTA,
which clearly illustrates the advantage of our OPTA.

2. MOTIVATION EXAMPLE
In this section we show by means of an example that the

deadline monotonic priority assignment is not optimal for
FPTS.

Table 1: Specifications of T1 task set.

task Ci Ti = Di ⇡

DM
i ⇡i ✓i Ri

⌧1 1 7 1 1 1 1
⌧2 8 23 2 2 2 21
⌧3 10 25 3 4 2 25
⌧4 3 33 4 3 2 25

Let us consider the task set T1 which consists of 4 tasks as
presented in Table 1. The tasks are characterized by their
worst-case computation time Ci, minimum inter-arrival time
Ti, deadline Di, preemption thresholds ✓i, and priority ⇡i.
The smaller numbers denote higher priorities. All tasks have
implicit deadlines, i.e. Ti = Di, and the priorities ⇡

DM
i are

assigned based on deadline monotonic priority assignment,
i.e. the task with the smallest deadline has the highest
priority. At utilization U

T1 ⇡ 0.982, T1 is not schedulable
under FPTS. If the priorities of ⌧3 and ⌧4 are exchanged (as
in ⇡i) T1 becomes schedulable under FPTS with preemption
thresholds ✓i and worst-case response times Ri.

3. RELATED WORK
Fixed Preemption Points (FPP) scheduling has been pro-

posed by Burns [4]. Under FPP, preemption is allowed only
at predefined points during a task’s execution. As a results,
a task is divided into a number of non-preemptive execution
chunks. The preemption of a higher priority task is post-
poned until the next preemption point of a running task.
This approach is also referred to as cooperative scheduling.

Preemption Threshold Scheduling (PTS) has been pro-
posed by Wang and Saksena in [13]. Under this approach,
besides a regular priority, each task is assigned a preemption
threshold up to where it can prevent preemptions. The pre-
emption is allowed only when the priority of a ready task is
higher than the threshold of the running task.
Worst-case response time analysis for FPTS as well as

an optimal priority and preemption threshold assignment
algorithm was first presented in [13]. Later, in [11], it has
been shown that the analysis in [13] was optimistic, and
a revised analysis was presented. Exact analysis has been
presented in [8].

Deferred Preemptions Scheduling (DPS) has first been in-
troduced by Baruah [1] under Earliest Deadline First (EDF).
Under this approach, for each task the longest interval that
can be executed non-preemptively is specified. Two types
of implementation exist for this approach based on how the
non-preemptive regions are implemented: Floating model

and Activation-triggered model implementation. Under the
former model, non-preemptive regions are specified in the
code by inserting specific primitives that disable and enable
preemption. Under the latter model, non-preemptive regions
are specified by setting a timer at the arrival of a higher
priority task which lasts for the specified non-preemptive
interval.
Worst-case response time analysis of periodic real-time

tasks under fixed-priority scheduling with deferred preemption
(FPDS) has been studied in [4, 5, 9]. In [3], Bril et. al have
shown that the analysis presented in [4, 5] is both pessimistic
and optimistic where they have revised the analysis.

4. SYSTEM MODEL

4.1 Task Specification
The system consists of a single processor including a set

of n independent sporadic tasks. Each task ⌧i is denoted
by < Ci,Di, Ti >, where Ci 2 R+ denotes the worst-case
execution time, Di 2 R+ denotes the relative deadline and
Ti 2 R+ is the minimum inter-arrival time. We assume
arbitrary deadlines, i.e., Di  Ti, or Di > Ti.

4.2 FPTS Scheduling
Tasks are further annotated by unique priorities ⇡i 2 N

and preemption thresholds ✓i 2 N. For both, smaller values
denote higher priorities. Whenever we compare priorities or
thresholds, we compare their numerical values, i.e. ⇡i < ⇡j

means that task ⇡i has a higher priority than ⇡j . Preemption
thresholds are always greater than or equal to the correspond-
ing priorities ✓i  ⇡i.

Given these priorities and thresholds, the tasks are sched-
uled as follows. If there are no running tasks, the task ⌧i

with the highest priority among the simultaneously released
tasks starts executing. As soon as it starts executing it can
be preempted only by tasks ⌧j that have a priority greater
than its preemption threshold ⇡j < ✓i. In the situation when
the executing task has a higher priority than the preempted
task ⌧i and waiting task ⌧j where ✓i  ⇡j , ⌧i will always
start executing before ⌧j .

5. RESPONSE TIME ANALYSIS

5.1 Analysis
While worst-case response time analysis for FPTS policy

has been published several times [13, 11], in this paper we
employ the exact analysis presented by Keskin et al. [8] with
the added assumption that there is no jitter.
A task ⌧i releases an infinite series of jobs ⌧ik. Each of

these jobs faces two kinds of delays to its execution: blocking
and interference. Blocking (1) comes from the lower priority
tasks that have a preemption threshold equal to or higher
than the priority of the current task.

Bi = max(0, max
8j:✓j⇡i<⇡j

Cj) (1)

Since the sequence of jobs released by the task ⌧i is infinite,
we need to determine how many jobs should be analyzed to
determine whether the entire task is schedulable or not. This
calculation is based on the worst-case level-i active period

[3] and is given as the smallest positive Li that satisfies (2).

Li = Bi +
X

8j:⇡j⇡i

⇠
Li

Tj

⇡
Cj (2)

The maximum number li of jobs of ⌧i that can be executed
in this level-i active period is given by (3).

li =

⇠
Li

Ti

⇡
(3)

Given the knowledge of how many jobs need to be analyzed,
we can compute their worst-case start time Sik for 0  k < li

as the smallest positive value Sik that satisfies (4).

Sik =

8
>><

>>:

Bi + kCi +
P

8j:⇡j<⇡i

l
Sik
Tj

m
Cj if Bi > 0

kCi +
P

8j:⇡j<⇡i

⇣
1 +

j
Sik
Tj

k⌘
Cj if Bi = 0

(4)
Likewise, other tasks may preempt the observed job, thus

causing interference. This quantity is encompassed by calcu-
lating each job’s worst-case finalization time Fik. It can be
found as the smallest positive Fik that satisfies (5).

Fik =

8
>>>>>><

>>>>>>:

Sik + Ci+
P

8j:⇡j<✓i

⇣l
Fik
Tj

m
−

l
Sik
Tj

m⌘
Cj if Bi > 0

Sik + Ci+
P

8j:⇡j<✓i

⇣l
Fik
Tj

m
−

⇣
1 +

j
Sik
Tj

k⌘⌘
Cj if Bi = 0

(5)
Finally, according to (6), we compute the worst-case re-

sponse time as the maximum of response times of all jobs
within the worst-case level-i active period.

Ri = max
8k:0k<li

(Fik − kTi) (6)

5.2 Definition and Observations
First, let us define the key concept that is the basis of our

algorithm. Blocking tolerance for tasks with non-preemptive
regions was introduced by Lortz and Shin [10] and later
exploited by Yao et al. [14]. The same concept is utilized
in this work with the specialization that the entire task is
considered either preemptive or non-preemptive depending
on the relevant priorities and thresholds.

Definition 1 (Blocking tolerance). Given a schedu-

lable task ⌧i in the context of a set of tasks T , its blocking

tolerance βi is the maximum amount of blocking that it can

experience from a lower priority task while staying schedula-

ble.

In other words, blocking tolerance is the maximum com-
putation time that can be assigned to a task of a lower
priority that blocks the observed task without compromising
the observed task’s schedulability. Next, let us derive two
observations that will be utilized in our algorithm.

Lemma 1. Given two tasks ⌧i and ⌧j with Cj > βi, task

⌧i will be rendered unschedulable if task ⌧j blocks it (⇡j >

⇡i ^ ✓j  ⇡i) or is assigned a priority greater than ⇡i.

Based on Definition 1, the first part of Lemma 1 is imme-
diately true. To observe that the second part is also true,

we can inspect that while blocking value Bi in (4) influences
only the start time of the task, if the same computation
time is allocated to a higher priority, it is introduced into
the computation of starting time (4) and optionally finishing
time (5) as Cj .

Corollary 1. Let ⌧i be a task and T be a set of schedu-

lable tasks with assigned priorities and thresholds. If task ⌧i

is not schedulable in the context of T with the lowest priority

8⇡j 2 T : ⇡i > ⇡j and any preemption threshold, it will not

be schedulable if additional tasks are added to T .

From the worst case response time equations, it is trivial
to deduce that adding more interference will never reduce
the response time of a task.

6. OPTIMAL PRIORITY AND THRESHOLD
ASSIGNMENT

In this section, we present an OPTA algorithm for FPTS.
The algorithm is optimal in the sense that it will find a
feasible priority and thresholds assignment that makes a
task set schedulable if such solution exists. Similar to the
OPTA in the work by Wang and Saksena [13] (including the
correction discussed in Section 7), the algorithm proposed in
this paper is based on (i) backtracking, (ii) pruning the search
space, and (iii) a heuristic for traversing the search space.
However, unlike the Wang-Saksena OPTA, our algorithm (1)
assigns priorities in a descending order, i.e. from the highest
to the lowest priority, rather than in ascending order, (2)
determines preemption thresholds of tasks while the priority
ordering is determined, rather than determining preemption
thresholds after the priority ordering is completed, and (3)
uses the notion of blocking tolerance rather than lateness in
the heuristic.

6.1 State-space Pruning
FPTS-OPTA algorithm uses three types of pruning for

infeasible priority orderings to reduce the searched state-
space. All three types of pruning utilize the same information
about blocking tolerance computed once per recursive call
for every unassigned task.

First, any partial priority ordering that results in a blocking
tolerance less than 0, for a yet unassigned task, is immediately
rejected (lines 6–8 of Algorithm 1). This pruning method
follows from Corollary 1.
Second, if there are two unassigned tasks ⌧i, and ⌧j that

have computation times greater than the blocking tolerance
of the other task (Ci > βj , and Cj > βi), then there is
no sequence of priority orderings that can make both tasks
schedulable. Therefore we reject the current partial priority
ordering (lines 9–11). This is the immediate consequence
of Lemma 1. Even if these two tasks do not experience
blocking from each other, the one at a higher priority will
be introducing interference.
And third, let there be two unassigned tasks ⌧i, and ⌧j

where the blocking tolerance βi of ⌧i is smaller than the
computation time Cj of the other task ⌧j (βi < Cj) and
blocking tolerance of ⌧j is larger than the computation time
of the task ⌧i (βj ≥ Ci). Then there is only one sequence of
priorities under which these tasks can be made schedulable:
⌧i at a higher priority than ⌧j . Therefore, it is safe to remove
the task ⌧j from the current priority (lines 12–19).

Algorithm 1 FPTS-OPTA

Input:
A set of tasks T , and {Ci, Ti, Di} 8⌧i 2 T .
H = ; . The set of scheduled tasks.
L = T . The set of tasks to be scheduled.
Prio = 1 . The highest priority.

Output:
The schedulability of the task set, ⇡i, and ✓i 8⌧i 2 T .

1: function Search(H, L,Prio)
2: if L = ; then
3: return schedulable

4: end if
5: 8⌧i 2 L : βi, ✓

0
i CalculateBT(H, ⌧i,Prio);

6: if (9⌧i 2 L : βi < 0) then
7: return unschedulable

8: end if
9: if (9⌧i, ⌧j 2 L : i 6= j ^ βi < Cj ^ βj < Ci) then
10: return unschedulable

11: end if
. L0 is a list of tasks that can be assigned priority Prio.

12: L0 L
13: for (⌧i 2 L) do
14: for (⌧j 2 L \ {⌧i}) do
15: if (βi < Cj ^ βj ≥ Ci) then
16: L0 L0 \ {⌧j}
17: end if
18: end for
19: end for
20: L0 SortβInc(L0

,

~

β)
21: for (⌧i 2 L0) do
22: H H[{⌧i}
23: L L \ {⌧i}
24: ⇡i Prio

25: ✓i ✓

0
i

26: if (Search(H,L,Prio+1)=schedulable) then
27: return schedulable

28: end if
29: H H \ {⌧i}
30: L L [{⌧i}
31: end for
32: return unschedulable

33: end function

6.2 State-space Traversal Heuristic
The idea behind assigning priorities in a descending order

is that, if a task is at a lower priority, it will experience a
higher amount of interference which in turn leads to a smaller
tolerance for blocking.

On the other hand, smaller blocking tolerance reduces the
opportunity for lower priority tasks (which are not schedu-
lable by their current priority level) to increase their pre-
emption threshold for a try to become schedulable. To exploit
these properties, we employ a heuristic for traversal of the
potential priority assignment state-space. We first allocate
those tasks to the highest priorities that have the lowest
blocking tolerance.

6.3 FPTS-OPTA Algorithm
The algorithm divides the task set T into two groups: (i)

a set of higher priority tasks H which have their priorities
and thresholds assigned (ii), and a set of lower priority tasks
L with unassigned priorities and thresholds.

The algorithm starts with an empty set H, and all tasks
to be processed in L. Additionally, a parameter of which
priority should be processed is passed to the algorithm, which
is initially the highest available priority in the system.

The algorithm finds a solution if no task remains in L (lines
2–4 in the algorithm). In each iteration of the algorithm, first
the blocking tolerance and preemption thresholds of all tasks
in L are calculated (line 5 in the algorithm). The preemption
threshold ✓

0
i is the highest one with which all tasks in H can

be scheduled if the task were added to the set at the priority
Prio. This preemption threshold is subsequently used to
calculate blocking tolerance βi of the same task.

There are two pruning conditions to determine if the task
set is unschedulable: In a given priority level, if (i) the
blocking tolerance of any task is a negative value (lines 6–
8 in the algorithm), and (ii) there exist two tasks where
blocking tolerance of each is lower than the execution time
of the other, i.e., (9⌧i, ⌧j 2 L : i 6= j ^ βi < Cj ^ βj < Ci)
(lines 9–11 in the algorithm).

Another condition for pruning the tasks from a specific
priority level is that, the execution time of those tasks cannot
satisfy the blocking tolerance of some tasks at that priority
level, i.e., (9⌧i, ⌧j 2 L : i 6= j^βi < Cj^βj ≥ Ci) (lines 12–19
in the algorithm) which means that ⌧i is not schedulable
at a lower priority level, thus ⌧j is pruned from the current
priority level. The tasks that should be explored at the
current priority level are added to list L0. Tasks in L0 are
then sorted in ascending order of their blocking tolerances
by SortβInc function (line 20 in the algorithm).

The task ⌧i at the head of L0, i.e., the task with minimum
blocking tolerance, is selected to be assigned to the current
priority level, removed from L, and added to H (lines 22 to
25 in the algorithm).

The algorithm subsequently goes one step deeper in the
recursion for the next (lower) priority level (line 26 in the
algorithm). If the recursion returns a schedulable value,
the value is returned, otherwise the algorithm proceeds to
try to schedule the next task from the list L0.

7. FIXING WANG-SAKSENA ALGORITHM
A prerequisite for a comparative evaluation of our algo-

rithm and the algorithm presented by Wang and Saksena [13]
was to implement both algorithms. During the implementa-
tion of the algorithm of Wang and Saksena, we noticed that
it does not explore the entire state-space.
After inspecting the pseudo-code in Figure 3 of [13], we

have determined that the most probable original intention for
the algorithm was to continue the state space exploration if
an unschedulable configuration was found. A simple removal
of line 4 from the pseudo-code results in an algorithm that
completely explores the state-space of the potential priority
orderings. Further, this closely reflects the approach used in
the same algorithm on lines 22–24.

8. EVALUATION
In this section we present the results of our experiments.

As the first set of experiments, we have measured the com-
plexity of our proposed algorithm compared to Wang and
Saksena’s algorithm1 [13]. Since both algorithms execute in
exponential time, we chose two di↵erent measures to compare
them. The number of recursive calls to the main function

1After applying the corrections outlined in Section 7.

20

25

210

215

220

225

2 3 4 5 6 7 8 9 10

N
um
be
ro
fr
ec
ur
sio
ns

Number of tasks in a task set

FPTS-OPTA
Wang-Saksena

Figure 1: Number of recursions for varied task set
cardinality.

20

25

210

215

220

225

230

2 3 4 5 6 7 8 9 10

N
um
be
ro
fW

CR
T
ca
lls

Number of tasks in a task set

FPTS-OPTA
Wang-Saksena

Figure 2: Number of WCRT calls for varied task set
cardinality.

that corresponds to the number of explored partial prior-
ity orderings. And the number of worst-case response time
(WCRT) computation calls.

For the second set of experiments, we compared the schedu-
lability ratios of task sets under (i) FPPS with deadline
monotonic priorities, (ii) FPTS with deadline monotonic
priorities and optimal preemption thresholds (FPTS-DM),
and (iii) FPTS with our OPTA (FPTS-OPTA). These com-
parisons were done for constrained deadlines (Di  Ti), and
deadlines greater than periods (Di > Ti).

8.1 Experimental Setup
For every experiment, 5000 task sets were randomly gen-

erated using UUnifast algorithm [2] for every x-axis point.
Task’s inter-arrival times were randomly chosen from the
range [10, 1000]. Task’s deadlines were randomly selected
from the range [Ci + ↵(Ti − Ci), Ti], 0 < ↵  1 for the
constrained deadlines, and [Ti, Ci + ↵(Ti − Ci)], ↵ > 1 for
deadlines greater than periods, where ↵ is a deadline scal-
ing factor. As a special case ↵ = 1 corresponds to implicit
deadlines (Di = Ti).

In our experiments, the following default parameters were

used (except where otherwise noted): implicit deadlines
(↵ = 1), the task set utilization set to 0.9, and the task set
cardinality set to 8.

8.2 Complexity Results
While Wang-Saksena algorithm is entirely based on WCRT

computation, our algorithm utilizes blocking tolerance com-
putation. To achieve a common ground between the algo-
rithms, we have implemented blocking tolerance and maxi-
mum preemption threshold computation using WCRT calls.
Furthermore, we have compared the algorithm efficiency only
for the task sets that are not FPPS deadline monotonic
schedulable.
The number of calls to the main function and number of

calls to WCRT computing function were measured when the
task set cardinality varies from 3 to 9 in increments of 1.
The results are shown by means of box plots (a.k.a. box and
whisker diagram) in Figures 1 and 2. Each graph represents
the data using five values: (1) the minimum value as the
lowest line in the graph, (2) the first quartile value as the
lower edge of the rectangle, (3) the median value represented
by the black line within the rectangle, (4) the third quartile
value as the upper edge, and (5) the maximum value as the
top line.
From Figures 1 and 2, we can observe that the number

of WCRT calls as well as main function calls are orders of
magnitude lower under our optimal algorithm compared to
Wang-Saksena algorithm. This correlates to a significant
improvement in execution time to determine the existence
of a solution. Further, it can be seen that the growth of the
measured median values in the graphs is steeper under Wang-
Saksena algorithm compared to FPTS-OPTA algorithm. It
is interesting to observe that the maximum number of recur-
sions under FPTS-OPTA algorithm is smaller than the third
quartile for the Wang-Saksena algorithm (Figure 1). And
the maximum number of WCRT calls for FPTS-OPTA is
less than the median value for the Wang-Saksena algorithm
(Figure 2). However, the results also show that there are
some task sets for which FPTS-OPTA does not outperform
Wang-Saksena algorithm.

8.3 Schedulability Results
In the second set of experiments, we have first analyzed task

sets with implicit deadlines with varied utilization and task
set cardinality, then we have analyzed the impact of reducing
or increasing deadlines relative to periods. Finally, we have
analyzed the schedulability for varied task set cardinality
when deadlines are greater than periods.

8.3.1 Implicit Deadlines

The results of analyzing schedulability ratio of the three dif-
ferent priority assignment algorithms, FPPS, FPTS-DM, and
FPTS-OPTA for implicit deadlines, 0.9 task set utilization,
and varied number of tasks can be seen in Figure 3. From the
results, we can see that the optimal priority and preemption
thresholds assignment algorithm has no significant reduction
in schedulability ratio for the increasing number of tasks
whereas FPTS-DM and FPTS have significant reductions
for every added task. The results for 8 tasks, and increasing
utilization from 0.6 to 0.95 in 0.025 increments are shown
in Figure 5. From it, we can observe up to 20% increase
in schedulability when the optimal priority and preemption
threshold assignment was used.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3 4 5 6 7 8 9

Ra
tio
of
sc
he
du
la
bl
e
ta
sk
se
ts

Number of tasks in a task set

FPTS-OPTA
FPTS-DM

FPPS

Figure 3: Task set schedulability ratio for varying
task set cardinality with implicit deadlines.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3 4 5 6 7 8 9

Ra
tio
of
sc
he
du
la
bl
e
ta
sk
se
ts

Number of tasks in a task set

FPTS-OPTA
FPTS-DM

FPPS

Figure 4: Task set schedulability ratio for varying
task set cardinality with ↵ = 1.5.

8.3.2 Scaled Deadlines

To understand the impact of various deadline to period
ratios, we have analyzed schedulability ratios for varying
values of deadline scaling factor ↵ from 0.1 to 3. The task
set utilization was set to 0.9 and 8 tasks per task set were
considered.
With constrained deadlines (Di  Ti, and 0 < ↵  1),

depicted in Figure 7, reducing ↵ reduces the schedulability
and the di↵erence between the di↵erent algorithms. For
deadlines larger than periods (Di > Ti, and ↵ > 1), as
shown in Figure 8, an increase in ↵ increases schedulability
for all three algorithms and reduces the di↵erence between
the algorithms. With our setup, we observed the largest
di↵erence between the FPTS-OPTA and FPTS-DM for ↵ =
1.1 and is slightly above 20%.

8.3.3 Deadlines Greater than Periods

Finally, we have conducted the original two experiments
for varied task set cardinality and utilization with deadlines
greater than periods using ↵ = 1.5. The results are shown
in Figures 4 and 6. In both cases, the e↵ect of increasing
↵ beyond 1 increases schedulability and reduces the gap

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Ra
tio
of
sc
he
du
la
bl
e
ta
sk
se
ts

Utilization of a task set

FPTS-OPTA
FPTS-DM

FPPS

Figure 5: Task set schedulability ratio for varying
task set utilization with implicit deadlines.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Ra
tio
of
sc
he
du
la
bl
e
ta
sk
se
ts

Utilization of a task set

FPTS-OPTA
FPTS-DM

FPPS

Figure 6: Task set schedulability ratio for varying
task set utilization with ↵ = 1.5.

between the di↵erent algorithms.

9. CONCLUSION
In this paper we proposed a new optimal priority and

preemption threshold assignment algorithm for FPTS.
The algorithm is based on backtracking, pruning the search

space and a heuristic for traversing the search space. By
generating a large number of synthetic task sets, we have
compared our algorithm with the original algorithm by Wang
and Saksena. The results show that our algorithm clearly
outperforms the Wang-Saksena algorithm in terms of number
of recursive calls to the main function of each algorithm and
number of worst-case response time calculations required.
Even though, special cases exist for which Wang-Saksena
performs better than our algorithm.
Further, we have used our algorithm to evaluate the rele-

vance of using a complex algorithm to determine the priority
assignment compared to a simple deadline monotonic assign-
ment. With up to 20% observed increase in schedulability,
we can conclude that it is worth having the option of opti-
mal priority assignment for cases that cannot be scheduled
by means of deadline monotonic priorities and optimal pre-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ra
tio
of
sc
he
du
la
bl
e
ta
sk
se
ts

Deadline scaling factor (�)

FPTS-OPTA
FPTS-DM

FPPS

Figure 7: Task set schedulability ratio for varying
values of ↵ and constrained deadlines.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Ra
tio
of
sc
he
du
la
bl
e
ta
sk
se
ts

Deadline scaling factor (�)

FPTS-OPTA
FPTS-DM

FPPS

Figure 8: Task set schedulability ratio for varying
values of ↵ and deadlines greater than periods.

emption thresholds. However, since the algorithm still exe-
cutes in exponential time, it may be impractical to execute
it for very large task sets.
A specific case that we are looking forward to investigat-

ing is the application of the OPTA algorithm to reduce the
schedulability di↵erence between FPTS and the restricted
variant of FPTS implemented using native non-preemptive
groups on an AUTOSAR/OSEK2 compatible platform [7].
In this restricted implementation, only a subset of poten-
tial preemption threshold configurations are viable and thus
schedulability is reduced.
The problem itself, of whether it is possible to construct

an efficient algorithm for optimal priority and preemption
threshold assignment for FPTS, still remains open.

ACKNOWLEDGMENTS
This work is supported by the ARTEMIS Joint Undertaking
project EMC2 (grant agreement 621429).

2AUTOSAR/OSEK standard can be found at http://www.
autosar.org/

10. REFERENCES
[1] S. Baruah. The limited-preemption uniprocessor

scheduling of sporadic task systems. In 17th Euromicro

Conference on Real-Time Systems (ECRTS), pages
137–144, Jul. 2005.

[2] E. Bini and G. C. Buttazzo. Measuring the
performance of schedulability tests. Real-Time Systems,
30(1-2):129–154, May 2005.

[3] R. J. Bril, J. J. Lukkien, and W. F. J. Verhaegh.
Worst-case response time analysis of real-time tasks
under fixed-priority scheduling with deferred
preemption revisited. In 19th Euromicro Conference on

Real-Time Systems (ECRTS), pages 269–279, Jul. 2007.

[4] A. Burns. Advances in real-time systems. chapter
Preemptive Priority-based Scheduling: An Appropriate
Engineering Approach, pages 225–248. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1995.

[5] A. Burns and A. J. Wellings. Restricted tasking models.
In 8th International Workshop on Real-Time Ada

(IRTAW), pages 27–32, New York, NY, USA, 1997.
ACM.

[6] R. I. Davis, L. Cucu-Grosjean, M. Bertogna, and
A. Burns. A review of priority assignment in real-time
systems. Journal of Systems Architecture, 65:64 – 82,
2016.

[7] L. Hatvani and R. J. Bril. Schedulability using native
non-preemptive groups on an AUTOSAR/OSEK
platform. In 20th Conference on Emerging Technologies

Factory Automation (ETFA), pages 1–8, Sep. 2015.

[8] U. Keskin, R. J. Bril, and J. J. Lukkien. Exact
response-time analysis for fixed-priority
preemption-threshold scheduling. In 15th IEEE Conf.

on Emerging Technologies and Factory Automation

(ETFA), pages 1–4, Sep. 2010.

[9] S. Lee, C.-G. Lee, M. Lee, S. Min, and C. Kim. Limited
preemptible scheduling to embrace cache memory in
real-time systems. In F. Mueller and A. Bestavros,
editors, Languages, Compilers, and Tools for Embedded

Systems, volume 1474 of Lecture Notes in Computer

Science, pages 51–64. Springer Berlin Heidelberg, 1998.

[10] V. B. Lortz and K. G. Shin. Semaphore queue priority
assignment for real-time multiprocessor
synchronization. IEEE Transactions on Software

Engineering, 21(10):834–844, Oct. 1995.

[11] J. Regehr. Scheduling tasks with mixed preemption
relations for robustness to timing faults. In 23rd IEEE

Real-Time Systems Symposium (RTSS), pages 315–326,
Dec. 2002.

[12] M. Saksena and Y. Wang. Scalable real-time system
design using preemption thresholds. In 21st IEEE

Real-Time Systems Symposium (RTSS), pages 25–34,
Nov. 2000.

[13] Y. Wang and M. Saksena. Scheduling fixed-priority
tasks with preemption threshold. In 6th International

Conference on Real-Time Computing Systems and

Applications (RTCSA), pages 328–335, Dec. 1999.

[14] G. Yao, G. Buttazzo, and M. Bertogna. Bounding the
maximum length of non-preemptive regions under fixed
priority scheduling. In 15th IEEE International

Conference on Embedded and Real-Time Computing

Systems and Applications (RTCSA), pages 351–360,
Aug. 2009.

