
Lightweight IO Virtualization On MPU Enabled
Microcontrollers

Francesco Paci
University of Bologna

Bologna, Italy
f.paci@unibo.it

Davide Brunelli
University of Trento

Trento, Italy
davide.brunelli@unitn.it

Luca Benini
University of Bologna

Bologna, Italy
ETHZ

Zürich, Switzerland
luca.benini@unibo.it

luca.benini@iis.ee.ethz.ch

ABSTRACT
In the era of the Internet of Things (IoT), millions of de-
vices and embedded platforms based on low-cost and lim-
ited resources microcontroller units (MCUs) will be used in
continuous operation. Even if over-the-air firmware update
is today a common feature, many applications might require
not to reboot or to support hardware resource sharing. In
such a context stop, update and reboot the platform is un-
practical and dynamic loading of new user code is required.
This in turn requires mechanisms to protect the MCU hard-
ware resources and the continuously executing system tasks
from uncontrolled perturbation caused by new user code be-
ing dynamically loaded. In this paper, we present a frame-
work which provides a lightweight virtualization of the IO
and platform peripherals and permits the dynamic loading
of new user code. The aim of this work is to support critical
isolation features typical of virtualization-ready CPUs on
low-cost low-power microcontrollers with no MMU (Mem-
ory Management Unit), IOMMU or dedicated instruction
extensions. Our approach only leverages the Memory Pro-
tection Unit (MPU), which is generally available in all ARM
Cortex-M3 and Cortex-M4 microcontrollers. Experimental
evaluations demonstrate not only the feasibility, but also
the really low impact of the proposed framework in terms of
memory requirements and runtime overhead.

Keywords
Virtualization, MPU, Microcontrollers, Dynamic Linking

1. INTRODUCTION
Many IoT applications envision the deployment of large

numbers of microcontroller-based smart sensor nodes in hard-
to-reach locations [1, 2]. This not only means that they
are supposed to operate unattended, without direct main-
tenance, and likely with the same battery for many years;
but also that the software could be updated (if necessary)
only remotely; and in many scenarios it is expected that bug
fixes, functional improvements, reconfiguration will be nec-
essary over time. Clearly the traditional approach for repro-
gramming embedded systems based on stopping the device,
updating the firmware and restarting, becomes unfeasible
when millions of low cost devices are spread all over and are
expected to be updated with new functionality many times
over their life span.

EWiLi’16, October 6th, 2016, Pittsburgh, USA.
Copyright retained by the authors.

In addition, IoT devices are expected to provide more and
more services on the same hardware. The possibility to have
multiple “application tasks” running on the same hardware,
possibly coming from different developers, introduces the
challenge of protecting the resources from misuses and to
guarantee adequate computing bandwidth to all the tasks
or to prevent over-allocation of resources that would lead to
collective starvation.

In such a scenario, well-known virtualization technologies
already used in computing servers, gateways and other high-
end computing systems [3] become fundamental also in low-
end and ultra-low cost programmable end-nodes for IoT.
First, virtualization of the hardware resources becomes nec-
essary to execute securely multi-function software and dif-
ferent applications with well-controlled interference. Then,
the capability to execute new code, linked at runtime, with-
out rebooting or changing the whole firmware avoids on-site
maintenance or periodic down-time due to reboot and per-
mits to add third-party developed code in a more flexible
paradigm.

These two requirements highlight the importance of IO
virtualization and dynamic linking on low-cost, low-power
microcontrollers. However, hardware-supported virtualiza-
tion is well known and available in operating systems for
high-end embedded systems (e.g. Linux on ARM Cortex-A
microprocessors), providing mechanisms for dynamic linking
in low-resource microcontroller based embedded platforms,
such as ARM Cortex-M MCUs, is still a challenge, and only
few and limited solutions have been proposed so far.

The virtualization approach proposed in this work exe-
cutes on the FreeRTOS [4] operating system and it is based
on the framework presented in [5] which addressed the capa-
bility to download new functions remotely. The main con-
tributions of this paper are:

• a Lightweight Virtualization layer which separates the
user space from the kernel space, allowing virtualiza-
tion of all the physical peripherals. Such a virtualiza-
tion protects from tampering and it can be extended
to manage hardware resource sharing (multi-tenancy);

• our solution is integrated with FreeRTOS and exploits
standard communication APIs provided by the oper-
ating system. Thus, it can be easily ported also on
other microcontrollers.

• we support dynamic linking of new user code, manag-
ing its life cycle as well as its orderly shutdown in case
of attempted violations of protected memory regions;

The paper is organized as follows. Section 2 gives an
overview of works related to our contribution, Section 3 de-



scribes in depth the framework architecture and provides all
technical details of this solution, Section 4 details our per-
formance and memory footprint, while Section 5 concludes
the paper.

2. RELATED WORKS
Virtualization support for embedded systems based on

high-end CPUs, such as the ARM Cortex-A series, has been
extensively explored in the academic literature and has rea-
ched industrial maturity [6]. This class of devices exploits
the hardware extensions to provide hardware abstraction
and protection of critical resources. Recent Cortex-A CPUs
feature native virtualization support like MMU and IOMMU
address translation, interrupt virtualization, TrustZones [7,
8], etc. Cortex-M MCUs do not come with any of those
hardware extensions. Furthermore, available memory and
computational resources are much more limited. Our work
and the related works surveyed below deal with Cortex-M3
and Cortex-M4 class of devices, where virtualization is not
a mature technology and several compromises with respect
to full hardware-supported virtualization have to be made.

Abstract Virtual Machines and Interpreters
One of the most common approaches for virtualization

on MCUs is based on interpreter-based virtual machines,
which have been originally conceived with the main purpose
of creating high-level easy-to-use languages and runtimes at
a higher abstraction level than the traditional C language.
Python [9, 10], Java [11, 12], Javascript [13], Lua [14] are all
lightweight multi-paradigm scripting languages employed in
Virtual Machines for embedded systems. Their main bene-
fit is the cross-platform support. They are interpreted by a
native virtual machine loaded on the microcontroller, thus
they introduce high overhead in term of latency of access to
the resources in comparison to virtualization layers written
in native code, but they are designed for easy software ap-
plication development and to meet the increasing demand
of fast runtime customization, without the need of complex
or dedicated compiling toolchains. Such a kind of virtual-
ization, usually, is focused on improving portability, exten-
sibility, ease-of-use in development and protection but lacks
performance, multiple user level accesses and low-level hard-
ware control. Only the exposed high level resources can be
leveraged by the user.

Bogliolo et al. [15] presented Virtual Sense, a sensor node
which executes java-compatible virtual machine called Dar-
jeeling VM [12] on top of Contiki OS [16]. This work is
close to ours in the emphasis on supporting resource allo-
cation and protection for multiple independent user tasks
on the MCU. However this solution, besides the overhead
introduced by the interpreter, is oriented to share only net-
work stack between Darjeeling VM tasks, while our work is
general to all peripherals.

Just In Time/Ahead of Time Compilation
A well-explored approach to reduce the runtime overhead of
VM interpeters is Just in Time or Ahead of Time Compi-
lation. Micropython [9] developers, for example, introduced
in their platform the concept of decorator to emit ARM
native opcode and to use native C types, but not all na-
tive C types are supported and the implementation of this
optimization is platform dependent. A solution can be to
extend with C wrapped functions called from python, but
there are drawbacks: marshaling and unmarshaling of data
is very expensive in terms of computational resources and
with this solution the programmer loses the low level ab-
straction. In comparison, using our solution, the developer
implements C functions which will be executed in user level

tasks. In general these approaches require a higher memory
footprint to host the just-in-time or ahead-of-time compile
process and do not achieve the performance of native code
execution. Furthermore, they are difficult to use in contexts
where real-time constraints cannot tolerate the jitter intro-
duced by on-line compilation.

Native Implementations
Native virtualization is the closest to hardware and extremely
desirable for resource and performance-limited devices. This
technique usually relies on the use of MPU that is the only
hardware unit available for security in low-end systems.
Bhatti et al. [4] presented a complete operating system de-
signed for WSN (Wireless Sensor Network) and optimized to
simultaneous execution of threads which can be loaded dy-
namically. Their work relies on Mantis OS, a custom operat-
ing system. They work targets micro sensor nodes with 4KB
of RAM. They support dynamic reprogramming at runtime
of variables/parameters, while to add new functionalities,
differently from our work, a reset is needed. Moreover they
do not explicitly address security and protection.

To the best of our knowledge we find only one very recent
work that addresses the problem in a broad and general
sense, similarly to our solution. Andersen et al. [17] pre-
sented an embedded platform that relies on TinyOS. They
use a mixed paradigm that permits to have Lua VM but
the computational intensive part of code can be written in
native C. To address security they use a task receiving event
based system calls, to separate kernel to user space tasks.
Our work differentiates from the latter by permitting to have
both system call support and event based peripheral virtu-
alization. Moreover Andersen et al. do not provide any in-
formation on the performance of the event based system call
paradigm.

3. SOFTWARE ARCHITECTURE
In this section we present all the software layers in our

runtime system, focusing on software protection. Figure 1
shows the layer stacking from three viewpoints, first from
a hardware point of view, then from address space access,
divided in IO and Flash/RAM. We divided core hardware
from peripherals in two different stacks to underline that the
OS can expose system calls to access to the core hardware
resources, while the Virtual IO Layer is designed to access
the peripherals. The last stack shows that the access to
memories is direct for privileged tasks, while the access from
usermode tasks is strictly regulated by MPU. Two different
kinds of tasks are defined: privileged tasks and usermode
tasks, which will be discussed in next section.

Another important layer depicted in Figure 1 is FreeR-
TOS [18], a well known Real Time Operating System for a
broad range of Embedded Systems from 8 to 32bit, includ-
ing low power and ultra-low power MCUs. We implemented
our framework on an STM32F4 based platform, and even
if some details in the following description are related to
this specific microcontroller, our framework can be easily
extended to be platform independent.

In Sections 3.1 and 3.2 we focus on the first and third
stack, namely on exploiting the MPU and providing Safety
Extensions, while in Section 3.3 we discuss the second stack.

3.1 Real Time OS
The main reason for using FreeRTOS is its versatility: it

is open source with modified GPL license, many MCUs are
supported and the code is maintained and upgraded often by
Real Time Engineers Ltd. Moreover it is modular and there
are some extensions available (e.g. MPU extension), which



Figure 1: Hardware, IO and Memories layers.

can be added to the core release. The open source nature
makes possible to extend it. It has moreover a small memory
footprint and sources consist of a small number of files. The
scheduler supports real-time operation, both time-triggered
by a configurable system tick and with support for priorities
with preemption.

3.2 FreeRTOS Additions
To strengthen the security of the system, the FreeRTOS

MPU module has been integrated to enable the usage of the
Memory Protection Unit available on the microcontroller
and to activate the two levels of privileges for the tasks ex-
ecution. However, the original module is an experimental
release, because of some limitations that we addressed in
our work:

1. It does not have a proper way to access system re-
sources. It provides only one system call. This system
call raises the privileges of the caller from usermode to
privileged, executes the call and then sets the privileges
back to user space. This behavior has sufficient protec-
tion in an environment where a single developer wants
to keep separation between tasks, i.e. the case where
a single company develops all the firmware. While in
the case we want to give to a third-party user the ca-
pability to develop his own code, the knowledge of the
existence of this backdoor is really dangerous for pro-
tection.

2. The exploitation of the MPU is static. The protection
sections of the MPU are not reconfigurable at runtime
by privileged tasks with an API.

3. The task termination is not correctly handled. When a
usermode task raises an MPU trap the exception ends
the system execution. Hence it would be extremely
easy to create denial of service attacks.

In next sub-sections we describe our proposed solutions
to these limitations. This solution has been designed and
implemented.

3.2.1 MPU Extension
As already stated, this module permits to grant different

access privileges on a task-by-task basis. For each task the
MPU settings are stored in the task descriptor, called Task
Control Block (TCB) in FreeRTOS. When a task is created,
it can be started with one out of two levels of privileges:

1. Privileged Tasks (similar to Linux Kernel Mode exe-
cution). The task executes with permission granted to
access all system resources, memories and peripherals.

2. Usermode Tasks (similar to Linux Usermode, also called
unprivileged tasks). The task is executed in more re-
strictive environment and has access only to a limited
subset of memory and IO addresses.

STM32 Cortex-M4 has eight configurable MPU regions.
When activated, the protection policy is white-list based for
usermode tasks. To access to a specific position in the ad-
dress space the task should have a grant by one MPU region.
For privileged tasks the protection policy is black-list based.
The privileges on an MPU region can be: NONE, READ-
ONLY AND READWRITE. In FreeRTOS these MPU re-
gions are configured as follows:

Region 0 FLASH protection
Protects whole FLASH providing read-only privi-
leges to both privileged and usermode tasks.

Region 1 OS FLASH protection
Protects from accesses by usermode tasks to the OS
code in FLASH

Region 2 OS RAM access
Provides permission to privileged task to access the
OS structures stored in RAM

Region 3 Peripheral access
Used to enable or disable the access to peripherals.

Region 4 Task Stack access
Used to give access to tasks own stack.

Region 5-7 Not used
These three regions are not used by FreeRTOS MPU
module, thus they are available for developer pur-
poses.

In Table 1, we show a list of MPU configurations used in
our solution. There is no access to peripherals granted to
usermode tasks. The access is allowed only through the IO
Virtualization Architecture.

One of the main constraints of the FreeRTOS MPU mod-
ule is that it permits to configure the last regions (from 5
to 7) at compile time only. Thus, we implemented a specific
software module to reconfigure these regions at runtime for
each task. This is done for the following reasons:

1. Access to Virtual IO Layer (deeply explained in Sub-
section 3.3) can be restricted by an MPU Region and
must be asked by a task. This makes the Virtual IO
Layer aware about the number of tasks that are using
it.

2. Access to heap or other memory regions can be granted
at runtime. This is open to several future applications.



Table 1: Default MPU region setting in FreeRTOS
Privileged Perm. Usermode Perm. Region Desc.
READ ONLY READ ONLY all Flash Protection

READ ONLY NONE OS Code Segment
in FLASH

READ WRITE NONE OS RAM Protection
READ WRITE NONE Peripherals
READ WRITE READ WRITE Task Stack
NOT USED NOT USED User configurable
NOT USED NOT USED User configurable
NOT USED NOT USED User configurable

3.2.2 Safety Extensions
As previously stated, the single system call paradigm is

not safe. The raise privilege system call has been removed
and replaced by more specific system calls. For example to
grant access to FreeRTOS Queues and Direct Task Notifica-
tion, the following list of system calls are added:

• MPU xTaskGenericNotify: Direct task notification No-
tify function

• MPU QueueReceive: Receive a message on a queue

• MPU xGetCurrentTaskHandle: Get the current task
handle

• IO Layer REGISTER: Registration to Virtual IO Layer

3.2.3 Graceful Task Termination - Killer Task
FreeRTOS does not provide task termination. Thus, when

an unprivileged task tries to access a memory address with-
out permission a trap is generated from the MPU and the
OS ends its execution in an endless loop. This is not accept-
able if we want to keep all other tasks and OS in execution.
The desired behavior is that the task causing the trap, is
aborted while the system continues its execution. Thus a
memory trap handler and a specific task, called Killer Task,
have been created to manage the termination of the task
that raised the trap. The Killer Task is a privileged task
created at boot time and it is in sleep state, when the MCU
is in normal usage. When a trap occurs the task is activated.
The Killer Task gets the task handles of the task that gen-
erated the trap and removes it from the scheduler execution
queue. Then it resumes the scheduler execution and goes
back into sleep, waiting for the next trap.

3.3 IO Virtualization Architecture
In a software protection perspective, the MPU enables

the OS to keep the control on the usermode tasks. Thus,
with the MPU all usermode tasks cannot tamper the whole
system. On the other hand, if we want to enable a third
party software developer to access only a small subset of
peripherals, a fine grain control on address space must be
implemented. Usually in a MCU all peripherals addresses
are grouped from a starting to an ending address. However,
if we want to provide fine grain access to a subset of them,
three free MPU regions are really limiting. Moreover there
are other two limitations: one is that the minimum area for
an MPU region is usually 32 Bytes (i.e. on STM32f4) that
is usually larger than the register pool of a peripheral. The
other is that register set of several peripherals consists of
both control registers, and reading/writing ports, at subse-
quent memory positions. Thus it is not possible to grant the
access to a read-only register and denying the permission to
a contiguous configuration register. The virtualization layer
addresses these limitations.

Figure 2: IO Virtualization High Level Architecture

The Virtual IO Layer architecture consists of two main
components: (1) a task named Virtual IO Task and (2) a
library named Virtual IO Library. The Virtual IO Task
is a FreeRTOS task that handles all the IO calls from the
usermode tasks to the peripherals. The Virtual IO Library
contains the front-end calls, called from the usermode tasks
and forwarded transparently to the Virtual IO Task, and the
back-end calls invoked by the Virtual IO Task to access to
the peripherals through the HAL Library. As shown in Fig-
ure 2 the Virtual IO Task acts as a task-in-the-middle that
receives all calls from usermode tasks that attempt to access
to the peripherals, checks the permissions and forwards the
requests through the HAL library.

3.3.1 Virtual IO Library
The library consists of two subsets: a front-end functions

subset and the relative back-end functions subset.
When a usermode task wants to access peripherals, it

needs to subscribe to the Virtual IO Layer, using a front-end
function. Registration is required for two purposes:

1. The usermode task must have read only access to the
Virtual IO task handle. This is needed to use the
OS event notifications to notify the Virtual IO task.
Therefore, one of the MPU regions of the task must
be runtime configured to read-only access to Virtual
IO task handler.

2. Usermode tasks are not authorized to use interrupt
handlers, because interrupt handler code is executed
in privileged mode. We used a queue system to com-
municate from interrupt handlers to usermode tasks.
Hence the registration routine creates a new queue and
saves the queue handler in a structure. This will be
used afterwards if the task will request access to one
peripheral in interrupt mode.



The registration takes place through a system call that
was previously mentioned in subsection 3.2.2, hidden by a
front-end call. The system call is needed to configure an
MPU region described in the former purpose. The regis-
tration procedure works as follows: (1) The usermode task
invokes the IO Layer init() routine, which through (2) the
IO Layer REGISTER system call (3) sets an MPU region
of the caller task to access to Virtual IO Task descriptor
in read-only mode. This is needed to send notifications.
Then the framework creates and initializes a system queue
(4) for using the DMA (the procedure is described in Back
End Subset subsection). Before returning, if the procedure
was successful, the task is added to the list of Virtual IO
subscribed tasks.

Front End Subset

The Front End subset is intended to be called from the
usermode tasks. These calls have the same signature of the
original HAL library calls, beside the function name, which
is extended with a prefix to make the programmer aware that
is using the Virtual IO Layer and, obviously, to avoid a name
space conflict. Thus for each HAL library function that we
want to expose to the third party developer a function must
be written. Each function declares a structure that contains:

1. The usermode task task handler.

2. A pointer to the relative back-end function to be called
by the Virtual IO Task

3. A pointer for each original HAL Library function ar-
gument.

4. If the original HAL function returns a non-void value,
a field to store it.

We refer to this structure with the name HAL Library
Argument Embedding Structure (HAE Structure). Then
HAE structure is instantiated in the Front End function, on
the stack, and all structure’s fields are assigned with their
values. A notification is sent to the Virtual IO Layer Task
with a pointer to this structure. At the end, optionally the
HAL Library return value is returned if the function is non-
void. A recap of the embedding of this function is shown in
right top corner of Figure 2.

Back End Subset

The Back End (or call back functions) is the part of the
library meant to be called by the Virtual IO Task. For each
Front End function, there is one corresponding Back End
one that takes as input a single argument, a void pointer.
Its body contains a declaration of the HAE structure equal
to the corresponding Front End function. The void pointer
is then cast in this structure, arguments are then used to
call the original HAL function. When the HAL Library call
ends, the return argument is written in the structure, that
still resides in the usermode stack. Finally the Virtual IO
Task suspends its execution waiting for the next call and
control returns to the usermode task.

This architecture has two advantages: (1) the ease of use,
the programmer does not need to learn a new interface to use
the HAL. (2) All Front End calls and Back End calls have
the same format, so they can be written by a programmer
or generated by an automatic tool, given the list of HAL
functions that the Virtual IO Library will support.

To handle DMA asynchronous calls and to get notified
when a DMA transfer is completed, we use the Queue re-
turned when the usermode task subscribes the Virtual IO

Layer. For security it is important that all the interrupt ser-
vice routines (ISR) are implemented by the system. More-
over inside each service routine there is a Queue Send opera-
tion used to notify the task that wants to use the DMA that
the routine is called. To correctly notify the corresponding
usermode queue a reference table is used. This reference ta-
ble is set by the back-end, when the usermode task invokes
one of the DMA HAL Library functions.

3.3.2 Virtual IO Task
The Virtual IO Task is a privileged task that handles the

communication from usermode tasks to peripherals. It starts
when the Virtual IO layer is initialized, typically at system
boot time. The communication is handled via Direct Task
Notification. When started this task hangs in suspended
state waiting for a call from one of the usermode registered
tasks through the Front End.

The priority of this task is higher than all usermode tasks.
Thus, when the notification is thrown from the Front End,
the usermode task waits that the Virtual IO task ends its
execution. Therefore, even if task notifications are asyn-
chronous, the call to HAL Library is blocking because in
FreeRTOS the preemption of the scheduler is priority based.

The body of this task, besides the Task Notify Wait, con-
sists of an Access Control List (ACL), shown in Figure 2,
that checks that the callee HAL Library function can be in-
voked by the caller. The pointer to HAE Structure is cast
to a generic structure common for all HAE Structures (we
always know that the first two fields are fixed: the user-
mode task task handler and the pointer to the call-back
function), then the ACL permission check occurs. if the
checking passed, the Back End function is invoked.

3.4 Dynamic Linking
The dynamic linking permits to execute new tasks without

rebooting the system and enables the usage of systems re-
sources from dynamic linked tasks. Thus, we implemented
a privileged task in charge of dynamic linking other tasks
named Dynamic Linker task. Runtime linked tasks must be
cross compiled and have relocation and position independent
compiler flags enabled. The Dynamic Linker task resolves at
runtime unresolved dependencies to (1) system library func-
tions (jump slots) and (2) global data declared in the system
firmware. Once all dependencies are resolved a new FreeR-
TOS TCB is created and added to the ready task scheduler
queue. The library in charge of dynamic linking usermode
tasks is derived from the work of [5] and the dynamic linking
consists of 3 steps:

1. Allocation of Dynamic Linked Task. The task
sections are allocated in RAM.

2. Relocation of jump slots and global data . Reso-
lution of jump and data dependencies that points to
the system firmware.

3. FreeRTOS task creation and start. Creation of
the FreeRTOS task. The entry point of the task is set
to a known and predefined function name.

To resolve the dependencies two sections of the system
firmware ELF must be stored into Flash memory: .symtab
and .strtab. The Dynamic Linker Task uses these sections
to correctly relocate jump slots and global data to their real
memory addresses. The dynamic linked task can be stored
in Flash or RAM memory before being runtime linked.



4. EXPERIMENTAL RESULTS
In this section we present results of Virtual IO Layer

and Dyanamic Linking. All tests were conducted on an
STM32F411RE NUCLEO-64 Board [19]. This is a plat-
form by ST Microelectronics, it embeds an ARMR© 32-bit
CortexR©-M4 CPU running up to 100 MHz with FPU and
MPU. It features 512 KB of Flash memory and 128 KB of
RAM memory. In our software setup we use the new driver
for accessing hardware peripherals provided by ST called
Hardware Abstraction Layer Driver (HAL Driver) [20].

4.1 Virtual IO Layer
We identified two main use cases, i.e. ways to access pe-

ripherals in a Microcontroller unit, that must be considered
separately:

1. Atomic Action:
In this case a HAL Driver routine is called each time
we access a peripheral. In other words, the call does
not involve data transfers after it, either if we access
an IO address once, or if we access it in a loop. An
example of this behavior is when we want to configure
or read a GPIO PIN, or write something on the UART.

2. Continuous Action (or Tunneling Action):
In this second case we consider all the peripherals that
involve the use of DMA. For example when we want to
set Analog to Digital converter and read it at regular
intervals by the DMA.

4.1.1 Virtual IO Layer Timing
The time of accessing a peripheral using the Virtual IO

Layer is reported in Table 2. The first row gives the cycles
to get the task handle through a system call. The MPU -
xTaskGenericNotify() is the direct task notification system
call. The third row reports the cycles required to notify the
Virtual IO Task. The last row gives the number of cycles to
return control, after the HAL Driver call back to the User
mode task. The cycles measurement has been done with
the DWT CYCCNT hardware cycle counter, available in
Cortex-M4 MCUs.

Virtualization Step VIO (Cycles)
getTaskHandle 97
MPU xTaskGenericNotify 47
xTaskNotify + CS 490
Notify wait + CS back 293
TOTAL 927

Table 2: Timing overhead of accessing the IO using
the Virtual IO Layer in Cycles

It is worth mentioning that with this paradigm, continu-
ous mode operations pay the overhead just once, when the
setup of the peripheral or IO is performed. Thus when the
DMA is working the only overhead is the queue used to syn-
chronize the ISR with the user mode task.

The cycles overhead to check if the function that the user
mode task wants to use is permitted by the ACL grows lin-
early with the number of checks that occurs. In Figure 3, the
overhead is reported. As expected the number of cycles are
proportional to the number of function addresses to verify.

4.1.2 Virtual IO Layer Memory Footprint
The overhead in terms of memory footprint is described

in Table 3. We show the code size of the library and of the
Virtual IO Task separately, in case the compiler is invoked

Figure 3: Overhead of the control in the ACL.

with the flag for performance (-O3) or space (-OS) opti-
mization. The Size of the Virtual IO Library is measured
with an average size of 50 functions (front end + back end).
As we can notice from the results, the memory footprint
is minimal. Moreover we notice that optimizing for space
and performance gives the same overhead, it is due to the
fact that employing space optimization means introducing
-O2 compiler optimization as well. The code is not com-
putationally intensive thus -O2 and -O3 produce the same
timing overhead for accessing the peripheral.

Opt. VIO Task VIO Library Overhead
-O3 592 B 2876 B 927 Cycles
-OS 464 B 2314 B 927 Cycles

Table 3: Virtualization Layer code size and access
overhead with relation to space and performance op-
timization (Opt.)

4.2 Dynamic Linking
The cycles needed to link dynamically a task are depen-

dent from the number of relocations. As Section 3.4 de-
scribes, two possible kind of relocations are supported, global
data and function call relocation, the cost of both is equal
and dependent to the cycles needed to find the entry in the
system firmware elf.

Single Relocation
Dynamic Link Step KCycles ms @ 100MhZ
Relocation 181 1.81
Allocation and Start 19 0.19
TOTAL 200 2.00

Table 4: Dynamic Linker Cycles

In Table 4 we show the dynamic linking execution cycles,
we averaged the cycles of 10 global data and 10 function
relocations. The allocation and task creation and start de-
scribed in Section 3.4 are grouped in one entry, while the
other entry shows the relocation. It is worth to say that the
relocation cycles are required for each additional variable or
function to relocate, while the task allocation and start cy-
cles are payed just once per task link. This means that if we
want to relocate 100 variables and functions we pay an aver-
age of 18.1 MCycles that at 100 MhZ are 181 ms. Dynamic
linked tasks usually have a number much lower than 100 re-
locations for a single task since they use a limited number
of calls to system firmware functions or global data.

In Table 5 we show the memory footprint of the dynamic
linking system in code size. As in Section 4.1.2 we measured



Opt. Code Size Reloc. Alloc. + Start
-O3 9904 B 181 KCycles 19 KCycles
-OS 6592 B 190 KCycles 21 KCycles

Table 5: Dynamic Linker code size and performance
with relation to the compiler optimization (Opt.)

the overhead using compiler option for space (-OS) and per-
formance optimization (-O3). The memory footprint of the
dynamic linker is higher than the Virtual IO Layer but still
limited. Moreover we show the relocation cycles of both
compiler optimization flags. With space optimization we
save roughly 30% in space, paying a very limited amount of
overhead cycles.

Finally we implemented a task that samples with the ADC
an accelerometer and, after a FIR filter stage, sends the re-
sults through the WIFI to a remote cloud. We tested it in
two versions: one statically written in the system firmware,
in a standard FreeRTOS with neither virtualization nor dy-
namic linking. The second version uses our enhanced FreeR-
TOS with Virtual IO and dynamic linking to link a new fil-
ter runtime. After an initialization stage, different for the
two implementations, the main loop of the task (1) waits a
notification from the DMA ISR, (2) collects and elaborates
the samples, and (3) sends them to a third task that col-
lects results to forward through the WIFI. Step 2 is exactly
the same for both implementations and it is responsible for
the majority of the execution time, the filter elaborates 512
samples each 10 ms and the filtering takes 523 KCycles
(5,23 ms at 100 MhZ). Step 1 costs 104 Cycles (1.04 µs
at 100 MhZ) and Step 3 costs 512 Cycles (5.12 µs at 100
MhZ) for the static task, while for the task that uses the in-
frastructure presented in this paper they have an overhead of
101 Cycles each since they are implemented within system
calls. The percentage increase for both Step 1 and Step 3
is 32%, while considering all 3 Steps the overhead of using
our runtime system is really small, only 0.03% compared
to the static one, with all advantages discussed in previous
Sections.

As a concluding note, it is important to notice the fact
that the runtime execution of tasks, when not interacting
with the IOs or using system calls, is exactly the same as
native FreeRTOS tasks, with no performance overhead for
memory protection; as the MPU is completely transpar-
ent from the performance viewpoint. This is very similar
to what happens in virtual machine execution for high-end
cores, and in sharp contrast with interpreted virtual ma-
chines or even JIT-based systems.

5. CONCLUSIONS
In this paper we have presented a virtualization layer for

low-cost microcontrollers which creates a separation between
kernel mode and user mode and protects the hardware re-
sources from misuses when concurrent tasks or function are
written by different developers. Moreover we demonstrated
the effectiveness of a mechanism capable to execute new run-
time code, without the need of system reboot. We have
focused on small size of the framework and on lower over-
head, because targeted for low-cost and limited computing
capabilities microcontrollers such as the ones designed for
IoT and WSN. Experimental results demonstrate that the
overhead is limited and time delay is negligible considering
the typical application scenarios. Future works will extend
dynamic linking toward multiple upload channels and will
implement different permission policies to peripherals from
different user mode tasks.

6. ACKNOWLEDGMENTS
This work was partially supported by EU Project Eu-

roCPS H2020-ICT-2014 under Grant 644090 and in collab-
oration with STMicroelectronics.

7. REFERENCES
[1] Lu Tan et al. . Future internet: The internet of things.

In 2010 3rd International Conference on Advanced
Computer Theory and Engineering(ICACTE),
volume 5, pages V5–376–V5–380, Aug 2010.

[2] Ala Al-Fuqaha et al. . Internet of things: A survey on
enabling technologies, protocols, and applications.
IEEE Communications Surveys Tutorials,
17(4):2347–2376, Fourthquarter 2015.

[3] Andrew J. Younge et al. . Analysis of virtualization
technologies for high performance computing
environments. In IEEE CLOUD, 2011.

[4] Shah Bhatti et al. . Mantis os: An embedded
multithreaded operating system for wireless micro
sensor platforms. Mob. Netw. Appl., 10(4):563–579,
August 2005.

[5] Simon Holmbacka et al. Lightweight framework for
runtime updating of c-based software in embedded
systems. In Presented as part of the 5th Workshop on
Hot Topics in Software Upgrades, Berkeley, CA, 2013.
USENIX.

[6] ARM Virtualization Extension.
https://www.arm.com/.

[7] ARM Security Technology - Building a Secure System
using TrustZone Technology. Whitepaper, April 2009.

[8] T. Alves and D. Felton. Trustzone: Integrated
hardware and software security-enabling trusted
computing in embedded systems. White paper, arm,
july 2004.

[9] Micropython website. http://micropython.org/.
[10] PyMite. https://wiki.python.org/moin/PyMite.
[11] Oracle Java ME Embedded. http://www.oracle.com/.
[12] Niels Brouwers et al. . Darjeeling, a feature-rich vm

for the resource poor. In Proceedings of the 7th ACM
Conference on Embedded Networked Sensor Systems,
SenSys ’09, pages 169–182, New York, NY, USA,
2009. ACM.

[13] Espruino Javascript Interpreter.
http://www.espruino.com/.

[14] Embedded power driven by Lua.
http://www.eluaproject.net/.

[15] Alessandro Bogliolo et al. . Virtualsense: A java-based
open platform for ultra-low-power wireless sensor
nodes. International Journal of Distributed Sensor
Networks, 2012, 2012.

[16] Contiki: The Open Source OS for the Internet of
Things. http://www.contiki-os.org/.

[17] Michael P. Andersen et al. . System design for a
synergistic, low power mote/ble embedded platform.
In Proceedings of the 15th International Conference on
Information Processing in Sensor Networks, IPSN ’16,
pages 17:1–17:12, Piscataway, NJ, USA, 2016. IEEE
Press.

[18] FreeRTOS website. http://www.freertos.org/.
[19] ST Microelectronics Nucleo Boards.

http://www.st.com/.
[20] ST Microelectronics Hardware Abstraction Layer

Driver. http://www.st.com/.

https://www.arm.com/products/processors/technologies/virtualization-extensions.php
http://micropython.org/
https://wiki.python.org/moin/PyMite
http://www.oracle.com/us/technologies/java/embedded/micro-edition/overview/index.html
http://www.espruino.com/
http://www.eluaproject.net/
http://www.contiki-os.org/
http://www.freertos.org/
http://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-eval-tools/stm32-mcu-eval-tools/stm32-mcu-nucleo.html?querycriteria=productId=LN1847
http://www.st.com/content/ccc/resource/technical/document/user_manual/2f/71/ba/b8/75/54/47/cf/DM00105879.pdf/files/DM00105879.pdf/jcr:content/translations/en.DM00105879.pdf

	Introduction
	Related Works
	Software Architecture
	Real Time OS
	FreeRTOS Additions
	MPU Extension
	Safety Extensions
	Graceful Task Termination - Killer Task

	IO Virtualization Architecture
	Virtual IO Library
	Virtual IO Task

	Dynamic Linking

	Experimental Results
	Virtual IO Layer
	Virtual IO Layer Timing
	Virtual IO Layer Memory Footprint

	Dynamic Linking

	Conclusions
	Acknowledgments
	References

