
A survey on shared disk I/O management in virtualized
environments under real time constraints

Ignacio Sañudo
University of Modena

and Reggio Emilia
ignacio.sanudoolmedo

@unimore.it

Roberto Cavicchioli
University of Modena

and Reggio Emilia
roberto.cavicchioli@unimore.it

Nicola Capodieci
University of Modena

and Reggio Emilia
nicola.capodieci

@unimore.it
Paolo Valente

University of Modena
and Reggio Emilia

paolo.valente@unimore.it

Marko Bertogna
University of Modena

and Reggio Emilia
marko.bertogna@unimore.it

ABSTRACT
In the embedded systems domain, hypervisors are increas-
ingly being adopted to guarantee timing isolation and appro-
priate hardware resource sharing among different software
components. However, managing concurrent and parallel
requests to shared hardware resources in a predictable way
still represents an open issue. We argue that hypervisors
can be an effective means to achieve an efficient and pre-
dictable arbitration of competing requests to shared devices
in order to satisfy real-time requirements. As a representa-
tive example, we consider the case for mass storage (I/O)
devices like Hard Disk Drives (HDD) and Solid State Disks
(SSD), whose access times are orders of magnitude higher
than those of central memory and CPU caches, therefore
having a greater impact on overall task delays. We provide
a comprehensive and up-to-date survey of the literature on
I/O management within virtualized environments, focusing
on software solutions proposed in the open source commu-
nity, and discussing their main limitations in terms of real-
time performance. Then, we discuss how the research in
this subject may evolve in the future, highlighting the im-
portance of techniques that are focused on scheduling not
uniquely the processing bandwidth, but also the access to
other important shared resources, like I/O devices.

1. INTRODUCTION
A hypervisor, also called Virtual Machine Manager (VMM),

is a combination of software and hardware components that
allow emulating the execution of multiple virtual machines
upon the same computing platform by properly arbitrating
the concurrent access to shared hardware resources. Most of
the available open source hypervisors are specifically tailored
to server applications and cloud computing. In these areas,
hypervisors are mainly designed to provide isolation, load
balancing, server consolidation and desktop virtualization
within the managed virtual machines. However, the emerg-
ing of new potential areas for VMMs, such as automotive
applications and other embedded systems, and the possi-
bility to exploit multi-core embedded processors are pos-
ing new challenges to real-time systems engineers. This is

EWiLi’16, October 6th, 2016, Pittsburgh, USA. Copyright
retained by the authors.

the case of next-generation automotive architectures, where
cost-effective solutions ever more require sharing an on-board
computing platform among different applications with het-
erogeneous safety and criticality levels, e.g., the infotain-
ment part on one side, and a safety-critical image processing
module on the other side. These domains are independent,
with different period, deadline, safety and criticality require-
ments. However, they need to be properly isolated with no
mutual interference, or a misbehaving module may endanger
the timely execution of a high-criticality domain, affecting
safety qualification.

In order to provide real-time guarantees, hypervisors ei-
ther dynamically schedule virtual machines according to a
given on-line policy, or they statically partition virtual ma-
chines to the available hardware resources. An example of
the first category is RT-Xen [23] (now merged into mainline
Xen [1]), which implements a hierarchical virtual machine
scheduler managing both real-time and non-real-time work-
loads using the Global Earliest Deadline First (G-EDF) al-
gorithm. On the other hand, statically partitioned solutions
tend to isolate virtual machines onto dedicated cores, with
an exclusive assignment of hardware resources. An exam-
ple of this approach is given by Jailhouse [18], which does
not allow multiple virtual machines to share the same core.
An advantage of this latter approach is that the resulting
hypervisors have a typically smaller code footprint, imply-
ing much lower certification costs. Indeed, reducing the code
size is a prominent characteristic of other recent VMMs, like
NOVA [19] and bhyve1).

No matter which virtualization approach is taken, I/O for
storage devices might becomes a bottleneck. This is due to
the added layer of complexity introduced by the hypervisor
itself, as shown in section 5. most of the current literature
on resource access arbitration for virtualized environments
mainly focuses on CPU scheduling (see for example surveys
[8] and [21]), neglecting the huge impact that the access
to other shared hardware resources, like Hard Disk Drives
(HDD) and Solid State Disks (SSD), may have on time-
critical tasks. In view of this consideration, this paper pro-
vides a survey on the state-of-the-art on I/O virtualization
and concurrent HDD/SSD read/write operations. We will
discuss the applicability of previously introduced solutions

1https://wiki.freebsd.org/bhyve

https://wiki.freebsd.org/bhyve


to I/O arbitration for enhancing the real-time guarantees
that may be provided in a virtualized environment. Main
limitations of classic fair provisioning schemes to resource
sharing will be highlighted.

We are interested in software-based solutions that do not
require customized device controllers and hardware mech-
anisms to obtain the desired behavior. Therefore, most of
the addressed works deal with virtualized approaches that
schedule the access to storage devices by means of a hypervi-
sor or similar mechanisms, shaping the I/O requests to guar-
antee a given I/O bandwidth to multiple partitions/cores.
For each of the presented works, we will highlight the main
weaknesses and limitations, in order to stimulate the real-
time research community to undertake a more rigorous and
structured effort towards achieving the required predictabil-
ity guarantees.

Contributions are divided by contexts. In this respect, a
first coarse-grained distinction is made considering the tech-
nology used for data storage: rotational or non rotational.
HDDs and flash-based devices, such as SSDs, may have sim-
ilar issues when it comes to arbitration of concurrent ac-
cesses, but their radically different operating principles en-
tail different problems to solve in order to ensure a pre-
dictable behavior. A finer-grained distinction is related to
arbitration policies, examining how different I/O scheduling
algorithms behave in a virtualized environment and whether
they are able to satisfy hard/soft real-time guarantees. It
is worth stressing that most of the work on virtualization
in I/O environments is based on or concerned with the Xen
hypervisor.

The rest of the paper is organized as follows. The next sec-
tion introduces the motivation behind the presented survey.
Section 3 describes the existing solution based on the Xen
hypervisor for I/O management. Section 4 discusses stat-
ically partitioned solutions for multi-core platforms. Sec-
tion 5 highlights performance, predictability and security
issues related to the layered scheduling systems implied by
many virtualization techniques. Existing works introducing
real-time parameters within the I/O scheduler are summa-
rized in Section 6, while Section 7 discusses the additional
predictability problems incurred with current SSD devices.
A final discussion is provided in Section 8 showing promis-
ing research lines to improve the predictable management
of shared hardware resources by means of properly designed
hypervisor mechanisms.

2. MOTIVATION
There are multiple motivations under this document. The

initial reason triggering this study relates to the problems
encountered when trying to guarantee bounded shared re-
source access times to tasks concurrently executing on a
multi-core platform. Even if often neglected by theoreti-
cal works on real-time scheduling, a great share of the pre-
dictability problems of modern multi-core platforms is due
to potentially conflicting requests to shared hardware re-
sources like caches, bus, main memory, I/O devices, net-
work controllers, acceleration engines, etc. The arbitration
of the access to the mentioned shared resources is often hard-
wired and cannot be easily controlled via software. The en-
forced policies are mostly tailored to improve average case
performance and throughput, often conflicting with the pre-
dictability requirements of real-time applications. Finally,
low level details on the arbitration policies are difficult to

obtain and may significantly vary on different architectures.
This makes it extremely difficult to develop a tight tim-
ing analysis even for simpler platforms. To sidestep these
problems, we are studying scheduling solutions that aim at
avoiding conflicts on the device arbiter, by properly shaping
the device requests from the different cores. Hypervisors are
natural candidates in this sense, providing a centralized de-
cision point with a global view of the requests from the var-
ious partitions. This would allow taking the unpredictable
arbiters out of the scheduling loop, leaving the resource man-
agement at hypervisor level. Before implementing such a
solution, we examined the existing related approaches for
managing shared resources in virtualized environments, tak-
ing storage devices as a representative example.

This choice is mainly due to the large interest in I/O
scheduling within the open source community. Modifica-
tions to the current Linux schedulers are constantly being
proposed and evaluated. For example, at the time of writ-
ing, a new scheduler denoted as BFQ (Budget Fair Queu-
ing) [22] is undergoing evaluation for being merged into
mainline Linux. This I/O scheduler is based on CFQ, the
default I/O scheduler in most Linux systems. Among other
goals, BFQ is designed to outperform CFQ in terms of the
soft real-time requirements that can be guaranteed to mul-
timedia applications. However, it remains unclear how the
proposed modifications can deal with harder real-time con-
straints, given the unpredictable technical characteristics of
storage devices.

A second motivation descends from the consideration that
sub-optimal arbitration policies of an I/O storage device can
be the primary cause of blocking delays and performance
drops. This is due to the considerably worse latencies and
bandwidths of storage devices with respect to other shared
resources, such as central memory or CPU caches. As an
example, the random access times to L1, L2, L3 and DDR
main memory on an Intel R© i7 architecture are in the order
of 1ns, 10ns, 50ns and 100ns 2, respectively. In contrast, the
random access times to SSDs and HDDS are considerably
higher, in the order of 100us and 10ms 3, respectively. De-
spite the cost of SSDs random accesses is predicted to drop
to 10/50us in the next years, the gap from the main memory
access times would still be of at least two orders of magni-
tude. Due to this difference, it is of paramount importance
to properly schedule and coordinate the access to storage
peripherals.

A third motivation is related to the abundant presence
of I/O scheduling research in cloud and server virtualized
scenarios. The major concerns in these fields are perfor-
mance and fairness, rather than real-time constraints. Also,
the concept of fairness is mainly applied to CPU scheduling,
rather than on the access to shared resources. Consider the
widely known Xen hypervisor [1]. Xen allows the system ad-
ministrator to specify the policies that regulate how guests
are scheduled on the various cores. We can specify that a
VM can be scheduled with RTDS and a different CPU with a
Credit scheduler. By doing so, we are not going to arbitrate
access to the CPU (as they are scheduled in different cores)

2Intel Performance Analysis Guide http://software.intel.
com/sites/products/collateral/hpc/vtune/performance
analysis guide.pdf Last accessed on May 2016.
3HP Solid State Drives (SSDs) for Workstations
http://h18000.www1.hp.com/products/quickspecs/13379
na/13379 na.html Last accessed on May 2016

http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://h18000.www1.hp.com/products/quickspecs/13379_na/13379_na.html
http://h18000.www1.hp.com/products/quickspecs/13379_na/13379_na.html


Figure 1: Summary of I/O experiments in Xen.

but we want to specify requirements for the first VM and
a non real-time domain for the credit scheduled VM. How-
ever, a Credit-scheduled virtual machine that runs an I/O
intensive task can cause a priority inversion towards other
RTDS-scheduled machines, even if the latter require much
less I/O bandwidth. In order to further prove the valid-
ity of this motivation, we reproduced this priority inversion
with a simple experiment in a Xen virtualized environment.
The experiment involved a workstation managed with Xen
4.5.0 and equipped with a quad-core Intel R© i7 processor,
disabling hyperthreading. We setup two virtualized disk par-
titions using LVM (Logical Volume Manager) on a rotative
HDD. The read peak rate of the HDD was ∼130MB/s. The
device was paravirtualized. We created two guests pv1 and
pv2, pinned to two different cores, each accessing one of the
two partitions. The workload executed by these two virtual
machines is as follows:

• pv1 is a Credit-scheduled virtual machine, associated
with the Xen default scheduling weight (see section 3
for a brief introduction of the Xen Credit scheduler
and the description of its parameters). pv1 executes a
non-critical, non-real-time, I/O-intensive application,
sequentially reading a single 1GB-file. Such an appli-
cation acts as an interfering workload to other real-
time tasks on a different domain.

• pv2 is an RTDS-scheduled virtual machine that runs
a single task with a 50ms period. The end of the pe-
riod is assumed to coincide with its relative deadline.
Within its period, this guest has to read a memory-
page-sized (4KB) chunk of data, randomly chosen out
of a 1GB-file in its partition. This setup allows repro-
ducing the worst-case HDD access latency, which, for
random reads, has a bandwidth of ∼0.63 MB/s, cor-
responding to an average latency of around 5ms for a
4KB memory-page read.

In order to rule out any performance bottlenecks into
the privileged domain we assign the remaining memory and
cores to Dom0. Despite the large slack of the RTDS guest
(pv2) to complete its memory read and its higher priority,
the I/O interference causes pv2 to experience a large num-
ber of deadline misses. Figure 1 shows the results of the
experiment sampling 40 periodic I/O read accesses (x axis)
by the RTDS domain. The y axis represents the time taken

by each request in µs. Each bar represents the actual I/O
request time. The horizontal black line indicates the period
between subsequent requests, while the vertical green line
corresponds to the instant when the interference operated
by the Credit scheduled domain (pv1) is over. As can be
easily seen, pv2’s requests starve during the read process of
the Credit guest, which almost monopolizes the access to
the HDD. In contrast, when the interference created by pv1
is over, pv2 does not experience any deadline miss. In retro-
spect, this behavior is not surprising, as the higher priority
provided to an RDTS guest affects only the scheduling on
different CPUS, but it has no effect on I/O scheduling. In
other words, the priority is not transferred from CPU to
I/O.

3. I/O SCHEDULING IN VIRTUALIZED EN-
VIRONMENTS

A significant number of contributions addressed I/O virtu-
alization issues by modifying the existing Xen Credit sched-
uler. The Credit scheduler is the default CPU scheduler,
and it works by distributing credits among virtual machines
in proportion to their weights. Weights can be freely set
on guest creation. A virtual machine consumes its credits
while running on a physical CPU, and is in an over or un-
der priority status depending on whether it has exceeded
or not its share of CPU resource within a considered time
window. Credits are redistributed for each virtual machine
by a specifically designed system-wide thread. For a deeper
explanation of the Xen Credit scheduler, please refer to the
official documentation4.

The part of the credit scheduler that relates to I/O schedul-
ing is connected to what is known as boosting mechanism,
i.e., an additional boost priority status that allows perfor-
mance improvements for I/O-intensive guests [16]. A very
demanding I/O task running on a guest causes the vir-
tual machine to get blocked often, leading to a very lim-
ited credit consumption, with the guest always in the under
state. When waking up after completing an I/O request,
the VMM will grant the guest a boost priority, allowing it
to preempt other running virtual machines to process the
requested data.

Different works tried to improve I/O scheduling in vir-
tualized environments by acting on the mechanisms used
by Xen to assign priority statuses within guests and on the
above described boosting mechanism. In [12], the authors
developed a solution that extends the mechanisms of the
Xen Credit scheduler. They introduced the notion of task-
aware (I/O) scheduling arguing that a task-aware model is
beneficial for scheduling purposes, especially in situations
where mixed resource usage and I/O-intensive tasks are con-
centrated in specific domains. Once the VMM has knowl-
edge of which guest has higher I/O bandwidth requirements
or specific latency-related constraints, the hypervisor will
use this information to decide how and when to assign the
boost priority to those I/O-bound guests. In [7], the authors
followed a somehow similar, but more complex, approach.
They developed a technique for speeding up I/O virtualiza-
tion using direct I/O with hardware IOMMU. To support a
real-time response for high quality I/O virtualization, a new
REAL_TIME priority state is added to the Xen Credit sched-
uler supporting preemption. Consider a latency-sensitive

4http://wiki.xen.org/wiki/Credit Scheduler

http://wiki.xen.org/wiki/Credit_Scheduler


application running inside a guest to which the associated
latency-critical pass-through device is assigned. Whenever
the pass-through device fires an interrupt, the associated
virtual machine is automatically promoted to the REAL_TIME
state, triggering a preemption of any non REAL_TIME guest
to schedule that particular machine right away. While the
first contribution [12] mainly focuses on achieving a fair be-
havior among domains, the latter [7] shows promising results
in terms of I/O throughput and latencies. Due to the low
latency values obtained, the authors in [7] claim to have
designed a real-time virtualized environment, but no exper-
imental or analytical evidence has been provided to support
these claims using classic real-time metrics, such as schedula-
bility ratio, worst-case response times, deadline misses, etc.

Another interesting approach is presented in [3] and [11].
Both works are focused on adaptive time-slice sizing in Xen.
In the first contribution, the authors modified the Xen Credit
scheduler to guarantee Quality of Service (QoS) require-
ments for streaming audio applications in virtualized envi-
ronments. They designed an adaptive modifier of the Xen
Credit scheduler that allows flexible time-slices and real-time
priority flags to be dynamically assigned to guests. Accord-
ing to their presented results, the authors were able to im-
prove the responsiveness of latency-sensitive applications,
achieving some kind of soft real-time guarantee. They tested
their implementation by pinning multiple virtual CPUs (vC-
PUs) to the same physical core, hence testing concurrent I/O
requests rather than parallel I/O operations. In [11], the
authors adopt a similar mechanism for an on-the-fly adap-
tation of the time slices within the I/O scheduling policies
(mainly CFQ and Anticipatory) of the Linux kernels that
are executing within the Xen unprivileged domains. Here,
parallel HDD requests are explicitly considered, showing an
improved latency. However, even if improving latencies is
an important step towards predictability, a system that dy-
namically adapts scheduling constraints, such as time slices,
makes it very difficult to identify worst-case scheduling set-
tings where to build a tight timing and schedulability anal-
ysis.

4. MULTI-CORE PARTITIONING AND VIR-
TUALIZATION

Another promising direction to obtain a predictable be-
havior is to exploit the multi-core nature of today’s CPUs,
assigning specific I/O handling functions to specific cores.
This can be accomplished with CPU hardware extensions
and/or a different virtualization paradigm using partitioning-
based hypervisors. The work in [9] proposes a Xen imple-
mentation monitoring runtime information of the bandwidth
requirements of the different guests. Specific functions re-
lated to I/O handling are pinned to specific cores, e.g., one
core is used for driver-related aspects, another one to handle
I/O events, another one for generic computations. Perfor-
mance improvements are claimed in terms of bandwidth and
latencies with a slight drop in the performance of compute-
intensive tasks.

Another interesting contribution that relates to core spe-
cialization is presented in [13]. A VMM based on hardware
resource partitioning is taken into account, proposing a hy-
pervisor (SplitX) that resembles the operating mechanisms
of Jailhouse5. Specialized cores can handle I/O related in-

5Jailhouse does not yet support any mechanism to pre-

terrupt and hypervisor instructions. The authors claim that
I/O level performance is expected to reach near bare-metal
performance, by means of hardware extensions to allow di-
rected inter-core signals for events notification but also for
managing resources belonging to other cores. An example of
this latter feature may allow a core to assign specific values
to the registers of a different core. Unfortunately, this latter
batch of related works mainly deals with performance im-
provements. Even if a considerable drop on latency values is
a promising start for achieving real-time guarantees, these
approaches are not concerned with obtaining worst-case de-
lay bounds and a tight timing analysis.

In a recent publication [20], a scratch pad centric non-
virtualized architecture is presented in which real-time re-
quirements are explicitly taken into considerations. Simi-
larly to the other approaches presented in this section, a
specific core is delegated for I/O operations exploiting a ded-
icated I/O bus. Task executions are decoupled from instruc-
tion and data loading using a Time Division Multiplexing
(TDM) approach. I/O operations are included in the same
time slice used for task loading/unloading. While this lat-
ter contribution present a very rigorous and sound timing
analysis, it does not explore I/O intrinsics threats to pre-
dictability in virtualized environments, nor it addresses the
problems of having multiple I/O tasks hogging the dedicated
core.

5. PERFOMANCE AND SECURITY ISSUES
INTRODUCED BY I/O VIRTUALIZATION

It is straightforward to observe that a hypervisor allow-
ing its guests to run entire operating systems can easily
introduce noticeable overheads due to the local CPU and
I/O schedulers. Virtualized platforms, such as Xen, have
their own CPU arbitration policies for scheduling guests,
but also privileged domains have to go through their own
block layer, while each guest runs its own kernel with differ-
ent local scheduling policies for both CPU and I/O, hence
providing an added level of complexity when accessing the
storage device. This hierarchical structure is known to cause
performance drops compared to bare-metal systems, but it
also exposes a more complex architecture that dramatically
increases the difficulties of deriving a sound timing analysis.

The performance overhead issue has been studied in differ-
ent works [26, 16, 5]. In a recent paper [25] the authors mea-
sured the overhead of I/O stack duplication between host
and virtual machines running KVM as VMM. It also pro-
vided a very complete survey on previous tests on different
VMMs that eliminated a layer of the IO scheduler. A simple
QEMU + virtIO solution is shown to outperform almost all
tested scenarios.

The hierarchical organization of these kinds of hypervisors
also poses significant security threats. In [24], an untamed
I/O intensive task running within a compromised/malicious
guest is used to slow down and interfere with other sup-
posedly separated domains. For this reasons, the authors
recommend to adopt a separate and unique I/O scheduler
for virtualized environments.

We believe that such an I/O scheduler should be designed
with the same guidelines considered when implementing ef-

dictably manage the concurrent access to shared resources
like I/O devices, each of which is statically pinned to a given
partition/core having exclusive access to it.



ficient CPU real-time schedulers, ensuring a proper isolation
among tasks that require disk access, while allowing them
to complete their workload within given deadlines. On this
latter consideration, it has to be pointed out that the Linux
kernel provides features such as control groups (cgroups)
that can be used to isolate, limit and control disk (rota-
tional or SSD storage device) accesses of sets of processes.
For example, cgroups can be set within privileged domains
to limit resource usage by unprivileged guests. However,
this feature does not provide for specific scheduling policies,
rather it relies on the underlying I/O scheduler, and on its
policy, for enforcement. In this respect, current Linux I/O
schedulers implement too coarse policies for typical real-time
requirements. In addition, the resource allocation scheme of
cgroups is based only on weights, with not enough level of
granularity, which is too poor a scheme for most real-time
applications.

6. DEADLINE-AWARE I/O SCHEDULING
The need to provide tighter real-time guarantees to tasks

accessing disk I/O has been a problem addressed since the
early 90’s. In [17], Reddy et al. presented a scheduling algo-
rithm called SCAN-EDF that combined the Earliest Dead-
line First (EDF) [15] and SCAN schedulers for minimizing
request latency in HDD while serving deadline constrained
tasks. During the years, this algorithm has also been modi-
fied and improved by means of heuristics, such as batching
and delaying requests, or aggregating multiple queues of re-
quests. In [10, 14] and [4], the Xen I/O architecture has
been modified to include deadline-based scheduling for the
storage in a virtualized environment. In [10, 14], a two level
scheduler called Flubber is introduced. The first level de-
fines the throughput using a credit-rate controller to ensure
performance isolation, while the second level applies Batch
and Delay EDF (BD-EDF) to manage the request queues
from the different guests. Even if the authors claim that
Flubber improves Xen performance and allows the system
administrator to specify deadlines, no results are provided
to evaluate the worst-case delays and blocking times needed
to establish a sound timing analysis. In [4], a similar ap-
proach is used, where the first level accumulates the amount
of I/O requests in a fixed time slice while analyzing the
disk bandwidth, and the second level exploits the deadline-
modified SCAN algorithm reordering the requests accord-
ing to the deadline group and to their location on the disk.
While there is a performance enhancement for I/O intensive
workloads, neither this work appears to lend itself to the
analytical guarantees required in a real-time setting.

7. REAL-TIME ISSUES IN SSDS
Solid State Drive based storage devices deliver from 5

to 10 times the bandwidth of a HDD, while maintaining
a low power consumption and a much stronger resistance to
shocks and vibrations. These features make SSDs the pri-
mary choice for applications in the automotive and avion-
ics sectors, in which embedded platforms have to sustain
prolonged vibrations while still delivering high performance.
This makes it particularly interesting to understand whether
the previous considerations coming from experiments exe-
cuted on HDDs equivalently hold for guests sharing access
to a SSD. In this respect, it has to be pointed out that
the intrinsic operating mechanisms of SSDs pose significant

problems towards the design of predictable hard real-time
systems. This is due to the fact that flash memories are
a write-once and bulk-erase medium, that implies that a
flash translation layer (FTL) and a Garbage Collection (GC)
mechanism are needed to provide applications a transpar-
ent storage service. A näıve best effort GC policy can un-
predictably start segmentation operations causing tasks to
wait for potentially long blocking times. The authors in
[2] focused on providing hard real-time guarantees for the
GC phase in small NAND flash devices by proposing a to-
ken based garbage collection system. The presented results
showed that the implemented system is predictable and ro-
bust to interferences introduced by non real-time tasks. A
prototype is tested in a 16MB NAND-flash drive with two
real-time tasks and one non real-time task in a manufactur-
ing system scenario, with no deadline violations until high
CPU utilization. A more recent contribution [6] observed
that the previous solution does not scale well, making it
impossible to apply to modern SSDs having a much larger
storage capacity. An FTL implementation (KAST) is then
proposed to allow the user to control the worst case blocking
time by tuning some GC parameters.

8. CONCLUSIONS
Hypervisors represent a possible solution to bypass un-

predictable scheduling policies enforced by off-the-shelf ar-
biters for the access to shared hardware resources. By tak-
ing informed decisions on the scheduling of the different re-
quests coming from multiple tasks, a hypervisor may provide
stronger timing guarantees to real-time tasks, predictably
limiting the delays due to interfering requests on the shared
devices. Taking I/O scheduling as a representative case for
resource sharing, we highlighted the main results concerned
with improving the delays due to competing accesses to stor-
age devices in virtualized environments. We showed how I/O
intensive tasks within non-critical virtual machines can eas-
ily cause more critical partitions to experience high blocking
delays, leading to repeated deadline misses. This was the
case with the Xen hypervisor, whose critical partitions are
“privileged” only when assigning processing bandwidth, but
not when arbitrating the access to other shared resources.
We argued that smarter scheduling policies are needed, that
take into account the timing requirements of the different
tasks/partitions also when arbitrating the access to shared
devices.

We showed that existing mechanisms to improve the block-
ing delays are mainly tailored to obtain better average per-
formance or achieve a fairer behavior, but cannot be lever-
aged to develop a sound timing and schedulability analysis.
While it would be possible to manually tune the bandwidth
allocated to each partition when accessing an I/O device,
e.g., by playing with cgroups parameters in Xen, such a so-
lution has clear limits in terms of flexibility, efficiency and
responsiveness, preventing a tight timing analysis. More-
over, we pointed out that hypervisors like Xen and KVM
add further layers of complexity to guest operating systems,
with repeated scheduling and block layers coupled with para-
virtualized driver architectures, making it very difficult to
formalize the I/O scheduling model. Partitioned hypervi-
sors seem more suitable in this sense, especially when the
number of cores increases and each domain can be statically
assigned to one or more dedicated cores. Still, most of the
available partitioned VMMs do not allow for a predictable



and concurrent access to shared devices, but they either ex-
clusively pin each resource to a selected domain, preventing
tasks running on other partitions to access it, or they im-
plement para-virtualized schemes that are not aware of the
different real-time requirements.

Even in a non virtualized environment, a trivial EDF
scheduler on the storage device does not represent the op-
timal solution. This is because, even if deadlines might
be met, the throughput of such implementation will suf-
fer greatly due to the fact that it will be difficult to ex-
ploit heuristics mechanisms such as speculative readings and
caching hierarchies that all the other non real-time solutions
apply (see section VI). The biggest problems when using a
HDD device scheduled with pure EDF would be related to
excessive seek time and poor disk utilization.

Moving towards a completely SSD based platform will re-
move the seek time problem but will force the system de-
signer to take into considerations additional issues on the
point of view of predictability. As we have discussed in sec-
tion 7, the management of garbage collection mechanisms
becomes the biggest challenge to face in terms of timing
analysis.

To conclude, we believe that guaranteeing hard real-time
requirements within embedded virtualized platforms requires
the hypervisors to be made aware of the I/O requirements of
their guests. Performance-oriented considerations aiming at
improving average latencies need to be sacrificed to achieve
a more predictable behavior. We hope this paper may stim-
ulate the research on predictable I/O scheduling policies for
virtualized environments, paving the way towards simpler
and tighter timing analysis.

9. REFERENCES
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand,

T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. ACM
SIGOPS Operating Systems Review, 37(5):164–177,
2003.

[2] L.-P. Chang, T.-W. Kuo, and S.-W. Lo. Real-time
garbage collection for flash-memory storage systems of
real-time embedded systems. ACM Trans. Embed.
Comput. Syst., 3(4):837–863, Nov. 2004.

[3] H. Chen, H. Jin, K. Hu, and M. Yuan. Adaptive
audio-aware scheduling in xen virtual environment. In
Proceedings of the ACS/IEEE International
Conference on Computer Systems and Applications -
AICCSA 2010, AICCSA ’10, pages 1–8, Washington,
DC, USA, 2010. IEEE Computer Society.

[4] T.-Y. Chen, H.-W. Wei, Y.-J. Chen, W.-K. Shih, and
T.-s. Hsu. Integrating deadline-modification scan
algorithm to xen-based cloud platform. In Cluster
Computing (CLUSTER), 2013 IEEE International
Conference on, pages 1–4. IEEE, 2013.

[5] L. Cherkasova and R. Gardner. Measuring cpu
overhead for i/o processing in the xen virtual machine
monitor. In Proceedings of the Annual Conference on
USENIX Annual Technical Conference, ATEC ’05,
pages 24–24, Berkeley, CA, USA, 2005. USENIX
Association.

[6] H. Cho, D. Shin, and Y. I. Eom. Kast: K-associative
sector translation for nand flash memory in real-time
systems. In Proceedings of the Conference on Design,

Automation and Test in Europe, DATE ’09, pages
507–512, 3001 Leuven, Belgium, Belgium, 2009.
European Design and Automation Association.

[7] Y. Dong, J. Dai, Z. Huang, H. Guan, K. Tian, and
Y. Jiang. Towards high-quality i/o virtualization. In
Proceedings of SYSTOR 2009: The Israeli
Experimental Systems Conference, page 12. ACM,
2009.

[8] Z. Gu and Q. Zhao. A state-of-the-art survey on
real-time issues in embedded systems virtualization.
Journal of software Engineering and Applications,
5(4):227–290, 2012.

[9] Y. Hu, X. Long, J. Zhang, J. He, and L. Xia. I/o
scheduling model of virtual machine based on
multi-core dynamic partitioning. In Proceedings of the
19th ACM International Symposium on High
Performance Distributed Computing, HPDC ’10, pages
142–154, New York, NY, USA, 2010. ACM.

[10] H. Jin, X. Ling, S. Ibrahim, W. Cao, S. Wu, and
G. Antoniu. Flubber: Two-level disk scheduling in
virtualized environment. Future Generation Computer
Systems, 29(8):2222–2238, 2013.

[11] M. Kesavan, A. Gavrilovska, and K. Schwan. On disk
i/o scheduling in virtual machines. In Proceedings of
the 2nd conference on I/O virtualization, pages 6–6.
USENIX Association, 2010.

[12] H. Kim, H. Lim, J. Jeong, H. Jo, and J. Lee.
Task-aware virtual machine scheduling for i/o
performance. In Proceedings of the 2009 ACM
SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, VEE ’09, pages
101–110, New York, NY, USA, 2009. ACM.

[13] A. Landau, M. Ben-Yehuda, and A. Gordon. Splitx:
Split guest/hypervisor execution on multi-core. In
WIOV, 2011.

[14] X. Ling, H. Jin, S. Ibrahim, W. Cao, and S. Wu.
Efficient disk i/o scheduling with qos guarantee for
xen-based hosting platforms. In Proceedings of the
2012 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (Ccgrid 2012),
CCGRID ’12, pages 81–89, Washington, DC, USA,
2012. IEEE Computer Society.

[15] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time
environment. Journal of the ACM (JACM),
20(1):46–61, 1973.

[16] D. Ongaro, A. L. Cox, and S. Rixner. Scheduling i/o
in virtual machine monitors. In Proceedings of the
Fourth ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, VEE
’08, pages 1–10, New York, NY, USA, 2008. ACM.

[17] A. Reddy and J. Wyllie. Disk scheduling in a
multimedia i/o system. In Proceedings of the first
ACM international conference on Multimedia, pages
225–233. ACM, 1993.

[18] V. Sinitsyn. Jailhouse. Linux Journal, 2015(252):2,
2015.

[19] U. Steinberg and B. Kauer. Nova: A
microhypervisor-based secure virtualization
architecture. In Proceedings of the 5th European
Conference on Computer Systems, EuroSys ’10, pages
209–222, New York, NY, USA, 2010. ACM.



[20] R. Tabish, R. Mancuso, S. Wasly, A. Alhammad, S. S.
Phatak, R. Pellizzoni, and M. Caccamo. A real-time
scratchpad-centric os for multi-core embedded
systems. In 2016 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS),
pages 1–11. IEEE, 2016.

[21] G. Taccari, L. Taccari, A. Fioravanti, L. Spalazzi,
A. Claudi, and A. B. SA. Embedded real-time
virtualization: State of the art and research
challenges. 2014.

[22] P. Valente and F. Checconi. High throughput disk
scheduling with fair bandwidth distribution. IEEE
Transactions on Computers, 59(9):1172–1186, Sept
2010.

[23] S. Xi, M. Xu, C. Lu, L. T. X. Phan, C. Gill,
O. Sokolsky, and I. Lee. Real-time multi-core virtual
machine scheduling in xen. In Proceedings of the 14th
International Conference on Embedded Software,
EMSOFT ’14, pages 27:1–27:10, New York, NY, USA,
2014. ACM.

[24] Z. Yang, H. Fang, Y. Wu, C. Li, B. Zhao, and H. H.
Huang. Understanding the effects of hypervisor i/o
scheduling for virtual machine performance
interference. In Cloud Computing Technology and
Science (CloudCom), 2012 IEEE 4th International
Conference on, pages 34–41, Dec 2012.

[25] M. Yi, D. H. Kang, M. Lee, I. Kim, and Y. I. Eom.
Performance analyses of duplicated i/o stack in
virtualization environment. In Proceedings of the 10th
International Conference on Ubiquitous Information
Management and Communication, page 26. ACM,
2016.

[26] P. Zhao and G. Tan. Evaluating i/o scheduling in
virtual machines based on application load.
Engineering Journal, 17(3):105–112, 2013.


	Introduction
	Motivation
	I/O scheduling in virtualized environments
	Multi-Core partitioning and virtualization
	Perfomance and security issues introduced by I/O virtualization
	Deadline-aware I/O scheduling
	Real-time issues in SSDs
	Conclusions
	References

