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ABSTRACT

Smartphones or in general handhelds commonly used for indoor
localization purposes are not a viable option in places where people
do not carry them all the time - for example, home and office. Alter-
natively, wearable devices can partially solve this problem but have
many limitations with respect to power supply, processing capabil-
ity, and availability of sensors. These issues prevent the adoption
of many common handheld localization solutions. In this work, we
present PErvasive Localization Engine (PELE), a distributed local-
ization system that uses wearable and handheld jointly to address
the above drawbacks. Using only magnetometer, accelerometer, and
Bluetooth radio, localization is performed by means of a particle fil-
ter. In addition, a dynamic handoff mechanism is presented, which
uses the wearable only when it is necessary, thus reducing energy
consumption on the wearable without affecting the desired local-
ization accuracy. Evaluating the system with ten participants, we
achieve a localization accuracy of 90.31 % in an indoor environment
spanning about 320 m?.

CCS CONCEPTS

« General and reference — Performance; - Computer systems
organization — Embedded software;

KEYWORDS
Indoor localization, wearable, joint localization, handoff, pervasive

ACM Reference Format:

Luis Henrik John, Chayan Sarkar, and R. Venkatesha Prasad. 2018. Where
is PELE? Pervasive localization using wearable and handheld devices. In
Proceedings of Advances in IoT Architecture and Systems, Toronto, Canada,
June 2017 (AIoTAS’17), 8 pages.

1 INTRODUCTION

Personal indoor localization has been considered an important
constituent of pervasive IoT applications, as people spend approx-
imately 90 % of their time in indoor environments [25]. Existing
indoor localization systems generally localizes a handheld (e.g.,
smartphone, tablet, etc.), which in turn localizes the user [9]. These
devices provide data from a variety of sensors and have sufficiently
large processing capability. Though such solutions are highly ap-
propriate for most of the public indoor spaces such as shopping
malls or airports, they are less applicable for home and office en-
vironments, where users may not carry such a device all the time;
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they remain static for long duration. Users within such non-public
indoor spaces are the target audience of this work.

Use cases. As location information is one of the most important
contextual information for many IoT applications, continuously
localizing a user is an important step forward. For example, Sarkar
et al. [20] proposed a room-level indoor lighting and heating con-
trol system that depends on locations of the occupants. Similarly,
location information of a person is utilized to track the activities
remotely in the elderly care system [21].

Motivation. Recently, inexpensive wearable devices such as
smartwatches, fitness trackers, body-worn cameras, head-mounted
displays, smart garment, etc., have become increasingly accessible.
Of all the wearables, currently, only smartwatches are compara-
ble with handheld in terms of processing capabilities and sensors.
However, out of 274 M wearable devices sold worldwide in 2016
(estimated), only about 18% are smartwatches [24]. Thus, handheld-
based indoor localization algorithms or solutions cannot be easily
adapted for most of the affordable and less complex wearables. How-
ever, they are able to track and measure various human activities
continuously, as they are envisioned to be worn on the body all the
time (or at least either of them is worn throughout the day). This
provides the opportunity to utilize wearable devices for ubiquitous
indoor localization, where the wearables may guarantee complete-
ness of sampled sensor data, while the handheld can be responsible
for more demanding processing tasks.

Challenges. A number of challenges need to be tackled in order
to achieve a pervasive localization using wearable and handheld.
Firstly, the radio communication between handheld and wearable,
and sensor sampling rate should not exhaust the devices’ energy.
As a continuous sampling of the sensor is highly inefficient from
the energy point of view, they have to be sampled at a proper rate.
Secondly, the lack of sensors and/or radio interfaces on the wear-
ables, due to their smaller form factor, limits the use of existing
localization methods. Finally, devices and their components are de-
veloped by the various manufacturer. Modeling these components
for a common goal without any human intervention is a challenge.

Contributions. We propose the PErvasive Localization Engine
(PELE) that jointly uses a wearable and a handheld. Using the inte-
grated accelerometer and magnetometer, the wearable is localized
relative to the handheld’s absolute location, which is assumed to be
acquired by one of the common handheld-based localization tech-
niques [9, 22]. The location of the user is determined by employing
a particle that uses sensor data from the wearable. The specific

contributions of this work are as follows.
e We present a practical, non-intrusive, infrastructure-free localiza-

tion solution for location-based IoT services. To the best of our
knowledge, this is the first work to propose a joint localization
system using a pair of wearable and handheld devices.
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e To overcome the limitations in processing capacity of a wear-
able, computational tasks are delegated to a handheld without
incurring significant energy consumption.

e To strike a balance between location accuracy and energy effi-
ciency, the system uses a dynamic hand-off mechanism to start
and stop the localization process on the wearable.

Based on our evaluation with ten participants, on an area of about
320 m? comprising of ten rooms, PELE achieves a localization ac-
curacy of 90.31 %. In the next section, we provide a brief survey
of various indoor localization techniques. Section 3 and 4 present
overview and detailed description of the system, respectively. The
system evaluation is presented in Section 5 before concluding the
article in Section 6.

2 RELATED WORK

Lymberopoulos et al. [12] broadly categorize the indoor localiza-
tion techniques into two classes - (i) infrastructure-based, and
(ii) infrastructure-free. Finger printing technique is one of the pop-
ular infrastructure-based localization technique (Fig. 1a). It consists
of two phases. In the offline phase, a radio map of fingerprints is
generated, associating ambient radio signals with physical loca-
tions. During the online working phase, a device that observes the
ambiance is able to collect real-time fingerprint and compare it
to the radio map using pattern matching algorithms in order to
estimate its location. For example, a system of localizing patients
in a hospital environment is proposed in [2], where RFID tags and
readers are used for finger printing. Similarly, SEAMLOC [17] uses
WLAN signals for finger printing. Though finger printing can pro-
vide a good location accuracy, it requires a number of transmitters
in the vicinity. Moreover, it is prone to changes in the environment
and relies strongly on unaltered conditions between offline and
online phase.

Geometric properties of triangles offer an alternative infrastructure-

based localization approach. Triangulation measures the bearing
relative to beacons placed in known locations [5]. Such direction
based techniques make use of the Angle of Arrival (AoA) or the
Angle of Departure (AoD) to define arcs, whose intersection esti-
mates users’ location. As neither wearable nor handheld holds an
antenna array, direct angle measurement is not possible. Of course,
when localization using triangulation is envisioned with a single
handheld beacon, high location ambiguity is expected.

Another infrastructure based localization technique is proximity
sensing, where detecting spatial closeness of objects provides rela-
tive location (Fig. 1c). A device that is detected by an antenna can be
considered collocated with that antenna. When dense antenna grids
are used, it is considered to be collocated with the one receiving
the strongest signal [11]. Similar to fingerprinting, the method is
rendered unusable by having the beacon from a single transmitter.

Since the infrastructure based techniques often involve expen-
sive deployments in terms of time and money, it renders unsuit-
able for many applications. As a result, infrastructure-free systems
are widely used as well. Integration of inertial measurement units
(IMUs), commonly comprised of accelerometer, gyroscope and mag-
netometer, enable measurement of body-specific forces, angular
rates and magnetic orientation of subjects. Using the infrastructure-
free pedestrian dead-reckoning (PDR) methodology (shown in Fig. 1d),
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Figure 1: Common indoor localization techniques.

the absolute location of a user can be determined by computing
stride length, walking direction and integrating steps [8, 22]. By
nature, PDR systems suffer from cumulative error introduced by
the environment, but also due to noisy sensed data. However, ac-
tivities such as ascending and descending stairs, using the elevator
or standing at some usual points are used to recognize landmarks
and increase localization precision.

Nowadays hybrid systems are more common and made up of
at least two of the methodologies explained earlier. For example,
Ubicarse [10] uses WLAN based triangulation, and the sensor data
from accelerometer, magnetometer and gyroscope is used to esti-
mate the antenna position. Furthermore, the camera of the mobile
device is used for geo-tagging objects. Similarly, Wang et al. [23]
employed an unsupervised learning to extract unique sensor sig-
natures from landmarks, and dead-reckoning based schemes track
location in between landmarks. Using landmark based recalibra-
tion, the system continues to improve localization accuracy over
time. The approach does not require a specialized infrastructure,
except the ground plan of the building. However, it is rather prone
to changes in the ambiance.

Though the hybrid solutions provide an increasingly accurate
indoor positioning, complexity of the systems increases by crowd
sourcing approaches and sampling of a multitude of sensors. Infras-
tructure is required for fingerprinting, geometric methods and prox-
imity sensing. On the contrary, there is limited attention given to
the widely available and affordable fitness trackers, which make up
a majority of wearables. These devices are generally not advanced
enough for complex hybrid solutions. We opt to use geometric
methods with a single beacon and eliminate location ambiguity
with a low accuracy dead-reckoning approach.

3 SYSTEM OVERVIEW

In this section, the assumptions and design goals that lead to the
system design are discussed. Furthermore, a conceptual overview
of the system is provided.

3.1 Initial assumptions

The localization process of PELE works in two different modes —
(i) standalone, and (ii) joint. In the standalone mode, only the hand-
held device is used for localization, whereas in the joint mode, both
the handheld and the wearable devices are used. Since there exists
a number of solutions that provide sufficiently accurate indoor lo-
calization using a handheld device, no new technique is developed
for the standalone mode. Without loss of generality, a particle filter-
based dead-reckoning technique is adopted for the standalone mode,
as used in [16]. Our major contribution lies in the joint localization
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Figure 2: Comparison of sensor energy consumption.

system, thus rest of the article describes and evaluates the system
only for the joint mode.

We assume an infrastructure free localization requirement with
the floor plan known beforehand. For most of the indoor living
places, room-level accuracy is sufficient. However, room size may
vary significantly. As Bluetooth is the only radio interface on most
wearables, it is used to communicate with the handheld.

Choice of Sensors. Accelerometer, gyroscope, and magnetome-
ter are used in combination for step detection and heading esti-
mation. As most wearables do not feature all the three sensors
(except few smartwatches), we aim to choose sensors that provide
the basic functionality and draw lower power. Due to the wide
range of operating currents of various sensor components, a direct
comparison of energy consumption is difficult. Based on our survey
of two major electrical component distributors [3, 6], we concluded
that a magnetometer can provide more efficient operation than a
gyroscope while acquiring heading information (see Fig. 2). That
is because a gyroscope requires continuous sampling to estimate
heading direction. Additionally, integration of the gyroscope data is
computationally intensive, and causes a cumulative bias error that
is often difficult to rectify. Note that a magnetometer can also be
biased by magnetic interferences in indoor environments. However,
this error may be diminished by combining a Bluetooth RSS based
distance measurement along with the dead-reckoning. Thus, we
consider only an accelerometer and a magnetometer to be present.

3.2 Design goals

The crux of PELE is to share the load of sensing and processing
between the handheld and wearable in order to localize a person
continuously. This amounts to the following two design goals. First,
as wearables have limited battery capacity, the usage of sensors
has to be optimized towards energy efficiency without losing the
required location accuracy. Thus, sensor sampling needs to be trig-
gered only when it is required. Second, due to their restricted
memory and processing capability, sensor data processing cannot
be performed entirely by most of the commercial low-end wear-
ables. Thus, some of the computational tasks need to be delegated
to the handheld. However, keeping the energy constraint in mind,
communication between the two devices also need to be kept at
minimal.

3.3 Architecture

Fig. 3 depicts a pictorial overview of PELE’s architecture. The dis-
tributed model is inspired by our previous works [18, 19]. By de-
fault, the localization process is executed on the handheld device
in the standalone mode. The system triggers the joint mode by au-
tomatically detecting when the user transfers without carrying the
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Figure 3: System overview of PELE.

(a) Development board with (b)Designed PELE wearable.
PELE board is next to it.

Figure 4: Hardware configuration of the wearable.
handheld. As soon as the person starts roaming with the handheld
again, the process is switched back to the standalone mode and
any localization-related activity on the wearable is stopped. In the
following, we briefly introduce the major building blocks of PELE.

Handoff manager. Handoff manager runs on the handheld
and selects a suitable localization mode while ensuring a sufficient
localization accuracy. Its goal is to reduce energy consumption by
avoiding unnecessary sampling of the sensors on both the devices.

Sensor module. The sensor module resides on the wearable,
and it turns on and off the sensors on the device on the directive
of the handoff manager. It also optimizes the sampling rate for
the sensors to achieve a balance between energy efficiency and
data granularity, which in turn also optimizes the communication
between the wearable and the handheld.

Motion module. The motion module resides on the wearable.
By processing the raw sensor data, it estimates three pieces of infor-
mation about users’ movement, i.e., step event detection, heading
direction, and distance from the stationary handheld device.

Location estimator. The location estimator resides on the hand-
held. It receives the motion model outputs from the wearable over
the Bluetooth connection. It integrates this information with the
map data using a particle filter-based dead-reckoning approach.
In addition using the distance information, the integration bias is
supposed to be minimized.

3.4 Hardware configuration

Commercially available wearables generally do not provide an
API that would allow for extensive reconfiguration. Therefore, a
wearable, PELE, was designed based on state of the art hardware
components. The system on chip nRF52 serves as Bluetooth enabled
microcontroller. In addition an affordable accelerometer as well as
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magnetometer was added. Figure 4 shows the development board of
the microcontroller with mounted sensors and the wearable board
after assembly. The cost of PELE is around $15. The form factor is
3 cm by 0.1 cm and is 0.5 cm thick.

4 PELE ON THE FIELD

In this section, the details of the building blocks are provided (Fig. 3).
It is described how they work in synergy to achieve pervasive
localization.

4.1 Handoff manager

The handoff manager is responsible for switching between the mu-
tually exclusive standalone and joint localization modes (Fig. 5).
The goal is to avoid sampling and data processing on wearable
and handheld simultaneously and thus preserve energy. In general,
handoff may take place when the user leaves behind the handheld
and moves around. A trivial solution would be to trigger the joint
mode as soon as the accelerometer data in the handheld suggests
that the device is stationary. Similarly, switching back to the stan-
dalone mode is done, when the handheld becomes mobile again.
However, this solution may lead to unnecessary switching between
the two modes and hence superfluous sensor usage on the wearable.
For example, when the user keeps the handheld on a desk and sits
next to it, the unnecessary handoff would cause energy drain on
the wearable.

Since we are aiming at room-level accuracy, there is no need
to handoff unless the user moves out of the room in which the
handheld is located (referred to as handheld room). However, if the
handoff takes place only after the user moves out of the room, it
takes a long time to determine the location of the user, especially
in the case when there are multiple adjacent rooms to the handheld
room. Given our particle filter based localization technique, we
found that correct and expeditious particle convergence can be
guaranteed, when the handoff to joint mode takes place before
transferring to an adjacent room.

PELE uses a dynamic approach to make the handoff decision,
i.e., switching between the two localization modes. The handheld’s
accelerometer is leveraged to detect motionlessness, which is a
good indicator for the handheld being left behind. At this point, the
location of the user is the same as the handheld room, and the local-
ization process enters the localization neutral zone. Using the map
data, the distance between the handheld’s absolute location (based
on standalone localization) and the closest wall is determined. This
distance determines the dynamic handoff threshold. Depending
on the RSS of Bluetooth, the distance to the wearable is estimated.
Once the user crosses the handoff threshold distance, the joint mode
is triggered.

4.2 Sensor module

The sensor module in the wearable receives a trigger from the hand-
off manager when the switching to the joint mode takes place. The
handheld sends a message to the wearable over the Bluetooth con-
nection to indicate the switching. Only at this point, the accelerom-
eter and the magnetometer units are activated on the wearable. The
sampling rate for the accelerometer is set to 20 Hz as this is the
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Figure 5: Switching between the two localization modes by
the handoff manager.

minimum required rate to identify frequencies in human locomo-
tion, including steps, accurately [1]. However, the magnetometer is
not sampled at a fixed frequency. Rather it is sampled in an event
driven manner: every time when a step is detected by the motion
module. The details of step detection by the motion module based
on accelerometer data are discussed in Section 4.3. Additionally,
the Bluetooth RSS is measured on the wearable to calculate the
distance from the handheld.

4.3 Motion module

The motion module receives the data from the sensor module, pro-
cesses it, and provides three pieces of information — (i) the number
of steps detection, (ii) the heading direction of the user, and (iii) the
distance between the user and the handheld.

Step detection. Marschollek et al. [13] provides a comparison
among various accelerometer-based step detection techniques. Re-
sults show that waist-worn or ankle-worn devices performs signifi-
cantly better than the wrist-worn device. Wearable manufacturers
achieve robust step detection for wrist-worn devices by using so-
phisticated and proprietary algorithms. As step detection is not
the primary focus of this work, we use a simple step detection
mechanism. Each time the accelerometer data is sampled, total ac-
celeration is calculated by computing the magnitude from three
axis components. If this magnitude crosses a predefined threshold,
it is considered as a step. Once the step is detected, the sampling is
paused for a small duration roughly equalling the duration of an
average step. This avoid multiple (false) step detection within the
same step period.

Heading detection. Depending on the type of wearable, ro-
bustness in the heading detection can vary. While orientation of a
waist-worn wearable generally does not change relative to the true
walking direction, head-mounted wearables will clearly follow the
viewing direction. As we assume a wrist-worn wearable, we make
the assumption that the arm swing in human locomotion is parallel
to the true walking direction. A magnetometer alone cannot detect
heading under these circumstances due to different tilt angles of the
wearable throughout the swing. Hence, a tilt compensated compass
using magnetometer and accelerometer is necessary. For this, we
acquire an accelerometer sample, which gives an indication of the
gravity vector a = [ax ay az] T, and a magnetometer sample, a
vector pointing to magnetic north e = [ex ey ez] T By using their
cross-product, we compute a third vector h perpendicular to both,
aande.

As the accelerometer and the magnetometer vectors are gener-
ally not perpendicular due to earth’s spherical shape and location
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dependent inclination, we compute vector m = @ X h as a better
representation of magnetic north. This vector r is already a unit
vector, because d and h are. Using the sign of the vector components
hy and my, we can compute the heading angle using trigonometric
principles.

Distance estimation. Though RSS-based distance estimation
can be erroneous, especially in the indoor environments, we use it
as a secondary mechanism. As the dead-reckoning is also subject to
error, the RSS-based distance estimation is used to calibrate during
the localization process. How these two error-prone technique com-
plement each other to establish an accurate location information is
described in Section 4.4.

As the devices are paired using Bluetooth, the RSS, which repre-
sents the relationship between transmission and received power,
can give an estimate of their distance. Eq. 1 presents a common ap-
proach towards distance estimation for the received signal strength
Sin dBm [14].

S = —10nlog,od + A. (1)

Here, 7 is the propagation path-loss exponent (r = 2 for free space),
d is the distance between the sender and the receiver in meters and
A is the received signal strength at one meter of distance.

To decide an appropriate path loss exponent, we measured RSS
with increasing distance between the handheld and the wearable.
When the devices were in line-of-sight in a long corridor, the result-
ing path loss exponent is at times less than 2 (Fig. 6a). The reason
behind this is that a long corridor resembles a tunnel, which may act
as a wave guide, providing a stronger signal at a relatively longer
distance [15]. The measurements confirm the observations made
in the work of [4] as RSS being rather unreliable. Furthermore, it
has been found empirically that a wall reduces the signal power
by approximately 3 dBm (depending on wall type and construc-
tion) [7]. In subsequent measurements with walls and furniture
in the path a stronger down-trend of the resulting signal was ob-
served, indicating a higher signal attenuation. In such cases, a better
approximation of the loss exponent is = 2.5 or higher (Fig. 6b).

In order to cope with the deviation, a low-pass filter was im-
plemented, which cancels out high frequency noise. Note that we
are smoothing the distance d rather than the RSS value directly.
The reason is that the RSS being in a logarithmic relationship to
the distance. Therefore, smoothing the RSS directly may result
in changing responsiveness of the system at different distances
between handheld and wearable.
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4.4 Location estimator

To estimate the location of the user, PELE integrates the information
received from the motion module with the map data using a particle
filter. The particle distribution is initiated when the joint mode is
triggered by the handoff manager. As the user walks further, the
particle positions are updated using two sequential mechanisms:
first, dead-reckoning, second, distance-based calibration. As dead-
reckoning is prone to cumulative errors, the RSS-based distance is
used to rectify this error.

To expedite the particle convergence initial particle distribution
is done judiciously. As mentioned in Section 4.1, the handoff takes
place when the user moves beyond the threshold distance from
the handheld; but still resides in the same room. Considering the
handheld room as the initial location, all the particles are distributed
in this room. However, if particles are distributed all over the room,
they may form multiple clusters if there are multiple exits from this
handheld room. To tackle this issue, the particles are projected in a
arc with mean being the heading direction 6 plus the heading noise
introduced into the system.

Similar to the work in [16], each particle is represented using
a 2D coordinate on the floor map, where particle i at step k has
coordinate (xlk,yf). If the user is heading at an angle of 6, and
his/her stride length is s, then, each particles’ location is updated
with each step as follows.

xlk/ = xlk +(s+ llk)cos(af +0), (2)
v =y + (s + IF) sin(ak +0). 3)

Here, | lk and af are the stride length noise and heading noise respec-
tively, which are deliberately added to the system to account for
unreliable RSS as well as heading estimate. As a result, the particles
are relocated to any location within a determined region as shown
in Fig. 7a. This noise is also added to catalyze the particle conver-
gence and improve recoverability from errors. The noise values are
chosen from the uniform distributions where s and 8 are the mean
of the distributions, respectively. The range of the distributions
are selected experimentally and discussed in Section 5. Next, we
perform device distance-based calibration, which can eliminate the
integration error caused by dead-reckoning. It projects particles
into a location corresponding to the distance d between the devices
(Fig. 7b). The value of d is calculated by the distance estimator based
on the RSS value received at the wearable. To do so, we transform
the coordinate (xlk/, yf.‘l) of a particle pf.‘/ from the map coordinate
system to a coordinate system centered at the handheld’s location
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Figure 8: Floor plan of the indoor environment that is con-
sidered for calibration and testing of the proposed system.

(%0, yo) and compute the length of the resulting vector u; as,
u; = (xF —xosyf - Yo). 4

This vector is scaled to have length equal to the radius of the dis-
tance sphere, resulting in v;,

d
v = —u; (5)
[z |

Finally, we scale the vector back to the map coordinate system to
get the projection pointed to by the vector w;.

(L) = 0+ (x0.00) ©)
As a last step, uniformly distributed noise is added by further relo-
cating the particle p; randomly within a spherical noise space with
radius n around the projected point (Fig 7b). This accounts for the
unreliable RSS value as well as diminishes the bias introduced by
the projection of a particle.

The newly acquired location is then validated, i.e., whether
it is outside the mapped area or if the line joining (xlk s yf) and
(xlk“, yf“) intersects a wall on the map. In such cases, the parti-
cle is eliminated and resampled in a valid and randomly chosen
particle’s location at the previous step.

5 EVALUATION

In this section we present the performance evaluation of our system
with respect to location accuracy, computational complexity and
robustness of the localization process, and also the efficiency of
the handoff mechanism. The evaluation has been performed in an
indoor environment spanning about 320 m?. Fig. 8 shows the floor
plan of the area, where the area has 10 rooms. The central corridor
including the staircase and two rooms has an end-to-end distance of
about 30 meters. While Bluetooth can theoretically have a range of
more than 100 m, the practical communication range is significantly
less, especially in the indoor environment. However, the longest
distance in our experimental area is within the communication
range (20 m) of the wearable device.

5.1 Accuracy

As room-level accuracy is sufficient in most of the indoor living
spaces, the primary target of PELE is to achieve such accuracy.
First, it was tested whether the system is capable to determine
the location and track the room-to-room movement of the user
within the test environment. For this, the movement accuracies for
a limited number of pairs of rooms is evaluated. Fig. 9 summarizes
the results of this evaluation, which are average of 10 experiments
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Table 1: Accuracy by
room distance.

Table 2: Noise quantification.

Noise | Stride Heading
Room Accuracy level | length
distance 0% s 0
<10m 96.91 % 25% s+0.25s | 6+11.25°
<20m 93.54 % 50 % s+ 0.5s 0 +22.5°
<30m 91.20 % 75 % s +0.75s | 6+33.75°
100% | s+s 0 + 45°

for every pair of rooms. Though, most of the room combinations
(origin and destination room) show accurate location estimation,
there are a few cases where the accuracy is below average (generally
involving rooms 1, 6, and 7).

Classifying movement accuracy contextually by absolute room
distance reveals that localization accuracy decreases with increas-
ing distance from the room where the handheld currently is, say,
handheld room (Table 1). As RSS-based distance estimate gets ham-
pered with larger distance, the localization accuracy also decreases
at far ends of the indoor environment. In addition, the lower ac-
curacy involving rooms 6 and 7 can be explained by the position
and access to the rooms. While the width of the walls in between
rooms 2 through 5 are almost same (about 10 cm), rooms 6 and 7
can only be accessed through small corridors, that are heavily rein-
forced with concrete. Hence, the un-uniform density of an indoor
environment causes low accuracy in our localization system.

Next, we experimented with 10 people with varying age, height,
and gender. The users were asked to transfer randomly between
rooms considering, two different handheld locations for each of
them. The location of the handheld, i.e., the initial location of the
user is determined using the standalone mode and not included in
this evaluation.

The experiments are started after the handheld is kept on a table.
At this point, the system enters the localization neutral zone. As the
user moves away from the handheld gradually, the handoff takes
place and the localization in joint mode starts. As mentioned earlier,
the handoff takes place based on the dynamic handoff threshold
distance, which is decided based on the distance between the nearest
wall and the handheld. As the user moves from room to room, the
location is also updated accordingly. Note that the origin room is
not kept fixed. Based on a total of 350 room transfers, we found the
localization accuracy of 90.31 % in PELE.
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5.2 Particle filter optimization

The computing load is distributed over the handheld and the wear-
able, however, it is not even. Both the devices are limited in process-
ing capability and power supply, with the handheld being generally
more capable. Therefore, the particle filter has been implemented
to run on the handheld, where the wearable provides the required
information to update the particles based on the sensor data. How-
ever, to avoid unnecessary processing and memory consumption,
the particle filter can be optimized by limiting the number of par-
ticles. On the other hand, more ambiguity can be rectified with
an abundant number of particles. Thus, there is a clear trade-off
between the number of particles and accuracy.

However, the noise is added to the system first, while evaluating
the particle relocation (see Fig. 7) with an abundant number of
particles. The various noise levels that are used in the experiments
are quantized in Table 2. As mentioned earlier, stride length noise
and heading noise for the dead-reckoning approach is introduced.
The distance noise n has been predetermined to be 3s, where s is
stride length. This measure is retrieved from the floor plan and can
slightly vary for different indoor environments, depending on the
size of rooms and number of room entrances. The distance noise
resembles the radius of a sphere, which barely fits in the smallest
room on the floor plan (Room 7). It distributes the particles as much
as possible, without allowing too much leakage to the adjacent room,
in this example, Room 8. The noise added is uniformly distributed.
The use of a specific probability distribution is deliberately avoided,
to maintain the independence of the particles from one another, and
thus avoiding artificially forced particle convergence. The noise
is chosen in relation to a person’s stride length s. Average stride
length has been found to be about 75 cm, though it mostly varies
based on the height of the user.

Fig. 10a summarizes the localization accuracy against various
noise levels. Though, there is no observable clear trend, the per-
formance seems to reach the peak around the noise level of 75 %.
After this, the performance seems to decrease with higher noise
levels. This could be caused by the enlarged space due to noise for
the heading angle getting, as well as stride length varying too dras-
tically between particles. Data suggests that it cannot be concluded
with certainty, that the noise levels below 75 % are not entirely un-
suitable. However, it was decided to use said noise level as default
for all the evaluations.

When testing accuracy of the localization process with respect
to the number of particles it could be concluded from Fig. 10b that
at least 300 particles are necessary to provide good accuracy. This
value may vary depending on the factors such as the average room
size of the indoor environment and the number of rooms and also
distance between entrances of rooms. However, for all experiments,
a number of 300 particles ware adopted. This is selected using
multiple experiments with varying number of particles. We found
300 particles as the minimum number to find room level accuracy,
which also decreases the number of computations on the handheld.

5.3 Bluetooth communication

As communication incurs significant energy consumption, a less
frequent packet transmission would be energy efficient. However, it
may severely impact the localization process. To study this impact,
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Figure 10: Particle filter optimization.

Table 3: Accuracy Table 4: Energy consumption by
v/s communication. various system components.

Packets | Accuracy Activity Current
missed Bluetooth connection 10 uA

0 91.20 % Handheld accelerometer | 3 yA

1 74 % Wearable accelerometer | 3 pA

2 66 % Wearable magnetometer | 100 ypA
3 <50 % Transmit packet 2pA

we sent packets with larger intervals, i.e., instead of sending packets
at every step detection, a packet is sent every second, third and
fourth step. This provides incomplete information. Though the
system continued to perform reasonably well for missing every
second step in the corridor (Rooms 0 and 9), it often misses the
smaller room. The accuracy further degrades with more missing
steps as it is summarized in Table 3.

The results signify that even if steps missed once in a while,
it would not introduce an unrecoverable error. In fact, the RSS
based calibration aids such scenarios when packets are lost or steps
go undetected, as it calibrates the particles onto the most recent
distance. Decreasing communication rate by default is not advised
as it decreases accuracy accordingly.

5.4 Hand-off

Switching from standalone mode to joint mode is crucial, because on
handoff, the particles are projected into the heading direction of the
user. If projection happens in the wrong direction with respect to a
specific room where handheld is with multiple exits, where recovery
will not happen unless the user returns to the room having the
handheld. The evaluation of handoff mechanism has been evaluated
and shown in Fig. 9. It uses the transfer accuracy through an exit
from the handheld room to an adjacent room. This transfer was
successful in 97 % of the cases. Handoff accuracy directly contributes
to the overall accuracy within 10 m of range from the origin room.

Averaged component power consumption of the hardware con-
figuration is summarized in Table. 4. It is important to note that
maintaining the Bluetooth connection also enables gathering RSS
values. Handoft mode offers possibilities to save energy, consider-
ing that the sensors are significantly more energy demanding than
the energy necessary to maintain a Bluetooth connection.
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Figure 12: Energy consumption of wearable.

To evaluate the room for energy saving further, Fig. 11 presents
three scenarios in which a user switches between the standalone,
joint and neutral localization modes. Each time standalone mode
makes up 47.3 % of the overall duration of the scenario and joint
mode makes up 52.7 %. The absolute duration of the scenario is one
hour. In Scenario 1, both these modes are active continuously. In
Scenario 2, a handoff takes place when mode changes. In Scenario 3,
the handoff is complemented by the neutral mode, which is during
the time between the other two modes. That means 34 % of the
entire duration is in neutral mode, which corresponds to 65.5 % of
the time joint mode should have been active. The results in Fig. 12
suggest that there is a benefit due to the handoff mechanism. If the
wearable would be active throughout as in Scenario 1, the energy
would deplete about twice as fast as with separate modes for joint
mode and standalone mode as in Scenario 2. Scenario 3 shows the
benefits of the handoff mechanism and the localization neutral
mode, which decreases energy consumed even further compared
to Scenario 2.

6 CONCLUSION

Indoor localization is an important enabler for pervasive IoT ser-
vices. As handhelds are generally not carried continuously in non-
public indoor environments, the necessity for a wearable-based
localization system arises to enable smart indoor applications. Ex-
isting methods are heavily tuned for the handhelds with respect
to requirements of sensors, processing capability, and energy. This
work presents a distributed system, called PErvasive Localization
Engine (PELE), that jointly uses a handheld and a wearable device. It
uses two modes of operation. In standalone mode only the handheld
is used for localization. Once the user leaves the handheld behind,
the joint mode is triggered, where the user is localized relative to the
handheld using a common BLE connection. PELE uses a particle fil-
ter that fuses information from dead-reckoning and distance-based
calibration. Additionally, the handoff mechanism of PELE optimizes
the sensing and processing on the devices. The system achieves a
localization accuracy of 90.3 %, and handoff reliability of 97 % along
with energy savings up to 50%.
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