Device Microagent for loT Home Gateway

A Lightweight Plug-n-Play Architecture

Dhiman Chattopadhyay
Tata Consultancy Services
Kolkata, West Bengal, India

dhiman.chattopadhyay@tcs.com

ABSTRACT

Smart home implementation in IoT involves practical challenges
of management and scalability of connecting various non IP end-
devices i.e. sensors and actuators behind the connnected home
gateway.While there are separate standards for interaction between
IoT service to home gateway and gateway to variety of end-devices
there remains disconnect regarding how this two ends meet in
an adaptable and scalable way. In this paper we present an light-
weight,loosly coupled architecture for IoT smart home gateway
whereby end-devices can be added dynamically on the gateway
without disrupting long haul communication between IoT cloud
service and gateway.The gateway agent exchanges data through
sensor-block or actuator-block with end-devices via device microa-
gents and the protocol specific read-write task is offloaded to indi-
vidual device microagent. This hybrid approach to integrate MQTT
pub/sub flexibility with LWM2M RESTful adaptability results in a
design of plug-n-play modular agent architecture for home gateway
management in IoT applications.

CCS CONCEPTS

« Computer systems organization — Embedded systems; Sen-
sor networks; Sensors and actuators;

KEYWORDS

Microagent, Sensor-block, Actuator-block, LWM2M, MQTT, JSON,
TCUP

ACM Reference Format:

Dhiman Chattopadhyay, Abinash Samantaray, and Anupam Datta. 2017.
Device Microagent for IoT Home Gateway. In Proceedings of Advances in IoT
Architecture and Systems, Toronto, Canada, June 2017 (AIoTAS’17), 8 pages.

1 INTRODUCTION

Internet of Things (IoT) bridges the physical world with the dig-
ital world by connecting various devices to facilitate data collec-
tion,analysis and actuation for specific action [4]. Smart home is
an usecase in IoT where home devices are connected to the in-
ternet and remote users can get device status and send command
to devices. Inside a smart home various end-devices like tempera-
ture controller,energy meter,smart bulbs are connected to a home
gateway which in turn communicates with the backend IoT ser-
vice hosted in cloud. The end-devices,sensors or actuators, interact
with home gateway over various short-haul protocols like Zigbee,

AIoTAS’17, June 2017, Toronto, Canada
© 2017 Copyright held by the owner/author(s).

Abinash Samantaray
Tata Consultancy Services
Hyderabad, Telengana, India
abinash.samantaray@tcs.com

Anupam Datta
Tata Consultancy Services
Kolkata, West Bengal, India

datta.anupam@tcs.com

Z-Wave, BACnet, Modbus, UPnP, Serial [13] ; and the gateway is
connected to the IoT cloud over a TCP/IP based long-haul protocol.
Device modelling plays an important role in cyber physical sys-
tem (CPS) to capture device or sensor characteristics into software
mapping,here semantics and constraints are also captured. This
research [5] describes a comprehensive seven layer model of sensor
for interoperability and one usecase on such comprehensive sensor
modelling for smart meters is explained in this paper [7]. How-
ever this sensor model does not address the modeling of multiple
heterogeneous sensors behind the home gateway. Device Manage-
ment(DM) is the mechanism through which an authorised user
can remotely set device parameters, query device details, capture
device data, conduct troubleshooting, install or upgrade software
in devices. For smart home scenario DM is required to manage the
home gateway as well as the end-devices behind the gateway.

1.1 Evolution of DM Protocols

Initially device manufacturers developed propreitary mechanism
for communication and management of their devices. Gradually
standards evolved to ensure uniformity and interoperability and
some of these gained traction in industry.SNMP emerged as stan-
dard for management of network equipments. Then telcos and
broadband service providers introduced a protocol TR69 for man-
agement of broadband routers and cable modems. Next OMA DM
emerged as the device management standard for mobile devices.
To cope with the constraints of M2M device Open Mobile Alliance
(OMA) introduced LightweightM2M and major industry players
are backing it. MQTT is another lightweight protocol emerging as
a popular protocol in IoT. While OMA has already come up with
LightweightM2M standard some useful features (like gateway man-
agement object) of OMA DM standard were left out as redundant.
However that resulted in some limitation in gateway management.
So there is a need for scalable lightweight DM agent for gateway to
interface heterogeneous sensors data in a protocol agnostic manner.
Let us look at major DM standards to understand the evolution
of device management and identify the implementation challenge
from gateway perspective.

1.1.1 SNMP. Internet Engineering Task Force(IETF) has defined
Simple Network Management Protocol(SNMP) for managing IP
connected devices like routers,printers,switches etc.SNMP is an
application layer protocol that operates over IP or UDP defining
set of interfaces for network management,a data model and a set of
data objects.SNMP exposes management data in device side agent
in the form of objects to describe the system configuration. Device
agent talks with Network Management Server(NMS). The device
can be queried and updated by managing applications.The device

AloTAS’17, June 2017, Toronto, Canada

data model is called Management Information Base(MIB) that forms
hierarchic namespace consisting of Object Identifier(OID) and each
OID is associated with a device parameter.Operation supported are
get ,set and trap notification.

1.1.2 TR69. Broadband Forum’s TR69 standard is another ap-
plication layer protocol based SOAP over HTTP. Communication
between Customer Pemise Equipment(CPE) and the server Auto
Configuration Server(ACS) based on CPE WAN Management Pro-
tocol(CWMP). Different phases in TR69 device lifecycle are pro-
visioning, authentication, service activation, software update and
remote monitoring. This protocol supports devices behind router
through NAT using STUN protocol.The standard defines the data
model and operation interfaces

1.1.3 OMA DM. OMA Device Management(OMA DM) protocol
is based on client server architecture where devices act as client
and communicates with DM server that interface between users
and devices. The device agent comprises of device resources like
static or dynamic device parameters, configurations, actions, alerts
etc. OMA DM models the device as a set of resources in the form of
a hierarchial tree and exposes RESTful management objects to the
DM Server. DM client is made up of different resource groups called
Management Objects (MO) facilitating specifics for the management
of devices.OMA DM defines data model of various management
Object like Device, Firmware, Location, Server, Access Control etc.
OMA DM uses HTTP as transport and uses SyncML format for
data exchange OMA DM Gateway Management Object(GwMO) [1]
provides a mechanism for OMA DM framework to manage end-
devices/sensors connected to a gateway where direct connections
between server and end-devices do not exist due to non existence
of publicly routable address for devices as devices may be placed
behind a firewall.Three types of management modes are supported :
(a)Transparent Mode where the DM Gateway assists the DM Server
in forwarding a server message to the end-devices connected behind
gateway (b)Proxy Mode where the DM Gateway,on behalf of the DM
Server, acts as intermediate manager for end-devices over OMA DM
protocol (c)Adaptation Mode where the DM Gateway,on behalf of
the DM Server,manages end-devices over non OMA DM protocols.

1.1.4 OMA LWM2M. OMA introduced Light-weight Machine-
to-Machine(LWM2M) standard which follows a client-server ar-
chitecture [2]. LWM2M uses the Constrained Application Proto-
col(CoAP) over UDP [12] as underlying trasnport protocol. CoAP
follows a HTTP like RESTful architecture and similar status codes
but consumes less resources than HTTP.Thus CoAP is a better
choice for constrained M2M devices that are less resourceful in
terms of CPU, memory footprint, power and bandwidth[17]. LWM2M
has also standardized CoAP-HTTP proxy as a bidirectional transla-
tor between two protocols. LWM2M client i.e. device agents commu-
nicate with DM server over CoAP and DM service exposes HTTP
RESTful API for device data consumption or sending back com-
mands to device. LWM2M client hosts a tiny CoAP server and each
property of a device is modeled as a CoAP resource and similar
set of features are grouped under a LWM2M management objects.
CRUD operations can be performed on the management objects and
resources of device. Eight normative objects are defined in LWM2M
which are LWM2M Server Access Security, LWM2M Server, Access

Chattopadhyay et al.

Control, Device, Connectivity, Firmware, Location and Connectiv-
ity Statistics. However developers can add their custom object and
resources. LWM2M supports DTLS as transport layer security.

1.1.5 MQTT. Message Queue Telemetry Transport (MQTT) pro-
tocol is an ISO stardard and MQTT v3.1.1 is part of OASIS specifica-
tion. MQTT works over TCP and resembles a hub and spoke model
where every participant, devices or applications,are connected with
a message broker [14].MQTT is a lightweight protocol ideal for IoT
due to lower consumption of battery and bandwidth than HTTP
[20]. Any participant can publish to the message broker with spe-
cific topic and similarly can subscribe to any topic as well. As soon
as a message gets published into the broker all subscribers, listening
on that topic, will automatically get that message. Moreover MQTT
allows topic hierarchy and allows multilevel(#) or single level(+)
wildcards for subscription for multi-pattern or single pattern of
topics. Published events can be durable or nondurable while QoS
for MQTT can be defined at three level - fire and forget,at least
once(default) and exactly once. MQTT-SN is a variation for MQTT
for non IP embedded devices or sensors. There are implementatio
to bridge both MQTT with REST for IoT [9].In IoT MQTT is used
as the underlying backbone for targeted data exchange where de-
vices can publish their data with defined topic and the application
listening for those device topics will automatically get the data.
Similarly any command intended for the device can be published to
that device from application end via same pub-sub mechanism. Kim
et al. presented a MQTT based device management [15]. MQTT
brokers has configuration option for password based authentication
through TLS/SSL to ensure security. However there is a limitation
in maximum number of topics a single MQTT broker can support;
so one MQTT broker may soon run out of topics in a city wide IoT
deployment thus needs clustering to scale up.

As the 10T is becoming a protocol jungle there will be different
school of thoughts on choice of protocols. However each is having
its own pros and cons thus "one size fits all" approach does not
hold true for all IoT use-cases. Hence OneM2M partnership came
up with an inclusive approach to form alliance among different
standardization bodies for coordinating and avoiding duplication
of concepts. As IoT developer and system integrator we need to be
judicious for optimal adoption of the standard(s) based on scalability
and flexibility.

2 TCS CONNECTED UNIVERSE PLATFORM
OVERVIEW

TCS Connected Universe Platform(TCUP) is a Platform as a ser-
vice (PaaS) offering for IoT solutions across verticals [19]. TCUP
provides a multitenant platform offering essential IoT services like
Sensor Data Management, Device Management, Message Routing,
Complex Event Processing, Task, Analytics and Visualisation mod-
ules as loosely coupled building blocks for developing IoT solutions.
TCUP services can be hosted on either in-premise private cloud (like
Openstack) or commercial public cloud (like AWS or Azure).Each of
the TCUP services exposes their RESTful APL The authentication
and authorisation for TCUP access is controlled by tenant key. All
RESTful API calls pass through the API gateway that does authen-
tication, authorization and rate control. Figure 1 shows TCUP high
level architecture. TCUP is used in IoT applications across various

Device Microagent for loT Home Gateway

& Y

/

LU [MANAGEMENT D= —
s hoex | il \

N} !i DEVICE AGENT / g —
- S, A
757 7/ - S it / DEVICE Message Routing APPS \\ E

/ MANAGEMENT &Ru\evEngme

\ /

\ 2

itps) tp, udp,matt, OPC-UA, Modbus Continca 0 @
|12 »
)

GATEWAY DEVICES

LwM2m

MOBILE DEVICES CLOUD SERVICES

Things with Embeded Sensors

Figure 1: TCS Connected Universe Platform.

industry verticals like campus energy consumption monitoring,bus
fleet monitoring, smart window shade control,smart mediacentre
control,remote device test automation,surveillance solution [6] etc.

2.1 TCUP Device Management

TCUP DM follows OMA LWM2M standard based client server ar-
chitecture where the device runs the LWM2M client and the DM
server hosts the LWM2M server. Figure 2 shows Device Manage-
ment Service(DMS) high level architecture. CoAP stack with COAP
HTTP proxy forms the core LWM2M enabler of the DM server.Rest
layer and data persistence layer sits on top of core LWM2M stack
and LWM2M server with a REST layer forms DMS. PostgresSQL
RDBMS is used for data persistence. A DM user is a registered
device owner and a member of an active tenant of TCUP platform.
Every device user is given a user credential and a DM user key
plus TCUP tenant key,these need to be passed on with every DM
RESTful API call for user authentication.Device portal is a web
application consuming DM RESTful services. The DM user can
view on device portal all devices registered against the user key.
DM agents are run on edge devices to register those with the TCUP
DMS. The events from any device observable resources ,like sensor
data, are posted to the DM. DM forwards the traffic to Sensor Ob-
servation Service module via Message Router service which acts
as a broker. This makes TCUP modules loosely coupled to ease
integration of device data with any third party application.One of
the challenge in LWM2M implementation is to keep the NAT alive
to access devices behind network routers,we achieve it by sending
periodic heartbit from device. There is an optional OTA update mi-
croservice component that facilitates over-the-air update of device
software. That requires running an OTA daemon on device that
can intercept any update request and invoke callback function to
download patch,check integrity of downloaded patch,install and
reboot. Obviously the implementation varies based on platform
and operating system. Following processes define major device life
cycle phases in TCUP DM as per OMA LWM2M.

2.1.1 Bootstrap and Registration. Bootstrap operation is used to
provision DM agent with the bootstrap information i.e. DM server
access details (like URI, access security object) in order to register

AloTAS’17, June 2017, Toronto, Canada

Sensors Gateway Agents Device Agents
Q.
™ Protocol

Adaptors -
& LWM2M diient LWM2M diient

o000

I T>00

GOAP Hip proxy

—l il coaP stack
e RE i

= LWM2M server core
Pary Client %,
Aops i I

DM server

—— Pl -_
ht& P +y TCUPDMRESTUWebServie | —
E T way I Router

[
Database Access Y
DM Portal layer Cache
1

(=,

Figure 2: TCUP DM Service highlevel overview.

Bootstrap Server

Device

1: bootstrap reglepn, bs access obj)
1.1: hootstrap info(ri uri, S ace sec)

1.1.1: Registration req(sruri shr act sec,ach

|

1010 reg copfirmi)
T

- —

Figure 3: Sequence diagram for Bootstrap and Registration.

with the DM Server.Bootstrap mode can either be factory burn
of bootstrap information into device for client initiated bootstrap
or server discovery boostrap.In TCUP DM we follow client initi-
ated boootstrap where new device initially connects to a bootstrap
server to get bootstrap information comprising of Server account
information and Server access security object for registering with
DM server.

Registration process commissions a new device with the DM
server,which is notified about the new device ID, IP and its resources
along with access control list (ACL) which defines permissible op-
erations on device resources. The protocol also ensures automatic
registration update known as reregistration for sending periodic
update of device IP and resources to DM server. Bootstrap and
registration process is shown in sequence diagram 3.

2.1.2 Device Query and Update. This process supports configu-
ration setting,parameter reading and connectivity status query. The
query may be group level query or individual query on devices. This
process also facilitates dispatching and executing user commands
like reboot,lock device through DM service call. Developer needs to

AloTAS’17, June 2017, Toronto, Canada

sd SeqDia_GetPutResource

| Database | | Device |
T T

| DM senice |

APICaller T
! !

T
| I I
1: Get Devicelresourced) | | |
1.1: Get Devires() 5 | | |
- N 1.1.1:Get ohj/oby instres(y al
| tesouks Valus tlT‘
| 7 valug) <

I I

T I I

21 update device record in DB |
T

I /ﬂ I

I I

L |

| LIAIZM server |

3 Put Devicelresource()

I
1 3.1:Putobjohjinstires)
a Putndj/nm instires() Y
I f

l status :I:l
| 31.2: status() ommm = ‘P— ___________ :
: 3121 Update devigehesource in DB |
I |

|
I

Figure 4: Sequence diagram for Query and Update of re-
sources.

sd SeqDia_Notification

| DM Rest senice | | LIWM2M server |
APICaller T T

| Database | | Device |

|
|
|
|
m Pul Devicelresisubseripidh)

1: Bubscription request fdevire:

it rest AP1 T
slatus

K~ T idervaia) |

,,,,,,,,,,,,, I

2 nmmtatmn[newva\ue) |

2.2 update record() coap N
s LTS
‘ 3

alug)
3.2 update record(1

|

|

|

I

I

I

I

|

‘ \
| 4 nofification alug)
|

I

I

I

|

|

|

31: updated value(

|
| 4.1 updated value(12 update rcard) |
[5unsubseribe resource) o | 51 0o3p unsThseription l\
1
,,,,,,,,,,,,, e
P T | |

Figure 5: Sequence Diagram for Subscription Notification.

write callback function to implement actual operation triggered by
command. Following sequence diagram 4 shows device read and
write process.

2.1.3 Observe Notification. The process enables event subscrip-
tion mechanism to opt-in and opt-out for notifications from observ-
able resources. Automatic notifications will occur from device to
DM server either on a value change or on satisfying a condition
like crossing a threshold. Further the events may be forwarded to
a message queue to be processed by other applications. Following
sequence diagram 5 shows observe notification process.

Chattopadhyay et al.

CoAP resources with Get/Put handler

I |

LWM?M device SDK
library

protocol adapter H H
‘ JRE 1.7 or above ‘

I

‘ Operating System ‘

sensor interface

Figure 6: TCUP DM agent highlevel block diagram.

2.2 TCUP DM device agent

A device runs DM agent that registers with DM server. DM agent is
basically a LWM2M client that hosts a CoAP restful resources.Every
device parameter can be modeled as a CoAP resource. So resources
may be static (like IMEI etc.) or dynamic (like free RAM, sensor read-
ing etc.), certains resources (like address) may be editable through
rest interface based on the ACL permission. Object is a logical
grouping of similar type of resources - for e.g. location object
comprises of latitude, longitude and altitude resources.Any DM
resource can be made observable for automatic notification of the
resource value. A resource serves its read write request through
its GET/PUT handlers. Every resource serves query or update ser-
vice call by its GET or PUT handlers respectively. Once a device is
registered users can log into DM portal to view devices;all device
resources are listed under different tabs, namely Device, Hardware,
Software, Location, Sensor and Custom. User can read device pa-
rameters, update editable parameters, send commands to devices
and subscribe for automatic notification from dynamic resources
like sensors. These functions are executed through DM RESTful
APIs which are consumed by the DM portal and any other appli-
cation consuming device data. Figure 6 depicts TCUP DM agent
high level block diagram. However the limitation with present DM
agent architecture is that customisation is required with any ad-
dition of new end-devices as corresponding new resource needs
to read from different sensors over their native protocols.However
plug-n-play implementation exists in other protocols like UPnP to
allow discovery and joining of new entrant in peer to peer commu-
nication. Even LWM2M predecessor OMA-DM standard supports
GwMO concept where OMA DM server maintains hierarchical tree
of gateway management objects for end-devices connected behind
the gateway and GwMO interacts with devices for management;
any change is handled through change in GwMO adapters and the
protocol supports dynamic alteration of those GWMO. However
LWM2M lacks GwMO support. There is a scope of improving the
LWM2M gateway agent for connecting end-devices in a lightweight
but protocol agnostic manner.Next section describes our proposed
architecture where plug-n-play flexibility is achieved for run-time
onboarding of end-devices.

Device Microagent for loT Home Gateway

3 PROPOSED ARCHITECTURE - DEVICE
MICROAGENT

Our proposed architecture tries to bring in plug-n-play flexibil-
ity for dynamic onboarding of end-devices into LWM2M gateway
agent.Resource constraints in IoT forced our choice to lightweight
protocols. XMPP is ruled out because of its similar overheads like
HTTP. Sheltami et al. described how publish subscribe model is
successfully used in wireless sensor networks [23]. MQTT is more
lightweight than AMQP or STOMP because it draws less power and
consumes less bandwidth [26]. As the proposed gateway agent ar-
chitecture is designed by adding a message broker, MQTT is chosen
as the pub-sub backbone beneath a LWM2M stack that offers REST
interface over CoAP ,another lightweight protocol.Our earlier work
[8] proves that CoAP consumes only 10% of bandwidth of HTTP to
transmit same data. To avoid tight coupling between device resource
and end-device a loosly coupled agent architecture is presented
where a gateway reads or writes through a sensor-block or actuator-
block to group of end-devices via microagents. A sensor-block is
formed by aggregated list of sensors,similarly an actuator-block is
aggregation of actuators. The gateway LWM2M agent hosts CoAP
resource for respective sensor-block or actuator-block that will
communicate only through an uniform payload structure using a
data serialization format like XML, JSON, EXI, CBOR, BSON etc.
The sensor-block payload is produced or consumed by individual
end-device MQTT clients called DM microagent.The sensor-block
payload can be published or subscribed through the microagents
connected via MQTT broker.Thus there is no direct sensor interac-
tion from gateway resource’s GET/PUT handlers. Figure 7 shows
highlevel architecture of proposed gateway agent with microa-
gents. Microagents read the individual sensor data and publish on
defined topics which are subscribed by sensor-block resource and
vice versa. MQTT plays the role of intermediate message broker
between sensor-block resource and end-device microagent adapters.
The routing of published or subscribed events on MQTT is gov-
erned by topic ; so new MQTT topics for additional end-devices
can be fed into the gateway agent though DM service to tell agent
to listen for new topics. Every query or update call on sensor-block
or actuator-block resources reaches GET/PUT handler of respec-
tive resource. For reading sensor value the sensor-block resource
GET handler subscribes to topic reading/sensor/# on the MQTT
broker,where sensor data is published on topic reading/sensor/id
by different microagents actually reading the sensor values. For
sending command to device the actuator-block resource PUT han-
dler publishes command payload on topic control/type/id to MQTT
broker. Corresponding actuator microagent subscribes to topic con-
trol/+/id to get the command and execute. Sensor-block or actuator-
block resource may serve multiple microagents by treating set of
sensors as one composite resource; communication with each sen-
sor is achieved by parsing and iterating through the composite
payload schema of sensor-block . The composite payload is exten-
sible as the sensor-block data will grow further with inputs from
additional microagent. The topics can vary based on the usecase.
The IoT application can read sensor-block or write actuator-block
payload through DM service,the parsing of individual values or
constructing the composite payload is responsibility of IoT appli-
cation. Customization is not required in LWM2M gateway agent

AloTAS’17, June 2017, Toronto, Canada

LWM2M client

@
2 ——
g sensor-
| Sensor-block —
% R1| | R2 CoAP reemur::e! block 'TA updater
‘é process
=
= }
@ I
g pub sub

Lightweight MQTT broker

sub 1 pub sub 1 pub sub Il pub sub pub
energy-meter smart-bulb ‘ |smart-switch ‘temperature
microagent1 micro-agent \micro-agent |micro-agent

rmdhusi ngee* seria\I BAEEet
enérgy-meter Smart-bulb smart-switch emperature

Figure 7: TCUP DM Microagent architecture.

while adding a new microagent suffice to support a new sensor or
actuator i.e. end-device. Additional microagents can be deployed
through TCUP OTA update module. The advantage is decoupling of
individual sensors or actuators access from gateway LWM2M agent
as the job of interfacing and processing sensor values is offloaded
to microagents. Generally sensor event lister libraries are event
driven in nature the microagents also work in event driven manner.

Device management in other popular IoT Platforms are either
based on MQTT (like Amazon IoT,Azure IoT,IBM Watson) or CoAP
(like ARM mbed IoT ,Siera Wireless Airvantage)While MQTT
offer pub/sub flexibility CoAP is ideal for command triggering.
MQTT performs better in latency while CoAP excels in bandwidth
requirement[25]. Our architecture is unique as we try to lever-
age the best of both lightweight protocols.Here device to cloud
communication is over CoAP unlike the ESR proposal of LWM2M
over MQTT [10] as we want to retain request/response RESTful
architecture along with pub/sub flexibility.

However addition of MQTT broker increases load on gateway
computation resource, but considering the availablity of memory
and CPU power in modern rugged gateway like Eurotech Relia-
GATE this is not a bottleneck. Practically the number of end-devices
in a smart home is not large, so MQTT broker clustering is not
required in home gateway.

A sample sensor-block json payload is listed below :

{

"sensor-block": [{
"topic": "reading/temperature/tem101",
"protocol": "zigbee",
"unit": "cel",

"ts": 1491462377641,
"value": 24.3,
"datatype": "float"
}
]
3

A sample actuator-block schema is shown below :

{

AloTAS’17, June 2017, Toronto, Canada

"actuator-block": [{
"topic": "control/light/1t103",
"protocol": "zigbee",
"ts": 1491462378627,
"command": {
"instruction": "off",
"param" : "nil" }
}
]
}

Payload schema may extend and evolve to be more generic structure
encompassing various sensor parameters based on type of sensors
or actuator used.Intelligent design of this uniform payload schema
will minimise the development effort at the microagent level.

3.1 Choice of Technology

Choice of MQTT broker is decided based on three criteria lightweight-
ness,performance and openness.Two popular open source MQTT
broker Mosquitto and Emqqtd are written in C and Erlang respec-
tively. This study [3] shows that C based Mosquitto is the fastest
among peers. A stress test study of Mosquitto [27] shows it can
handle at least 20k concurrent connections at a speed of 7000+
events per second consuming just 12MB of RAM on a single core
2.1GHz 4GB virtual Ubuntu server on VMWare. There is an upper
limit of number of topics that can be supported by one Mosquitto
instance(typically over 100K),however there will not be scaricity
of microagent MQTT topics in a home gateway as number of end-
devices in a smart home can not run into thousands.There is no
question of network lattency between MQTT broker and LWM2M
agent as both runs on same host i.e. gateway. Choice of data serial-
ization format is a debated subject in IoT [24]. ETSI M2M prescribed
format JSON is adopted in our first implementation as the most
popular format.Selection of JSON parsing library is based on perfor-
mance benchmark survey [22] where Jackson,a popular Java JSON
library,emerged as a top performer; so we selected Jackson in our
microagent software stack.

3.2 Performance Estimation Model

There is not many performance prediction model in IoT DM how-
ever a research is done on sensor data storage[11].Our proposed
architecture has two major layers - LWM2M stack working on
request/response principle and MQTT based microagents work-
ing on pub/sub fashion. S. Oh et al. published an mathematical
model [21] to estimate performance impact for pub/sub vis-a-vis re-
quest/response model. Assuming event generation and consumption
follows Poisson process pub/sub round trip time (RTT) approxi-
mately equals the pub-sub cost per event generated.We assume
same cost analysis holds true in our MQTT layer. For the LWM2M
part a performance estimation model may be conceptualized as a
hypothesis describing the factors that impact the response times.
We apply queueing theory to estimate a relationship between the
response time for LWM2M requests and the number of concurrent
Rest requests (GET/PUT).Assuming a steady state queue Little’s
law can be applied in the performance measurement as per the
following formula : [18]

Chattopadhyay et al.

N = TP« (RT + TT), 1)

where N is the number of concurrent request, TP is the through-
put, RT is the response time, and TT is the think time.

TP is dependent on computing capacity of the home gateway and
load on the gateway. The relationship between response time and
the number of clients may be assumed to be a non-linear function
like a simple M/M/1 open queuing model:

RT = ST + QT = ST + (ST * u/(1 —), @)

where RT, ST, and QT are the Response Time (RT), Service
Time(ST) and Queue Time (QT), respectively, and u is the utilization
of bottleneck computing resource that serves the web request . The
response time increases exponentially due to lack of resource as
the utilization of this resource approaches its full capacity limit.
Kingman’s formula can be used to estimate QT [16]. Now in our pro-
posed architecture ST is also dependent on latency due to message
publishing and subscribing by microagents plus the sensor-block
payload processing overhead k which will be constant for a given
payload schema.So time delay between event occurrence and noti-
fication to subscriber equals to (p+s) where p is latency for publish
and s is latency for subscribe of sensor events.If we assume prob-
ability of publishing of any event e is P(e) then modified service
time can be estimated as :

ST = ST + (p + s + k) = P(e). (3)

We can assume event publishing is a Poisson process to calculate
P.So that results modified response time as :

RT’ = ST + (ST” * u/(1 — u)). (4)

Obviously this model holds true on assumption of a steady state
system with all microagents are working;if any microagent is down
it should be restored immediately.It can further evolve factoring
different constraints and conditions for more accurate estimation .

4 EXPERIMENTAL RESULTS

Our experimental setup contains a test gateway running on a single
core,1GB RAM atom board running on Ubuntu 12.04, MQTT broker
Mosquitto is installed on the gateway setting QoS 0 and retain
flag as false TCUP DM agent runs on atom gateway which com-
municates with three sensors namely temperature,humidity and
light sensor over XBee, also an USB thermometer(RDing TEMPer)
connected. An Arduino Uno is connected to gateway over serial
port and a LED,as an actuator, is connected to GPIO pin of Arduino.
Separate microagents are deployed on gateway for each individual
sensor or actuator. Each microagent is written in Java using Paho
MOQTT client.DM server is hosted in same local network to elimi-
nate network latency factor. DM service is running on a Spring4
Java Enterprise web application hosted on Apache Tomcat 8.24 and
Oracle JDK7. Performance metric of DM service on Get/Put API is
obtained running Apache Jmeter 2.13 and Perfmon plugin on a test
client The home gateway setup is depicted in figure 8.The hardware
configuration of the test setup is shown in table 1.

Device Microagent for loT Home Gateway

A Lo
HTTP W
REST A
e 2
[M
. T R -
@ = MQTT broker gateway
il e e] v 1L
A Y
LA R]
Performance tester [| | Vo
Apache Jmeter !

$ensor qommuhication |

T

Lo f:\
e o i®

Figure 8: Home Gateway Setup.

Table 1: Hardware Configuration of Test setup

Infrastructure Perf. test Client DM Server
CPU Core 1 2
Memory(RAM) 2GB 4GB
CPU speed 2.4GHz 3.6GHz
TXn/sec

Figure 9: Query via microagents : Transaction rate vs Con-
current request.

4.1 Througput

Following section shows throughput(transaction per second) results
for both query and update operation on aggregated sensor-block
data. From figure 9 for Get Sensor data we see as concurrent request
increases the througput initially increases but then it saturates
beyond a threshold of concurrent requests. This is due to reaching
the limit of computation capacity of the gateway. Similar is the
behaviour in of sending instruction to actuators as depicted in
figure 10. The througput is much lower than the read operation
as write involves more latency in command confirmation from
microagents.

4.2 Latency

Following section shows latency (response time) results for both
query and update operation on aggregated sensor data in 90% cases.
From figure 11 for Get Sensor data we see as concurrent request
increases the latency doesn’t change much initially but suddenly
increases beyond a threshold. This is due to exhaustion of compu-
tation resource of the gateway. Similar is the behaviour for sending

AloTAS’17, June 2017, Toronto, Canada

TXn/sec

Figure 10: Send command via microagents : Transaction rate
vs Concurrent request.

Response time (msec)90 %

Figure 11: Query via microagents : Response time vs Concur-
rent request.

Respanse time (msec)90 %

Figure 12: Send command via microagents : Response time
vs Concurrent request.

instruction to sensors as depicted in figure 12. The latency is much
higher than the read operation as write involves more computation
resource access. We can observe that GET API scales till 512 con-
current request whereas PUT call scales till 128 concurrent request.

5 CONCLUSIONS

In this paper we proposed a loosely coupled gateway agent where
gateway agent communicates with end-devices through microa-
gents. Gateway agents have LWM2M REST interface with MQTT
pub/sub backbone underneath and MQTT based microagents sup-
port dynamic onboarding of end-devices without disrupting gate-
way agent operations. Security hardening of MQTT broker needs to
be addressed during deployment. We also like to explore protocols
like AMQP instead of MQTT and BSON instead of JSON to compare
performance with this architecture.Implementation of event notifi-
cation for sensor-block and automatic discovery of end-devices are
our ongoing area of research.

ACKNOWLEDGMENTS

The authors would like to thank Prateep Misra, Soumitra Naskar
and Arindam Halder for providing their valuable feedback and also
thank Ritesh Ranjan for helping in performance test execution.

AloTAS’17, June 2017, Toronto, Canada Chattopadhyay et al.

REFERENCES 92-101,
[1] Open Mobile Alliance. 2011. OMA DM GwMO technical specifica- [14] IBM. 2013. Message Queuing Telemetry Transport - MQTT v3.1.1. https://www.

tion. http://www.openmobilealliance.org/release/GwMO/V1_1-20140617-C/ iso4org/s'tandard/69466‘.html. (2013).
OMA-TS-GwMO-V1_1-20140617-C.pdf. (2011). [15] S. M. Kim, H. S. Choi, and W. S. Rhee. 2015. IoT home gateway for auto-

[2] Open Mobile Alliance. 2017. OMA LWM2M technical specifica- configuration and management of MQTT devices. In 2015 IEEE Conference on

tion. http://www.openmobilealliance.org/release/LightweightM2M/V1_ Wirelfass Sensors (ICWiSe). 1.2717' . .
0-20170208- A/OMA-TS-LightweightM2M-V1_0-20170208-A.pdf. (2017). [16] J.F. Kingman. 1960. The single server queue in heavy traffic. Mathematical

Atilaneves. 2013. Go vs D vs Erlang vs C in real life: MQTT broker imple-
mentation shootout. https://atilanevesoncode.wordpress.com/2013/12/05/
go-vs-d-vs-erlang-vs-c-in-real-life-mqtt-broker-implementation- shootout.
(2013).

L. Atzori, A. Iera, and G. Morabito. 2010. The Internet of Things: A Survey.
Computer Networks 54, 15 (Oct. 2010), 2787-2805.

D. Chattopadhyay and R. Dasgupta. 2012. A Novel Comprehensive Sensor Model
for Cyber Physical System: Interoperability for Heterogeneous Sensor. In 6th
International Conference on Sensing Technology (ICST). 179-183.

D. Chattopadhyay, R. Dasgupta, R. Banerjee, and A. Chakroborty. 2012. Event
Driven Video Surveillance System using City Cloud. In 47th Annual National
Convention of Computer Society Of India (CSI 2012). Mcgrawhill.

Proceedings of the Cambridge Philosophical Society 57, 4 (1960), 902-904.

T. Levé, O. Mazhelis, and H. Suomi. 2014. Comparing the cost-efficiency of CoAP
and HTTP in Web of Things applications. Decision Support Systems 63 (2014),
23-38.

J.D. Little. 1961. A Proof for the Queuing Formula. Operations Research 9, 3 (1961),
383-387.

P. MISRA, A. Pal, C. BHAUMIK, D. KAR, S. NASKAR, S. ADAK, S. GHOSH, and
et al. 2012. A computing platform for development and deployment of sensor
data based applications and services. (2012). https://www.google.com/patents/
WO02013072925A37cl=en

S. Nicholas. 2012. Power Profiling: HTTPS Long Polling vs. MQTT with SSL,
on Android. http://stephendnicholas.com/posts/power-profiling-mqtt-vs-https.
(2012).

[7] D. Chattopadhyay, R. Dasgupta, and A. Pal. 2013. Sensor Data Modeling for . . .
Smart Meters — A Methodology to Compare Different Systems. In Proceedings of S Oh, J'H',Klm’ and G. Fox. 2010. Re_al—tlme Performance Analysis for Pub-
the 2013 International Conference on Computing, Networking and Communications lish/Subscribe Systems. Future Generation Computer Systems 26, 3 (March 2010),
(ICNC °13). IEEE Computer Society, 215-221. 318-323.) o o
(8] D. Chattopadhyay, A. Samantaray, and R. HariRaghav. [n. d.]. Lightweight F. Renaud. 2016. Performance testing of serialization and deserialization of Java
Device Task Actuation Framework as IoT Test Platform. In Internet of Things. JSON librarie§. hitps:// github.'com/ fabienrenaud/java-json-benchmark. (2016).
IoT Infrastructures: Second International Summit, IoT 360 2015, October 27-29, 2015, T. R Shelta'ml, AA. Al—Roubaley, and AS. Ma}hmoud. 2016. A Survey on Devel-
Revised Selected Papers, Part II. Springer International Publishing, 20-27. oping Publish/Subscribe Middleware over Wireless Sensor/Actuator Networks.
[9] M. Collina, G. E. Corazza, and A. Vanelli-Coralli. 2012. Introducing the QEST Wireless Networks 22, 6 (AUE- 2016), 2049_2079' .
broker: Scaling the 10T by bridging MQTT and REST. In 2012 IEEE 23rd Interna- A Sumfiray and AS' K. Maldki. 20,12‘ A Comparison of Data Serialization Formats
tional Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC). for Optimal Efficiency on a Mobile Platform. In Proceedings of the 6th International
36-41. Conference on Ubiquitous Information Management and Communication (ICUIMC).
[10] ESR Consortium. 2017. LWM2M over MQTT profile specification. http://e-s-r. ACM, 48:1-48:6.
net/download/specification/ESR030-LWM2M- MQTT- 1.0- A.pdf. (2017). D. Thar}gavel, X.Ma, A.C. Valeraf H.X. Tan, and CKY Tan. 2014. Performance
[11] S. Duttagupta, M. Kumar, R. Ranjan, and M. Nambiar. 2016. Performance Pre- evaluation of MQTT and CoAP via a common middleware. In 9th International
diction of IoT Application: an Experimental Analysis. In Proceedings of the 6th (Conf ere)nce on Intelligent Sensors, Sensor Networks and Information Processing
. . ISSNIP),Singapore. IEEE.
Xléiznit;ir;clzl Conference on the Internet of Things, IOT 2016, Stuttgart, Germany. VMWare. 2014 Choosing your messaging protocol AMQP,
[12] Internet Engineering Task Force. 2014. Constrained Application Framework - lc\f_l%:gng_;;ur_i:i?;ﬁg_Pmt0C01?;2:;{%2%:‘;1:122:;lgrlr/lrf(zl:)rlligz013/02/
CoAP. docs.oasis-open.org/mqtt/mqtt/v3.1.1/0s/mqtt-v3.1.1-0s.pdf. (2014). . f . o .
(13] C. Gomez and . Paridells.gZOIqO. Wigeless homme au?omation netvgorki: A szlrvey] R.Xia. 2015. Stress testing Mosquitto MQTT Broker. http://rexpie.github.io/2015/

of architectures and technologies. IEEE Communications Magazine 48 (2010),

08/23/stress-testing-mosquitto.html. (2015).

http://www.openmobilealliance.org/release/GwMO/ V1_1-20140617-C/OMA-TS-GwMO-V1_1-20140617-C.pdf
http://www.openmobilealliance.org/release/GwMO/ V1_1-20140617-C/OMA-TS-GwMO-V1_1-20140617-C.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_0-20170208-A/ OMA-TS-LightweightM2M-V1_0-20170208-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_0-20170208-A/ OMA-TS-LightweightM2M-V1_0-20170208-A.pdf
https://atilanevesoncode.wordpress.com/2013/12/05/ go-vs-d-vs-erlang-vs-c-in-real-life-mqtt-broker- implementation- shootout
https://atilanevesoncode.wordpress.com/2013/12/05/ go-vs-d-vs-erlang-vs-c-in-real-life-mqtt-broker- implementation- shootout
http://e-s-r.net/download/specification/ESR030-LWM2M-MQTT-1.0-A.pdf
http://e-s-r.net/download/specification/ESR030-LWM2M-MQTT-1.0-A.pdf
docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
https://www.iso.org/standard/69466.html
https://www.iso.org/standard/69466.html
https://www.google.com/patents/WO2013072925A3?cl=en
https://www.google.com/patents/WO2013072925A3?cl=en
http://stephendnicholas.com/posts/power-profiling-mqtt-vs-https
https://github.com/fabienrenaud/java-json-benchmark
https://blogs.vmware.com/vfabric/2013/02/ choosing-your-messaging-protocol-amqp-mqtt-or-stomp.html
https://blogs.vmware.com/vfabric/2013/02/ choosing-your-messaging-protocol-amqp-mqtt-or-stomp.html
http://rexpie.github.io/2015/08/23/stress-testing-mosquitto.html
http://rexpie.github.io/2015/08/23/stress-testing-mosquitto.html

	Abstract
	1 Introduction
	1.1 Evolution of DM Protocols

	2 TCS Connected Universe Platform Overview
	2.1 TCUP Device Management
	2.2 TCUP DM device agent

	3 Proposed Architecture - Device MicroAgent
	3.1 Choice of Technology
	3.2 Performance Estimation Model

	4 Experimental Results
	4.1 Througput
	4.2 Latency

	5 Conclusions
	Acknowledgments
	References

