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ABSTRACT
This paper addresses the issue of current Internet of Things (IoT)
development—the decentralized IoT model—in a manner of a peer-
to-peer network and interoperable IoT devices. This paper proposes
a new IoT software architecture, the Devify software framework,
to address the peer-to-peer IoT network and the interoperable IoT
device development. Besides, the work also shows through experi-
ments that an IoT application server can simply use the flow-based
programming (FBP) paradigm to define the application as a data ex-
change network. Therefore, the software architecture also provides
such FBP runtime environment for writing IoT application servers.
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1 INTRODUCTION
In recent years, the development of Internet of Things (IoT) ap-
plications has become increasingly complex. Thus, many studies
have attempted to address this problem by providing the ability
to stream IoT data to the IoT platforms over the web to simplify
the creation of IoT applications [13]. However, current existing
IoT platforms use the centralized model that they act as brokers or
hubs to control the exchanged data between IoT devices. Therefore,
many studies argue that IoT should use the decentralized model
to ensure secure data exchange and data privacy. Thus, this paper
proposes a decentralized IoT software framework to provide the
ability of secure data exchange between IoT devices autonomously
without any centralized server.

In short, the purpose of a new design for the IoT software ar-
chitecture is that we need a JavaScript programming framework
to support such full range hardware devices. Besides, the Devify
software framework implements the convergences of emerging
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Figure 1: The Devify Architectural Design

IoT trends: (i) the peer-to-peer networking for IoT devices, (ii) a
full-stack JavaScript software framework, (iii) the device interoper-
ability via REST-style RPC operations, and (iv) the use of the Web
of Things (WoT) and JSON-LD ontology.

The rest of this paper is structured as follows: we describe the
motivation of this work in Section 2, and subsequently study the
related work in Section 3. In Section 4, we introduce the proposed
software framework and review what technologies are adopted in
the software framework. In Section 5, we review the design and
implementation details of the peer-to-peer networks as well as the
way to address the problem of churn in peer-to-peer networks. In
Section 6, we propose the use of the flow-based programming (FBP)
paradigm to create the IoT application servers. In Section 7, we
show two Devify application examples. We conclude in Section 8.

2 MOTIVATION
The motivation of this paper is to develop a generic and compre-
hensive software framework for building various types of trust IoT
networks in a decentralized manner. Also, current IoT network com-
prises a variety range of hardware devices, such as cloud servers,
mobile devices, and resource-constrained devices (the heteroge-
neous IoT hardware devices); thus, the software framework must
be able to execute on all these hardware devices. Since the JavaScript
has become a significant technology in the popularity of IoT hard-
ware devices, this paper employs a 100% JavaScript implementation
for the software framework to support such IoT hardware.

Furthermore, the success of the decentralized IoT should attribute
the device interoperability and a peer-to-peer network; thus, this
paper will also address such technical challenges. In this work, we
attempt to build a generic software framework for future devel-
opments of decentralized IoT applications. Among the potential
decentralized IoT applications, the nature of the distributed ledger
technology (DLT) has a large opportunity to toward a more secure
and trusted IoT network. Therefore, we have already developed
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Flowchain [3], the blockchain for the IoT, to practically prove the
concept of this work.

3 RELATEDWORK AND ANALYSIS
FBP initially published by IBM in 1978 [7] has obtained amomentum
by extensively projects, such as Node-RED [8] and the NoFlo open
source project [9]. Also, several IoT platforms have emerged to ease
the development of IoT application by using an FBP paradigm. The
WoTKit [1] and Node-RED systems provide a platform that can be
employed in IoT application. The work [10] is another system to
apply the FBP paradigm to develop IoT applications.

Notwithstanding, most of these systems aim to provide FBP
development tools that they are not specific to facilitate the mi-
crocontrollers and embedded systems. Also, when building the
flow-based IoT applications, the IoT device requires an FBP runtime
to perform the execution of the application. Therefore, the MicroFlo
[6] runtime has proposed an implementation for microcontrollers
and embedded systems in which broader used for IoT devices. In
addition to an FBP programming framework, this paper provides a
light-weight FBP runtime for a verity range of IoT hardware devices,
from cloud servers to microcontrollers.

The use of broker services in a peer-to-peer network has subse-
quently been proposed to handle event-based communications for
the IoT[20]. Therefore, this paper also uses such broker architecture
pattern to manage sensory events in the peer-to-peer IoT networks.
In addition to managing events, this paper also proposes Virtual
Nodes built upon the broker services to manage connected wireless
sensors. We will address this issue in Section 4.2.

4 THE DEVIFY SOFTWARE FRAMEWORK
4.1 Overview
The WoT ontology provides a standards-based model to represent
a physical device as an IoT application server which runs on an
IoT device [11]. Therefore, the Devify framework adopts the Web
of Things ontology as the underlying layer along with a peer-to-
peer IoT network system to provide such standards-based model
to represent the physical IoT device as a physical object within the
application server. Figure 1 shows the first layer (the WoT layer)
attempts to utilize the WoT ontology and aims to provide applica-
tion protocols over the web, such as CoAP, and WebSocket. In the
Devify framework, CoAP and WebSocket are primitive protocols
bindings for a node. Devify uses CoAP for the application server
intended to run on resource-constrained devices, and WebSocket
provides the ability to facilitate real-time data transfer.

The broker server is the second layer that implements the peer-
to-peer networking, REST-style RPC operations, and a distributed
hash table (DHT). Moreover, Devify selects the Chord protocol
and algorithm, the technology originally published in 2001 by MIT
[14], for providing such DHTs. The broker server layer also aims
to simplify the creation of WoT application servers; thus, to be-
gin developing customized IoT application servers, several project
boilerplates can be downloaded through the Devify open source
project.

Besides, the WoT layer can make distribution possible by provid-
ing a service contract without exposing server-side implementation
details [16]. Thus, the broker server layer can efficiently encapsulate

the peer-to-peer and RPC technical details on the device side, and
provide the ability of devices interoperability by RPC operations
over the peer-to-peer network. Typically, the broker software ar-
chitectural pattern can be utilized to structure distributed software
systems with decoupled components that interact by such RPC
operations [2]. Thus, the broker server layer implements the broker
architectural pattern to hide such technical details.

Figure 2 shows that the Devify framework uses the Node.js and
V8 engines for a high-performance device, and the JerryScript [5]
for a resource-constrained device. As previously mentioned, this
design ensures the support of heterogeneous hardware devices.
Thus, the WoT can manage such variety range of physical device
as a Virtual Thing with Thing Properties.

In addition, figure 2 shows that Thing Description component
describes Thing Properties in the JSON-LD format. Consequently,
the WoT represents the Virtual Thing in URI convention, as such,
the URL Router component in figure 2 defines these URIs to repre-
sent the Virtual Thing. We refer a Virtual Thing as a node in this
paper. Moreover, the Request Handlers component accepts incom-
ing requests, receives data and triggers the application events. The
Things Data component in the WoT layer provides the Linked Data
and Semantic Web technologies to represent and manage IoT data
(described in Section 5). Moreover, the Data Composition compo-
nent is a significant design of the Devify software framework that
it can compose the IoT data with the endpoints, such as the cloud
platform, mobile apps, and web frontends. The Devify software
framework simply uses the forwarding technology to implement
the Data Composition component (described in Section 5).

4.2 The Broker Server
In this paper, we identify several common use cases that manage
emerging IoT models: (i) the application server on the resource-
constrained device, (ii) on the laptop, (iii) on the smartphone, (iv) on
the IoT gateway, and (v) on the cloud server. Besides, the use of the
broker architecture pattern extends these IoT models to the wireless
sensor network (WSN). Figure 3 shows that the Devify application
servers run on an IoT device, labeled as Broker A, Broker B, and
Broker C, are deployed as the broker servers to receive the time
series data continuous sent by wireless sensor nodes. For examples,
the Node-7 node is a wireless temperature sensor that it periodically
sends the temperature data to Broker C over the local area network
(LAN) with the CoAP protocol. Another example is that the Devify
application server is installed on a cloud server and receive real-
time sensor data over the web with the WebSocket protocol.

Furthermore, the broker architecture represents an IoT architec-
ture for ensuring the capability of handling million sensor nodes.
The broker server layer provides such broker server implementa-
tions.

MQTT, a frequently referenced IoT technology, is a publish-
subscribe-based lightweight messaging protocol for use on top
of TCP/IP. In MQTT networks, connected nodes are managed by
MQTT brokers. Also, MQTT brokers export their nodes for external
visibility. Unlike MQTT, the Devify broker server does not export
its nodes; it hides sensor nodes such that all nodes are internal and
not visible externally.
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Figure 2: The Devify Software Components

Figure 3: The Broker IoT Network Model

Figure 3 also shows that in the peer-to-peer networks, wireless
sensor nodes connected to the same broker are conceptually grouped
together with the broker server as a virtual node. In summary, a
virtual node comprises a broker server and its corresponding nodes.
In this manner, the broker server can be responsible for managing
its connected sensor nodes.

5 DEVICE INTEROPERABILITY
5.1 The Peer-to-Peer Network Implementation
Figure 2 shows that the DHT and the Chord protocol are key com-
ponents of the Devify software framework. The IoT nodes or vir-
tual nodes are organized as a peer-to-peer network in the DHT
by using the Chord protocol. Also, the web-to-web RPC (wwRPC)
component is a significant design that it offers the REST-style RPC
operations and collaborates with the DHT to provide the ability
of device interoperability. Subsequently, writing a broker server is
simple by using the Devify programming framework. Algorithm

Algorithm 1 A Broker Server Sample Code
1: // Require Broker class in Devify Platform
2: var DevifyBroker = require(’devify.io’).Broker;
3: // To instantiate a broker server instance
4: var broker = new DevifyBroker({
5: host: ’192.168.0.1’, port: 8000,
6: join: {address: ’192.168.0.100’, port: 8000}
7: });
8: // To start the broker server
9: broker.start();
10: // The virtual node is up and listening

1 shows a program to start the devify server on an IoT device and
subsequently joins a peer-to-peer network.

A broker server also offers periodic health and failure checks for
nodes. As mentioned previously, the broker hides all implementa-
tion details. Figure 2 has indicated that our work uses the Chord
protocol for a peer-to-peer network. The Chord messages are ex-
changed between IoT nodes via the wwRPC component. And the
dispatcher component receives and dispatches these RPC messages.
Algorithm 2 shows the API implementation for sending data to the
successor node over the peer-to-peer network. Besides, the API
includes the Linked Data context in advanced and extends the RPC
messages with this context before sending data. As described in Sec-
tion 4.1, the Things Data component uses JSON-LD as the primary
semantic web technology to structure the data into a key-value pair
data object.

5.2 Simulating the Data Transfer
Figure 4 simulated the process of sending IoT data to the peer-
to-peer network: the sensor data is sent to one broker within the
peer-to-peer network and subsequently routed over the Chord ring
to Broker A. Moreover, the broker server can forward the data to
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Algorithm 2 The API for Sending Data
1: /*
2: * Send data to the peer-to-peer network.
3: */
4: Node.prototype.send = function(data) {
5: var key = ChordUtils.hash(data);
6: var message = {
7: ’@context’: ’http://devify.io/context.jsonld’,
8: id: key,
9: type: Chord.FIND_SUCCESSOR,
10: data: data
11: };
12: return this.send(successor, message);
13: };

Algorithm 3 Virtual Things in the URI Convention
1: [coap|ws]://[hostname]/object/[name]/[id]

Figure 4: Simulating the Peer-to-Peer Networking

an endpoint. Ordinarily, the endpoint is a cloud platform, such as
Dropbox and Twilio or another broker server. Consequently, the
application server uses CoAP and WebSocket URIs to represent the
Virtual Thing for a node; thus, every node can be addressed using
unique URI’s. Algorithm 1 shows that the URL Router component
of the software framework defines such URIs to represent a Virtual
Thing. A significant design of the software framework is that the
dispatcher component uses an event-driven concurrency model to
handle RPC messages. Currently, many developers avoid the multi-
thread model and employ an event-driven approach to concurrency
management [17]. Therefore, and due to the scalability limits of
threads, the wwRPC subsystem uses an event-driven model.

6 HANDLING CHURN IN THE DHT
The churn, the continuous activities of node join and leave, is
an essential characteristic of a peer-to-peer network. This paper
addresses the problem by using the periodic nature of Chord stabi-
lization algorithm and extending the algorithm to handle churn in
the DHT [12] In a Chord network, the stabilization algorithm peri-
odically checks its successor node and update the DHT. Therefore,
the IoT node can select its successor node for measuring churn and
simply uses the timeout calculation technique for handling churn
[15]. Algorithm 4 shows the MIT Chord algorithm [18] and the
extension to handle churn. In the stabilizing process, the IoT node

Algorithm 4 Handling Churn
1: // It is called periodically.
2: // n asks the successor
3: // about its predecessor.
4: n.stabilize()
5: x = successor.predecessor;
6: if (x is in (n, successor))
7: successor = x;
8: successor.notify(n);
9:
10: // n’ thinks it might be our predecessor, and
11: // n notify n’ about its alive.
12: n.notify(n’)
13: if (predecessor is nil or n’ is in (predecessor, n))
14: predecessor = n’;
15: n’.notify_ttl();
16:
17: // n updates the successor’s TTL.
18: n.notify_ttl()
19: n.successor_ttl = MAX_TTL;

Algorithm 5 The TTL Update Algorithm
1: // Failure check
2: setInterval(function check_successor() {
3: // Decrease successor’s TTL
4: n.successor_ttl = n.successor_ttl - 1;
5:
6: // Remove the successor node
7: // if the successor node has already left the network.
8: if (n.successor_ttl < 1)
9: n.successor = nil;
10:
11: // The periodical stabilization algorithm will find
12: // the new success node.
13: }, 1000);

keeps correcting its successor node and notifies the successor node
about its predecessor. We extend this process so that the successor
node can notify the IoT node about its alive.

Additionally, the IoT node decreases the TTL in a fixed time
interval. If the TTL drops to zero, the IoT node handles churn by
removing the successor node from the peer-to-peer network and
subsequently the Chord stabilization process will correct the succes-
sor node. Also, the failure nodes can spontaneously intend to join
the peer-to-peer network, and the periodic stabilization algorithm
will update the DHTs. We summary this process in Algorithm 5.

7 THE FBP PROGRAMMING MODEL
This paper shows that an IoT application can simply use the flow-
based programming (FBP) paradigm to define the applications as
networks of black box which process exchange data across pre-
defined connections by message passing [19]. Thus, Devify also
provides an FBP engine to support such programming paradigm.
Also, FBP is naturally component-oriented that the applications
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Figure 5: The FBP Programming Model

are structured with predefined components connecting as data
processing networks.

7.1 Applying Flow-based Programming
Paradigm

The IoT network mainly comprises data, the flows, and the connec-
tivity; therefore, several studies [10] mentioned that the IoT needs
the data-driven approach to developing IoT applications. With the
increase of data volumes by the IoT devices, such data-driven appli-
cations become an important role in the IoT domain. Compare the
FBP to other broader programming paradigms, such as the object-
oriented programming; the FBP is in the data-driven approach.
Therefore, Devify has already implemented a light-weight FBP
runtime (scheduler) support data-driven programming required
by current IoT devices. Also, as previously mentioned, the FBP
runtime is written in JavaScript that it can support the variety of
IoT hardware devices. Also, the FBP also manifests loosely data
coupling which the concept admits a more fine-grained software
architecture than comparing to object-oriented design. In short,
the FBP paradigm shows additional advantages for the IoT through
our experience: (i) where the IoT application is comprised of highly
reusable components, and (ii) in which the data processing network
is constructed as asynchronous processes.

7.2 Developing IoT Application Servers
This paper presents a software framework that simplifies the cre-
ation of IoT applications by reusing existing web technologies and
applying the FBP programming paradigm. For example, setting
up a sensor node to gather information and communicate with
other nodes requires only a few lines of code. Moreover, to build a
complete peer-to-peer and decentralized IoT network also requires
only a few lines of code. The FBP paradigm defines applications as
networks and exchanges data across predefined connections [7].
The Devify software framework utilizes the FBP paradigm for IoT
application development. Thus, the Devify software framework can
be used to write flow-based IoT applications.

Developers can write IoT application code using the FBP para-
digm and JavaScript. With the FBP paradigm, an IoT application is
described by FBP components and their corresponding connections.
Figure 5 defines an IoT application server as a graph in the JSON
format, and the Algorithm 6 shows such implementation.

As described in Figure 2, the application layer provides an FBP-
like runtime engine with a unidirectional data flow design. The
unidirectional data flow reduces the complexity of device interop-
erability. Consequently, the FBP component has a single output
port and a single input port. The connection is established from the
outPort of one component to the inPort of another component. The
FBP-like runtime engine is responsible for executing the graph and

Algorithm 6 The Devify Application Server in the FBP Paradigm
1: var graph = {
2: ’type’: ’coapBroker’,
3: ’connections’: {[
4: upproc: ’io.devify.sms’,
5: upport: ’out’,
6: downproc: ’io.devify.console’,
7: downport: ’in’
8: ]}
9: };
10: broker.start({ graph: graph });

processing the data flow. Moreover, the FBP components are highly
decoupled; thus, developers can build and publish the reusable
components.

8 THE IOT APPLICATIONS
8.1 The Wireless Sensor Networks Example
Figure 6 shows that the peer-to-peer network organizes IoT devices
named as N1 to N8 in the DHTs as a Chord ring. In the Chord
peer-to-peer network, each data is hash by the SHA1 hash function
resulting in data key. Then, the peer-to-peer network routes the
data to the data’s successor node over the Chord ring. Moreover,
figure 6 demonstrates that a wireless sensor node is deployed to
transfer temperature data to the Endpoint periodically. In contract
to use the centralized IoT model, figure 6 uses a decentralized IoT
model, and the most important processes of this decentralized IoT
example are summarized as follows:

• Each node starts a Devify application server, and subse-
quently join the peer-to-peer network.

• N8 is the virtual node that manages the wireless sensor.
• The geometry of IoT nodes, named N1 to N8, are organized
as a ring topology in this peer-to-peer network.

• The N8 is named in HTTP URIs so that the wireless sensor
node can send the data to N8 by such URIs.

• The wireless sensor node sends data 1 to N8: N8 hashes the
received data by SHA1, lookups the successor node of the
data by the hash key in the DHT, and routes the data to N1.
In this step, the successor node is N4.

• The data is routed to N4: N8 communicates with N4 by using
the wwRPC component, as described earlier, the wwRPC
component provides REST-style RPC operations for the peer-
to-peer network.

• The data is eventually routed to N7.
• N7 forwards the data to Endpoint. As described in 5, cloud
platform is the example of the endpoints.

8.2 IoT Broker Server in the Cloud
Section 4.3 describes that this paper develops several IoT models
that developers can also deploy the Devify application server in
the cloud. As such, this section gives a demonstration of the use
case: one sensor node attempts to send IoT data streams to multiple
clients. Figure 7 shows that many clients, named Viewer Client in
this example, need to view the IoT data from the single sensor node.
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Figure 6: The Decentralized Wireless Sensor Networks

Figure 7: The Broker Server in the Cloud

Algorithm 7 The Broker Server URIs
1: ws://wot.city/object/554785c7173b2e5563000007/send
2: ws://wot.city/object/554785c7173b2e5563000007/viewer

In this case, the sensor node, named Sender Client in this example,
sends the data streams over the web to WebSocket broker server.
As described earlier, the WebSocket broker server is deployed in the
cloud server. In this example, the viewer client could be the mobile
apps (iOS and Android), and web apps (HTML5). Moreover, this
example also attempts to give a use case of the Devify framework
that the constrained devices can stream time series data over the
web to multiple clients. This example addresses the problem of
handling connections: a resource-constrained device has limited
memory and computation power that it can offer to accept and
handle too many View Client connections. Therefore, we use a
cloud server to deploy the Devify application server. Furthermore,
the wireless sensor node can find the WebSocket broker server
by the URIs. In this example, the broker server is deployed at the
wot.city server that, as described in Section 4, the application server
can represent the cloud server with the following URIs:

9 CONCLUSIONS AND FUTUREWORK
This paper has practically implemented the Devify software frame-
work available as an open-source project, and it consists of three
sub-projects. Accessible at (i) wotcity.io (https://github.com/wotcity),
(ii) devify.io (https://github.com/DevifyPlatform), and (iii) flowchain.io
(https://github.com/flowchain). Despite the Devify software frame-
work, IoT devices in a decentralized IoT network may require a
new model to exchange data. Given the blockchain’s private ledger
nature, it is natural that Devify will use the blockchain technology
to provide secure and trusted data exchange. Therefore, we have
already begun to build Flowchain [4], a blockchain-based decen-
tralized IoT platform, by using the Devify software framework as
the underlying system.
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