
X-Lap: A Systems Approach for Cross-Layer Profiling and
Latency Analysis for Cyber-Physical Networks

Stefan Reif
Friedrich-Alexander University

Erlangen-Nürnberg
reif@cs.fau.de

Andreas Schmidt
Saarland Informatics Campus

andreas.schmidt@cs.uni-saarland.de

Timo Hönig
Friedrich-Alexander University

Erlangen-Nürnberg
thoenig@cs.fau.de

�orsten Herfet
Saarland Informatics Campus

herfet@cs.uni-saarland.de

Wolfgang Schröder-Preikschat
Friedrich-Alexander University

Erlangen-Nürnberg
wosch@cs.fau.de

ABSTRACT

Networked control applications for cyber-physical networks de-
mand predictable and reliable real-time communication. Applica-
tions of this domain have to cooperate with network protocols,
the operating system, and the hardware to improve safety proper-
ties and increase resource e�ciency. In consequence, a cross-layer
approach is necessary for the design and holistic optimisation of
cyber-physical systems and networks. �is paper presents X-Lap,
a cross-layer, inter-host timing analysis tool tailored to the needs
of real-time communication. We use X-Lap to evaluate the tim-
ing behaviour of a reliable real-time communication protocol. Our
analysis identi�es parts of the protocol which are responsible for un-
wanted ji�er. To system designers, X-Lap provides useful support
for the design and evaluation of networked real-time systems.

CCS CONCEPTS

•Networks →Cyber-physical networks; Network reliability;
•Computer systems organization →Real-time systems; Embed-
ded and cyber-physical systems; Dependable and fault-tolerant sys-
tems and networks;

KEYWORDS

Performance Evaluation, Simulation and Modelling Tools of Real-
Time Networks (automotive, aerospace, multimedia, etc.), Net-
worked Embedded Systems and Sensors, Cyber-Physical Systems,
Internet of �ings

ACM Reference format:

Stefan Reif, Andreas Schmidt, Timo Hönig, �orsten Herfet, and Wolfgang
Schröder-Preikschat. 2017. X-Lap: A Systems Approach for Cross-Layer
Pro�ling and Latency Analysis for Cyber-Physical Networks. In Proceed-
ings of RTN’2017 �e 15th International Workshop on Real-Time Networks,
Dubrovnik, Croatia, June 2017 (ECRTS-RTN’17), 6 pages.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ECRTS-RTN’17, Dubrovnik, Croatia
© 2017 Copyright held by the owner/author(s).

1 INTRODUCTION

Due to rising interest in novel technologies, for instance in the areas
of mobility (i.e. autonomous driving), manufacturing (i.e. smart
factories), and augmented environments (i.e. Internet of �ings), it
is evident that the gap between the digital and physical world is
ge�ing narrower. In particular, Cyber-Physical Systems (CPSs) [5]
incorporate mechanisms where either world is actively manipulat-
ing the other, requiring a holistic view on these systems. �is comes
with strict requirements regarding latency and resilience of these
systems in order to provide e�ciency, predictability, and reliability.
For every practical CPS application it is necessary to communi-
cate, hence we have to consider Cyber-Physical Networks (CPNs) as
networks of CPSs, which inherently have the same requirements.

To build e�cient and safe interconnected systems, it is impera-
tive to consider a close cooperation of the network infrastructure,
the operating system, and the application, treating the systems as
a single unit. Only a cross-layer approach ensures the balance of
individual components which optimises the system as a whole.

Cross-layer system design and optimisation depend on an ap-
propriate evaluation method. �e evaluation has to cover each
individual system component, such as the application, the operat-
ing system, the protocol stack, and the hardware, but it also has to
provide a holistic view onto the system.

�ere are no existing o�-the-shelf approaches for executing an
empirical analysis with CPNs. �is paper presents X-Lap, a system
for cross-layer, inter-host timing analysis tailored to the require-
ments of CPNs. In particular, we use X-Lap to evaluate and analyse
the real-time communication protocol Predictably Reliable Real-time
Transport (PRRT), which is further described in Sec. 2.1, in order to
identify speci�c root causes for high latency and unpredictability.

�is analysis provides insights to allow tailoring of PRRT to the
requirements of CPNs. First, X-Lap identi�es network, protocol,
and operating system bo�lenecks regarding timing. �e goal is to
signi�cantly reduce latency and ji�er, optimise resource usage in
the network stack and at the communication end-points, and even-
tually improve quality of control in a CPN. Second, X-Lap guides
trade-o� decisions between network resources and host resources.
For instance, Forward Error Correction (FEC) is expensive at protocol
level, but compensates for network reliability problems. Using a
cross-layer approach, X-Lap allows to �ne-tune FEC parameters to
optimise to the speci�c needs of the application. �ird, X-Lap can
experimentally verify theoretical timing models for CPNs.



ECRTS-RTN’17, June 2017, Dubrovnik, Croatia S. Reif et al.

�e contribution of this paper is threefold:

• We present X-Lap, a cross-layer, inter-host timing analysis
tool for real-time networks and CPNs.

• We evaluate PRRT, a predictably reliable real-time commu-
nication protocol, for latency and ji�er using X-Lap.

• We identify root causes of timing unpredictability in PRRT.

�e rest of the paper is structured as follows. First, Sec. 2 in-
troduces the PRRT protocol and discusses the X-Lap architecture
in detail. In Sec. 3 we present our evaluation, describe analysis
methods, and review our evaluation results. Finally, Sec. 4 sets our
proposed architecture of X-Lap into context with related work, and
Sec. 5 concludes the paper.

2 BACKGROUND AND IMPLEMENTATION

To determine the validity of our proposed approach we examine
and analyse a real-time communication protocol. We use X-Lap to
analyse the PRRT protocol, which provides predictably reliable real-
time communication. X-Lap pairs lightweight timing measurement
facilities with analysis tools to evaluate latency and ji�er.

2.1 Predictably Reliable Real-time Transport

When it comes to communication protocol support for CPSs, we
see a lack of generic approaches that ensure resilience- and latency-
awareness during operation. �ese aspects are important for video
broadcast solutions, which is also the origin of our transport layer
protocol PRRT [4]. �e underlying motivation is the ability of video
streaming applications to conceal faults, e.g. by repeating frames,
and the requirements towards timely delivery, i.e. past frames can
no longer be displayed. Currently, video streaming and processing
�nd their way into CPSs, such as robot control systems, that apply
computer vision to monitor their environment. But even without
using high data rate streams such as video, there is an inherent
fault-tolerance and time-criticality in these systems.

2.1.1 Error Control and Timeliness. Consequently, it is neces-
sary to apply appropriate error control approaches, to ensure re-
silience, but at the cost of increased latency. Fundamental work on
the limits of this approach can be found in [10, 12], de�ning the
relationship between latency and reliability. Choosing an adequate
error control strategy requires knowledge about the channel and its
evolution over time. Especially in CPS with their low time budgets,
we require optimised parameters for error control.

�is is achieved by applying a Hybrid Error Correction (HEC)
scheme [6], which combines Automated Repeat re�est (ARQ) and
FEC into an optimal scheme that is able to approach a channel’s
capabilities [13]. Hence, PRRT provides mechanisms to retransmit
packets and send redundancy packets along to ensure resilience. For
this, it needs to acquire measurements of the channel state, namely
loss and delay characteristics. As these characteristics change over
time, it requires continuous measurements and adaption of HEC
parameters, which leads to an Adaptive Hybrid Error Correction
(AHEC) scheme. �e required adaptivity is provided by the PRRT
capability to incorporate application constraints (i.e. throughput,
maximum latency) and tolerable residual error, when optimising
its coding parameters during operation.

Considering these requirements, it is clear that existing proto-
cols are mostly not suitable for CPNs, which is independent of
the network layer they are operating on. Protocols such as TCP
provide full-reliability, but no timing guarantees, while lower levels
typically do not provide error control. In its current version, PRRT
is implemented on the transport layer to be used in IP networks,
but the requirements towards the lower layer are minimal. In fact,
the same approaches and implementation can run over Ethernet or
similar technologies that support basic addressing and forwarding.

2.1.2 Architecture. �e overall architecture for both sides of the
communication is depicted in Fig. 1. Applications interact with
the protocol as they would with any other unordered, datagram-
oriented communication system. Datagrams are forwarded through
the architecture and sent to the channel. Depending on the cur-
rent coding con�guration, blocks of datagrams are grouped and
redundancy packets are generated and sent, implementing the FEC
part. Upon reception of packets, the receiver forwards the source
packets to the application and uses redundancy packets to restore
packets that were lost in transit. Feedback to the sender is sent in
regular intervals, giving information on the channel and receiver
state. �e former includes loss and latency readings, while the la�er
indicates which blocks require additional information packets to
allow reconstruction. �is feedback procedure implements the reac-
tive ARQ part of error control. Furthermore, the messages are used
to synchronise protocol clocks on sender and receiver side, e.g. to
clean up packets that have already expired and stop retransmi�ing
or decoding these.

2.1.3 Interaction with the System Layer. PRRT provides latency-
and resilience-awareness on the protocol layer, enabling advanced
applications with error-tolerance and inherent time constraints.
Doing so, it relies on underlying layers and can signi�cantly bene�t
from the reduction of latencies and ji�er.

Latency reductions can be achieved using delay hiding, hence
executing supporting tasks in a way that the main task does not
experience additional latency. In order to achieve this, preparatory
and clean-up tasks can be deferred to less busy moments in time.
Furthermore, intelligent concurrency approaches with a low latency
footprint can be used, so that scheduling impacts are minimised.
From a protocol perspective, these reductions provide more time
for encoding and decoding of blocks, or could even allow additional
retransmission rounds on links with low delay.

Furthermore, precise bounds on the processing delay of the
involved system components can increase the reliability of PRRT
and reduce margins allocated for this size that is hard to predict with
normal operating systems. Having these bounds, lost information
can be detected easier, as overly delayed feedback due to a busy
peer can be avoided. Furthermore, the retransmit timer now only
needs to take channel variations into account, as processing delays
are constant. Clock synchronisation and channel estimation require
time-stamping of packets and communicating these values. �is
process can yield be�er results, as more precise time-stamps can be
stored in the packets, again reducing the impact of system latency.
As PRRT provides channel measurements to applications, be�er
estimates can improve application performance, i.e. leading to
increased �ality-of-Control or �ality-of-Experience.



X-Lap: A Systems Approach for Cross-Layer Profiling and

Latency Analysis for Cyber-Physical Networks ECRTS-RTN’17, June 2017, Dubrovnik, Croatia

Encoder

Data
Transmitter

DataHandler
Data

Source Packets

Redundancy
Packets

Source Packets

Feedback
ReceiverClock

Clock

Update

Timing

MODELS

Performance

Constraints
(Timing,

Loss-Tolerancy,
Data Rate)

Update

Configure

Data

Decoder

Data &
Redundancy

Reconstructed
Data

Block
Store Coding Blocks

Feedback
Transmitter

Source & 
Redundancy

Feedback

RNA - Send RNA - Receive

Data
Store

Deliverer

Data

Cleaner

Cleaner

ForwardingMap

Statistics

Loss
Information

Clean

Clean

Block
Store

Update

Clean

Trigger
Resend

DataHandler

Process Structure SocketLegend:

T Time-Stamp C Clock-Stamp

T C

T C

T C

T C

C

T CT C

C

C

C

C

C

App
Source

App
Sink

D
ata D

at
a

Fe
ed

ba
ck

Feedback
Figure 1: PRRT Architecture and X-Lap Integration

PRRT enables advanced applications in the area of CPS, but
while it does not rely on many functions of the underlying layer, its
operation is still limited by the transmission characteristics these
layers can provide. In particular, this also includes the predictability
of the operating system it runs on. While we assume that system
level reliability is given by modern so�ware development processes,
the latency is an important area, where PRRT’s performance can
improve with optimisations on the system level. Consequently,
latencies are reduced, bounded or even both.

2.2 Timing Measurement Infrastructure

When designing and optimising a protocol such as PRRT, it is
imperative to precisely and thoroughly pro�le its performance,
in particular regarding timing behaviour. �is pro�ling has to
be executed in a cross-layer fashion, taking communication and
system aspects into account.

2.2.1 Fine-grained Timing Measurements. In general, pro�ling
of system services faces two challenges. First, time-measurements
must be accurate enough to allow pro�ling of relatively short code
paths. Second, the run-time overhead of time measurement pro-
cedures should be minimal. Otherwise, the measurement itself
could distort the run-time behaviour, and thus cause incorrect re-
sults. �is evaluation therefore uses two interfaces to measure time,
clock gettime and rdtsc.

�e Linux system call clock gettime, given CLOCK MONOTONIC
as clock identi�er, returns the elapsed wall-clock time with up to
nanosecond precision. However, this system call has a consider-
able overhead. On our evaluation platforms, two consecutive calls
di�er by circa 70ns , which indicates relatively high run-time costs
considering that X-Lap also analysis the execution time of small
protocol fragments.

In order to measure the latency of short code paths, the evalua-
tion uses the x86 instruction rdtsc. �is instruction reads a hard-
ware counter, which the CPU increments every processor cycle.
�is interface therefore enables measurements with approximately
clock-cycle granularity, and with minimal overhead.

In order to actually measure execution times within the analyzed
protocol, the evaluation combines the clock gettime and rdtsc
interfaces. First, the coarse-grained clock gettime system call
evaluates the execution time of relatively large code fragments,
such as an end-user functions send and receive. Second, a rdtsc
instruction is a�ached to every clock query, allowing to relate
cycle counter values (“cycle-stamps”) to wall-clock values (“time-
stamps”). �ird, �ne-grained timing measurements are performed
using the rdtsc instruction, and by linear interpolation of cycle-
stamps and time-stamps.

2.2.2 Latency and Ji�er Analysis. An important goal of X-Lap is
the identi�cation of the root causes of latency and ji�er. To this end,
precise information for each network packet is required. �erefore,
X-Lap provides a table data structure to store all time-stamps and
cycle-stamps gathered during evaluation. In this table, the sequence
number of the packet is used as row number, and the code location
associated with the particular time-stamp or cycle-stamp serves as
the column number. To avoid interference (false sharing) between
multiple worker threads, each time-stamp and cycle-stamp value is
aligned to a cache-line.

Besides fast information disposal, the time-stamp table allows
for precise pro�ling of individual packets. Since the association
between packets and individual time-stamps is implicitly stored,
each packet can be individually analysed for latency.

2.2.3 Inter-Host Timing Measurements. A�er the evaluation
round, including all measurement packets, X-Lap dumps the en-
tire time-stamp table, which includes every single time-stamp and



ECRTS-RTN’17, June 2017, Dubrovnik, Croatia S. Reif et al.

cycle-stamp, into a csv �le. �ereby, sender and receiver each pro-
duce a data �le, which X-Lap aggregates post-experiment to avoid
interference. Since sequence numbers are equal on both endpoints,
the aggregation reveals both end-to-end and cross-layer latency
information.

Combining the timing datasets from multiple hosts demands
for clock synchronisation, but this is only possible up to a certain
extent [8]. In consequence, the communication endpoints can pos-
sibly have slightly desynchronised clocks, which skew the link
latency in our measurements. �e evaluation in the following sec-
tions, however, focusses on processing delays of a reliable transport
protocol rather than channel properties.

3 EVALUATION AND ANALYSIS

Knowing the implementation details of a protocol, in our case PRRT,
its timing behaviour can be empirically evaluated and analysed,
using the lightweight time-stamping facilities of X-Lap. �e goal is
to track root causes of latency and ji�er.

3.1 Methodology

�e csv �les generated by X-Lap include all captured packets, iden-
ti�ed by their sequence number and packet type, as well as all
related time- and cycle-stamps. Sender and receiver csv contain all
columns, but have zeros for those stamps that are only taken on
the other side. Furthermore, many time-stamps are 0, because only
cycle-stamps are taken at these speci�c processing step.

�e analysis begins with combining and completing the data set
captured by X-Lap. Firstly, data-frames are generated and �ltered
by the type of packet, so that source and redundancy packets are
analysed independently. Second, the data-frames of both sending
and receiving sides are joined, providing end-to-end traces indexed
by sequence number, for any transmi�ed packet. �ird, the process-
ing durations on both sides are determined, using the time-stamps
that are gathered upon entering and leaving the PRRT protocol
layer, as well as the channel time:

∆TSenderTotal = TLinkT ransmitEnd −TPrr tSendStar t (1)
∆TReceiverTotal = TPrr tDeliver −TLinkReceive (2)

∆TChannel = TLinkReceive −TLinkT ransmitEnd (3)

Channel characteristics are currently out of the scope of the
analysis, since this paper focusses on processing delays in the end-
points. �erefore, receiver time-stamps are adjusted, by subtracting
the channel time. Consequently, we consider delivery to be instant.
Besides, we thus avoid problems with clock synchronisation.

∆TE2E = ∆TSenderTotal + ∆TReceiverTotal (4)

Missing time-stamps for processing steps where only cycle-
stamps are taken are now reconstructed using a conversion sketched
in Fig. 2. On both hosts, X-Lap measures the start and end time, and
an accompanied cycle-stamp. Intermediate time-stamps, such as
Ti , are reconstructed from the corresponding cycle-stamp Ci using
linear interpolation. �ereby, the slope of the graph corresponds to
the processor frequency.

To foster ji�er analysis, durations that relate to speci�c code
blocks are determined using the previously recovered time-stamps.

Cycles

Time

CStar t CEndCi

TStar t

TEnd
Ti

Figure 2: Sketch of the Time-stamp Reconstruction

X-Lap further provides utility functions that execute linear regres-
sions on the data sets and generate histograms and sca�er plots.
�is functionality proved useful for optimising the X-Lap infras-
tructure itself, but can also be leveraged for detecting variations of
delays over time, in particular to detect trends. Finally, functions
for generating packet traces and ji�er analysis are included, which
are extensively discussed in Sec. 3.3.

Executing the analysis is done using the Python library Pandas1

and plots are generated using matplotlib2 inside a Python3 jupyter3

notebook. �e previously mentioned raw data in form of csv �les
and the notebook are freely available and can be found online4.

3.2 Experimental Setup

�e experiments were executed in di�erent scenarios, on a single
PC, a node pair, and a networking testbed. �e environment using
loop-back interfaces is useful for debugging X-Lap, but the lack of
network-related ji�er is noticeable in the results. �e following eval-
uation uses a PC pair and the testbed, which produce similar results.
�e testbed hosts have 8GB memory and 8 cores, ensuring that no
resource limitation distorts the evaluation. It should nevertheless
be noted that the test systems use Linux without any adjustments
for real-time, hence the scheduler impacts performance.

3.3 Results and Analysis

Following the goal to �nd root causes of latency and ji�er, di�erent
evaluation procedures are included in X-Lap. �is allows to inspect
individual packet traces but also detect correlations between series
of packets.

3.3.1 Packet Traces. By measuring and reconstructing time-
stamps of the processing of a single packet, it is possible to provide
a trace across sender and receiver, as is depicted in Fig. 3. �ese
traces reveal which processing phases overlap, indicating existing
latency hiding, and which ones happen in succession. For a given
packet, it is possible to compare the latency induced by individual
steps. For instance, the depicted trace shows that sender latency
dominates compared to receiver and that this is mainly due to UDP
socket transmission costs.

1h�p://pandas.pydata.org/
2h�p://matplotlib.org/
3h�p://jupyter.org/
4h�ps://git.nt.uni-saarland.de/LARN/X-Lap

http://pandas.pydata.org/
http://matplotlib.org/
http://jupyter.org/
https://git.nt.uni-saarland.de/LARN/X-Lap


X-Lap: A Systems Approach for Cross-Layer Profiling and

Latency Analysis for Cyber-Physical Networks ECRTS-RTN’17, June 2017, Dubrovnik, Croatia

0 20 40 60 80

Time [us]

EndToEnd

SenderTotal

Send

Submit

SenderIPC

Enqueue

SenderEnqueued

PrrtTransmit

LinkTransmit

ReceiverTotal

HandlePacket

ReceiverIPC

Feedback

Figure 3: Detailed Trace of a Representative Packet

0 20 40 60 80 100

Time [us]

EndToEnd

SenderTotal

Send

Submit

Enqueue

SenderIPC

SenderEnqueued

PrrtTransmit

LinkTransmit

ReceiverTotal

ReceiverIPC

Decoding

HandlePacket

Feedback

Figure 4: Overview of Packet Transmission Jitter

3.3.2 Trace Ji�er. While the former approach allows to quantify
latency, comparing the variations within individual processing steps
reveal the sources of ji�er. To this end, we extract outliers from the
data set. We consider traces to be outliers regarding one parameter
if the parameter is above the 75 % quantile plus 1.5 Inter-�antile-
Range (IQR). �e traces where the end-to-end time is considered
as an outlier are further analysed in Sec. 3.3.3, while this section
focusses on values below this threshold.

�e visualisation in Fig. 4 uses box plots, where the median is
marked as a green line and the 25 % and 75 % quantiles form the
outer borders of the box. �e whiskers indicate the most extreme
value that is within 1.5 of the IQR and outliers are marked with
circles. We can see that sender-sided times, in particular for packet
transmission, are facing high ji�er.

3.3.3 Outliers. �e previously separated outliers regarding end-
to-end time are now considered further, regarding the root cause
of the increased delay. By concept, the end-to-end delay is the
sum of multiple partial latencies. �erefore, we consider a protocol
component a cause of end-to-end ji�er if the corresponding latency
is also an outlier. Fig. 5 depicts the distribution of how o�en speci�c
protocol parts cause end-to-end ji�er. �e result indicate that Inter-
Process Communication (IPC) on the receiver is o�en responsible for
high end-to-end delay, and thus give an indication where outliers
can be eliminated.

Rec
eiv

er
IP

C

Han
dleP

ac
ke

t

Sen
der

Enqueu
ed

Prrt
Tra

nsm
it

Sen
der

IP
C

Lin
kT

ra
nsm

it

Fee
dbac

k

D
ec

odin
g

Enqueu
e

Sen
d

Subm
it

0

10

20

30

40

F
re

q
u

en
cy

Figure 5: Jitter Causes (�reshold: 108.0us, 75 samples)

3.3.4 Correlation. Finally, in order to further identify potential
causes for increased latencies, correlations between the end-to-end
time and partial latencies are given in Fig. 6. �e graphs show that
the sender has a high base latency of 60us , but its execution time
correlates weakly to the end-to-end duration. Instead, the graphs
proves the impact of unusual receiver processing time on the overall
performance. In particular, the latency caused by packet handling
and feedback sending has a direct e�ect on the end-to-end time.
Furthermore, the graphs show that high IPC latency co-occurs with
high end-to-end latency. Even though this analysis only reveals
correlations, and no causal relations, it gives valuable insight how
unpredictability in protocol parts corresponds to end-to-end ji�er.

4 RELATEDWORK

To the best of our knowledge, this paper is the �rst approach to
provide cross-layer, inter-host timing analysis for real-time net-
working stacks. Previous work o�en has a focus on timing models,
or it evaluates individual host systems without considering any
networking components.

Schimmel et al. [11] compute the Worst-Case Execution Time
(WCET) to provide upper bounds on communication delay, and
prove that application requirements (deadlines) are met. �e authors
assume closed systems, which o�en holds for industrial control
systems, so that there is no competing tra�c and the channel re-
mains static. �ese assumptions were not made when designing
PRRT, because it signi�cantly limits the areas in which the protocol
can be implemented. Furthermore, X-Lap can validate such timing
models empirically for any communication protocol.

It has been noted by Liu et al. [7] that in the area of Network-on-
Chip (NoC), which can be considered as a building block for CPS
and CPN, there is a lack of investigations and design methodologies
on schedulability. With real-time applications, this is a crucial trait
that is by far more important than having a maximum through-
put. �is paper speci�cally deals with NoCs and their abstract
representations, with the goal of optimising its performance with a
speci�c approach. We follow a general approach that is applicable
on any network, and is primarily used to identify potential spots
for improvement. Eventually, these tools should be used to provide
a Worst-Case Traversal Time (WCTT) [3], to enable networks of
real-time applications, when the hardware is known.

�e in�uence of seemingly minor operating system functions
towards network [9] and application [2, 14] performance has been
summarised under the term OS noise. A well-known source of oper-
ating system noise are hardware interrupts. If such an interrupt, or
other system activity, slows down a single process, all depending



ECRTS-RTN’17, June 2017, Dubrovnik, Croatia S. Reif et al.

20 40 60 80 100

SenderTotal [us]

40

60

80

100

120

140

E
n

d
T

oE
n

d
[u

s]

2.5 5.0 7.5 10.0 12.5 15.0 17.5

Send [us]

40

60

80

100

120

140

E
n

d
T

oE
n

d
[u

s]

2.5 5.0 7.5 10.0 12.5 15.0

SenderIPC [us]

40

60

80

100

120

140

E
n

d
T

oE
n

d
[u

s]

0 20 40 60 80

LinkTransmit [us]

40

60

80

100

120

140

E
n

d
T

oE
n

d
[u

s]

20 30 40 50 60 70

ReceiverTotal [us]

40

60

80

100

120

140

E
n

d
T

oE
n

d
[u

s]

5 10 15 20 25

ReceiverIPC [us]

40

60

80

100

120

140

E
n

d
T

oE
n

d
[u

s]

10 20 30

HandlePacket [us]

40

60

80

100

120

140

E
n

d
T

oE
n

d
[u

s]

5 10 15 20

Feedback [us]

40

60

80

100

120

140

E
n

d
T

oE
n

d
[u

s]

Figure 6: Correlation Between Individual Latencies and End-To-End Time

processes have to wait. In consequence, minor delays can accu-
mulate to a signi�cant performance and predictability problem.
�is issue occurs at network protocols where protocol components
have inherent data dependencies. For High Performance Comput-
ing (HPC) systems, a typical solution to OS noise is the use of
lightweight kernels that improve timing predictability by omi�ing
unnecessary functionality.

Barroso et al. [1] argue that various delays in the scale of mi-
croseconds accumulate and harm network performance signi�-
cantly. While their work focusses on throughput-oriented data-
center networking, their key observations are aligned with the
results of this paper. �e authors propose hardware support for
latency hiding.

5 CONCLUSION

Real-time networks and CPNs need a reliable distributed tool-chain
for latency and ji�er analysis. In this paper, we have proposed X-
Lap, a timing analysis tool particularly tailored to the needs of real-
time communication. Furthermore, this paper analyses the reliable
real-time communication protocol PRRT. Our results show that
operating system primitives, especially IPC, can have a signi�cant
impact on latency and ji�er. �ese insights are going to be used for
improving PRRT, while the development of X-Lap allows to analyse
other protocols such as TCP on Linux. We therefore propose a co-
design approach that treats the application, operating systems and
network protocols as a unit.

ACKNOWLEDGMENTS

�e work is supported by the German Research Foundation (DFG)
as part of SPP 1914 “Cyber-Physical Networking” under grants
HE 2584/4-1 and SCHR 603/15-1.

REFERENCES

[1] Luiz Barroso, Mike Marty, David Pa�erson, and Parthasarathy Ranganathan.
2017. A�ack of the Killer Microseconds. Communications of the ACM 60, 4
(March 2017), 48–54.

[2] Pete Beckman, Kamil Iskra, Kazutomo Yoshii, and Susan Coghlan. 2006. �e
In�uence of Operating Systems on the Performance of Collective Operations at
Extreme Scale. In Proceedings of the 8th IEEE Annual International Conference on
Cluster Computing (CLUSTER 2006). IEEE, 1–13.

[3] �omas Ferrandiz, Fabrice Francès, and Christian Fraboul. 2009. A method of
computation for worst-case delay analysis on SpaceWire networks. In Proceedings
of the 11th IEEE International Symposium on Industrial Embedded Systems (SIES
2009). IEEE, 19–27.

[4] Manuel Gorius. 2012. Adaptive Delay-constrained Internet Media Transport. Ph.D.
Dissertation. Saarland University.

[5] Edward A Lee. 2008. Cyber physical systems: Design challenges. In Proceeding of
the 11th IEEE International Symposium on Object Oriented Real-Time Distributed
Computing (ISORC 2008). IEEE, 363–369.

[6] I-Chung Lee, Cheng-Shang Chang, and Ching-Ming Lien. 2005. On the through-
put of multicasting with incremental forward error correction. IEEE Transactions
on Information �eory 51, 3 (March 2005), 900–918.

[7] Meng Liu, Ma�hias Becker, Moris Behnam, and �omas Nolte. 2016. Using
Segmentation to Improve Schedulability of Real-Time Tra�c over RRA-based
NoCs. ACM SIGBED Review 13, 4 (September 2016), 20–24.

[8] David L. Mills. 2012. IEEE 1588 Precision Time Protocol (PTP). (May 2012).
h�ps://www.eecis.udel.edu/∼mills/ptp.html

[9] Ronald Mraz. 1994. Reducing the Variance of Point to Point Transfers in the
IBM 9076 Parallel Computer. In Proceedings of the 7th IEEE Annual International
Conference on Supercomputing (SC 1994). IEEE, 620–629.

[10] Yury Polyanskiy, Vincent Poor, and Sergio Verdú. 2010. Channel Coding Rate in
the Finite Blocklength Regime. IEEE Transactions on Information �eory 56, 5
(May 2010), 2307–2359.

[11] Andreas Schimmel and Alois Zoitl. 2010. Real-time communication for IEC
61499 in switched ethernet networks. In Proceedings of the 2nd IEEE International
Congress on Ultra Modern Telecommunications and Control Systems andWorkshops
(ICUMT 2010). IEEE, 406–411.

[12] Claude Elwood Shannon. 1957. A Mathematical �eory of Communication. �e
Bell System Technical Journal 27 (July 1957), 379–423.

[13] Guoping Tan. 2008. Optimum Hybrid Error Correction Scheme under Strict Delay
Constraints. Ph.D. Dissertation. Saarland University.

[14] Dan Tsafrir, Yoav Etsion, Dror Feitelson, and Sco� Kirkpatrick. 2005. System
Noise, OS Clock Ticks, and Fine-grained Parallel Applications. In Proceedings
of the 19th ACM Annual International Conference on Supercomputing (ICS 2005).
ACM, 303–312.

https://www.eecis.udel.edu/~mills/ptp.html

	Abstract
	1 Introduction
	2 Background and Implementation
	2.1 Predictably Reliable Real-time Transport
	2.2 Timing Measurement Infrastructure

	3 Evaluation and Analysis
	3.1 Methodology
	3.2 Experimental Setup
	3.3 Results and Analysis

	4 Related Work
	5 Conclusion
	Acknowledgments
	References

