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ABSTRACT

Traditional Ethernet-based IP networks do not have the capability
to provide the Quality of Service (QoS) required for professional
real-time multimedia applications. This is because they operate on
a best-effort network service model that does not provide service
guarantee. Network operators and service providers require a novel
network architecture to efficiently handle the increasing demands
of this changing network domain. Software-Defined Networking
has emerged as an effective network architecture that decouples the
control plane and data plane, which makes it capable of handling the
dynamic nature of future network functions and intelligent appli-
cations while reducing cost through simplified hardware, software,
and management.

This paper presents an SDN architecture for real-time low latency
applications that offer adaptive path provisioning based on the
calculated end-to-end delay, available bandwidth, and traditional
shortest path first algorithm. The SDN architecture utilises the Ryu
OpenFlow application programming interface (API) to perform
real-time monitoring to collect network statistics and computes
the appropriate paths by using this information. The experiment
to ascertain the feasibility and evaluate the effectiveness of this
approach is carried out in an emulated network environment using
Mininet.
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1 INTRODUCTION

Multimedia applications such as professional video and audio often
require stringent Quality-of-Service (QoS). In order for a network
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to satisfy these requirements, it must possess the ability to reserve
required resource and exert network control. The Internet Engineer-
ing Task Force (IETF) has developed several QoS architectures such
as IntServ [28] and Diffserv [29], but these technologies have only
had limited success because they rely on a distributed architecture
where every network device is configured to run complex protocols
[6]. These distributed network protocols such as Open Shortest
Path First (OSPF) [14] and Enhanced Interior Gateway Routing Pro-
tocols (EIGRP) [25] do not readily support path provisioning based
on network parameters such as end to end latency and available
bandwidth. Although EIGRP was designed with this capability, in
practice EIGRP only uses the lowest interface bandwidth along a
path and cumulative interface delay for path selection by default
[25].

The key element missing from existing QoS architectures is that
they lack the ability to effectively support constraint-based routing,
because most routing protocols are only able to support a single
metric such as hop-count, or bandwidth to compute the shortest-
path. In order for existing routing protocols to support a vast range
of QoS requirements, they need to be re-developed with a more
complex architecture, where the network is characterised with
multiple metrics such as end-to-end delay, hop-count and available
bandwidth. This is, however, not practical as traditional routing
protocols are already reaching the limit of feasible complexity [27].
Although Multiprotocol Label Switching (MPLS) provides a partial
solution through its ultra-fast switching and traffic engineering
capability, it does not support multiple constraints and it is also
very complex to deploy [23].

As a result of these problems, it has become necessary to have
a QoS framework capable of providing the required QoS for mul-
timedia data without further complicating network control proto-
cols. Software-Defined Networking (SDN) is a new architectural
framework for networking, developed to promote innovation and
facilitate programmatic control of network devices by separating
the control and data plane. The decoupling of the control plane and
data plane enable easier deployment of new features and applica-
tions, easy network virtualisation and management, and central-
isation of various middle-boxes into software control. Instead of
implementing network policies and running complex protocols on
each network device, the network is simplified into a forwarding
hardware and the decision-making network controllers [11]. This
emerging technology will reduce cost and promote flexibility in
network operation while facilitating innovative network service
delivery models. The deployment of middle-box functions as Vir-
tual Network Functions allows network services (e.g., firewall and
Network Addresses Translation (NAT)) to be provisioned as virtual
devices and to be controlled as separate service components. An
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SDN controller can also expose a Northbound Interface (NBI) that
allows applications to directly coordinate service deployments with
the establishment of data delivery routes while satisfying individual
application service requirements [11], [4]. The primary benefit of
this evolving trend is the opportunity of adopting the flexibility and
interoperability obtained in cloud computing in the networking
domain [4]. As a result, new architectural paradigm and techniques
can be developed for the dynamic control and automation of both
network and application services.

This paper presents a Constraint-Aware SDN architecture for
multimedia applications that offers adaptive path provisioning
based on end-to-end delay, available bandwidth and traditional
shortest path first algorithm. The controller is designed to monitor
network devices in real-time and select best path based on the ap-
plication requirement of a particular flow. The controller consists
of four main modules: Network monitoring, latency measurement,
topology discovery and routing module.

The remainder of the paper is organised as follows: Section II
provides a brief overview of SDN and OpenFlow. Section III pro-
vides a detailed explanation of the controller design and operation.
Section IV explains the methodology, experimentation and analysis
of the result. Finally section V concludes the paper and provide
recommendations.

2 BACKGROUND

The advent of diverse types of real-time applications such as video
streaming, online gaming, video conferencing etc. has greatly in-
creased the complexity of network management systems. These
applications impose different QoS requirements such as latency, de-
lay and jitter. In addition, the continuous expansion of networks has
further increased these network challenges. The existence of these
diverse types of traffic on the network further imposes performance
constraints on the underlying network infrastructure. As a result
of these, network management systems are constantly challenged
to satisfy these ever growing requirements while conforming to
resource constraints [1]. There have been various research into
dynamic QoS in IP networks [13] [17] [8] [15]. However, most of
these approaches are either based on DiffServ [3] or RSVP [28],
which inherits the problems of the underlying switching fabric [1].

SDN is a novel architectural framework that decouples the con-
trol and data planes, logically centralises the network intelligence
and state, and abstracts the underlying network infrastructure from
the applications. As a result, enterprises and carriers acquire remark-
able programmability, automation, and network control, allowing
them to construct extremely scalable, flexible networks that can
quickly adjust to changing business needs [18].

Figure 1 shows a simplified representation of the SDN architec-
ture, which consists of three layers. The infrastructure layer, also
known as the data plane consists of the network elements. The data
plane is responsible for forwarding data, as well as monitoring local
information and collecting statistics [2].

The control layer, also known as the control plane, is responsible
for programming and managing the forwarding plane. Therefore, it
utilises the information supplied by the forwarding plane and spec-
ifies network operation and routing. It is made up of one or more
controllers that communicate with the network elements through
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Figure 1: Software-Defined Network Architecture [18]

standardized interfaces, which are referred to as southbound inter-
faces [2].

The application plane consists of one or more applications, each
of which has restricted control of a set of resources exposed by one
or more SDN controllers [19]. The interface between the application
layer and the control layer is known as the northbound interface [2].
SDN architecture provides a programmable access to the network
elements through applications built on top of the control layer.

There have been previous attempts to provide an SDN framework
that supports dynamic QoS for multimedia applications. OpenQoS
[6] is an innovative controller design that facilitates QoS for multi-
media delivery over OpenFlow networks. In order to support QoS,
incoming traffic is grouped as data flows and multimedia flows,
where the multimedia flows are dynamically allocated to QoS guar-
anteed routes and the data flows remain on their traditional shortest-
path. OpenQoS provides an extension to the standard OpenFlow
controller which enables it to support multimedia delivery with
QoS. [5], also proposed the concept of a source-timed flow change,
a technique for switching real-time packetised synchronous video
streams using SDN and Openflow. In order to achieve this, a specific
element of the packet header such as the UDP source port value
is selected as the timing signal match field whose value is used to
trigger a precise flow change by matching pre-configured SDN flow
rules in the network. However, these approaches do not support
path selection based on delay.

3 CONSTRAINT-AWARE CONTROLLER
IMPLEMENTATION

OpenFlow provides the flexibility to associate a set of actions and
rules to different types of flows. The Constraint-Aware controller
is designed to route traffic flows based on application requirement,
for instance, low latency flows will be routed based on delay while
other flows may be routed based on available bandwidth or shortest
path. The Constraint-Aware controller consists of four modules:
Network monitoring, latency measurement, topology discovery and
routing module. Each of these modules performs separate functions
and work independently of each other: The monitoring module col-
lects the necessary statistical information required to compute the
available bandwidth of the links and paths in the network, latency
measurement module computes the end-to-end delay of paths in
the network, topology discovery module provides information on
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devices and links in the network and the routing module computes
the best path and installs the required flow rule on the devices along
the path.

The Constraint-Aware controller proposed within this paper
is implemented using the Ryu OpenFlow controller. There are
other OpenFlow controllers such as Beacon, Maestro, OpenDaylight,
Floodlight that can be used to implement the Constraint-Aware con-
troller, Ryu was chosen because it provides software components
with well-defined API that make it easy for network programmers
to develop new network management and control applications.
Ryu also supports various protocols for managing network devices,
such as OpenFlow, Netconf, OF-config, etc. [24]. Figure 2 shows
the schematic diagram of the proposed constraint-aware controller
design.

3.1 Network Monitoring Module

Software-Defined Networks makes use of two monitoring tech-
niques to provide a global view of the network: packet_in messages
and per-port/per-flow counters. When there is no match for a packet
in the flow table, the switch sends a packet-in message containing
the packet header or part or the entire payload to the controller for
processing. Therefore, in a typical setup, the controller receives a
packet-in message at the start of every flow [26].

OpenFlow switches also maintain counters for each flow table,
flow entry, port, queue etc. OpenFlow counters can be implemented
in software and maintained by polling hardware counters with more
limited ranges. Table 1 shows the per flow table, per flow entry and
per port set of counters specified in the OpenFlow specification
[22]. The network monitoring module makes use of the OpenFlow
port statistic request and reply messages to collecting information
from the switches. In other to send flow and port statistical re-
quest to the switches, Ryu makes use of OFPFlowStatsRequest and
OFPPortStatsRequest messages to request for the corresponding
statistical information from OpenFlow switches [24]. OpenFlow
switches respond to this request by sending the corresponding
reply messages. This message consists of a list of the statistical
information requested. OFPPortStats response consists of statistical
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information such as port numbers, send and receive packet count,
respectively, byte count, drop count, error count, frame error count,
overrun count, CRC error count, duration(time port has been alive),
and collision count [20]. This information is used in calculating the
available bandwidth on all connected links in the network. In order
to calculate the available bandwidth, the controller is programmed
to sends OFPPortStatsRequest request at a specific interval to re-
quest port-related statistical information from switches. The value
of the duration which is measured in seconds and nanoseconds
beyond the duration in seconds [20], and transmitted bytes count
(Tx) are saved at specific intervals. The controller calculates the
available bandwidth of all links in the network through the process
described below.

Given the network shown in Figure 3, available bandwidth on
link L op can be calculated using the following parameters:

o Time taken to transmit = T

Number of transmitted byte on Port A; = Tx
Number of received byte on Port By = Rx
Total Port Bandwidth of A1 = A{;0tal

Total Port Bandwidth of By = Byotal

Used bandwidth on port A;(Ua;) = A%x

Used bandwidth on port B;(Up) = A—Isz
Available Bandwidth on port A1(BWa1) = Asoral — Ual
Available Bandwidth on port B1(BWB1) = B1;ota1 — UB1

Available bandwidth on link L4g = Min(BWay, BWg1)
Note that Tx should ideally be the same as Rx if the two switches
are directly connected. In this application, the minimum between
the two values is chosen for accuracy. The lowest link bandwidth
across a path is chosen as the highest available bandwidth for that
path.

3.2 Topology discovery

A reliable topology discovery mechanism is critical to the efficiency
of SDN systems. It supplies necessary information needed by the
controller to manage and provide services such as routing In the
network [21]. OpenFlow switches do not have the functionality for
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Counter | Bits |
Per Flow Table
Reference Count (active entries) 32 Regquired
Packet Lookups 64 Optional
Packet Matches 64 Optional
Per Flow Entry
Received Packets 64 Optional
Received Bytes 64 Optional
Duration (seconds) 32 Required
Duration (nanoseconds) 32 Optional
Per Port

Received Packets 64 Required
Transmitted Packets 64 Required
Received Bytes 64 Optional
Transmitted Bytes 64 Optional
Receive Drops 64 Optional
Transmit Drops 64 Optional
Receive Errors 64 QOptional
Transmit Errors 64 Optional
Receive Frame Alignment Errors | 64 Optional
Receive Overrun Errors 64 Optional
Receive CRC Errors [} Optional
Collisions 64 Optional
Duration (seconds) 32 Required
Duration (nanoseconds) 32 Optional

Table 1: List of Counters [20]

topology discovery, therefore it is the responsibility of the controller
to provide this service. Furthermore, no standard has been defined
yet for topology discovery in OpenFlow-based SDNs. However,
topology discovery is implemented by individual controller plat-
forms in a similar fashion to the implementation in NOX [17]. This
mechanism, referred to as OpenFlow Discovery Protocol (OFDP)
[7] has, therefore, become the de-facto standard for topology dis-
covery in OpenFlow-based SDN [21]. OFDP leverages the Link
Layer Discovery Protocol (LLDP) [7] . LLDP is a link layer proto-
col that allows an IEEE 802 Local Area Network (LAN) station to
advertise its status and capabilities to other stations on the LAN.
LLDP packets are transmitted to a link-local multicast MAC address
(01:80:C2:00:00:0E), therefore only directly connected switches re-
ceive these advertisements. The information sent and received in
each LLDP data unit (LLDPDU) is stored in one or more manage-
ment information base (MIB) on the participating switches. The
LLDP packet is encapsulated in an Ethernet frame with an Ether-
Type value of 0x88cc. The frame consists of an LLDPDU, which
contains an array of information elements, with each having a
type, length and value (TLV) field. Each LLDPDU contains three
required TLVs. The required TLVs are Chassis ID, Port ID and Time
to live followed by other optional TLVs and an End of LLDPDU
TLV. Figure 4 illustrates the frame structure

In OpenFlow-based SDN, the controller initiates the transmission
of LLDP messages. The process is described in the scenario shown
in Figure 5. OpenFlow switches have a pre-installed rule in the
flow table with an instruction to forward any LLDP packet received
from any port other than the controller port to the controller via a
PACKET-IN message. The controller creates LLDP packet for every
active port and instructs the switch to send it out these ports using

O. Oginni et al.
Octets: 1 N
Chassis = PortID | Time To Optional Optional End Of
ID TLV TLV Live TLV  TLV TLV LLDPDU TLV
M M M

M - mandatory TLV - required for all LLDPDUs

Figure 4: LLDP Frame Structure [10]

Controller

Chazzis ID=51
Port D=3

Figure 5: Topology Discovery Scenario

a PACKET_OUT message. In this scenario, the controller creates
LLDP packets for ports 2 and 3 on switch S1. The controller then
sends these two packets to S1 and instructs S1 to send it out port
1 and 3 using separate PACKET_OUT messages. S2 and S3 then
forward the received LLPD packet according to the pre-installed
rule to the controller. The controller receives the packet_in message
from the switches and process the information contained in the
payload of the LLDP packet. From this information, the controller
knows that a link exists between (S1, Port2) and (S2, Port2), and adds
this information to the topology database. This process is repeated
for all active OpenFlow switches connected to the controller.

The topology discovery module makes use of the Ryu rest topol-
ogy API to get topology information. The two methods used in this
module are the get_switch and get_link methods. These methods
provide switch and link information respectively. This information
is then computed and the graph of the entire topology is created
using Networkx [16] python library.

3.3 Delay Detection Module

The network delay detection module utilises Ryu controller’s LLDP
API to obtain the timestamp of LLDP packets being transmitted.
The process is described in the scenario shown in Figure 6. The
controller sends an LLDP packet to S1 with a send timestamp. S1
sends the LLDP packet to S2 and S2 to the controller. The controller
then calculates the total delay (Ttotal) from the controller back
to the controller by subtracting the "send time" from the "receive
time" of the LLDP packet. In order to calculate the delay between
controller and switch, the controller sends an OFPEchoRequest
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with data being send time. The switch replies with OFPEchoReply
message with the same data.

Therefore the delay between controller and switch is:
echo receive time—echo send time

With T; being defay between controller and S1, T delay between
controller and S2, and T;,;,; total delay. The delay between S1 and
S2 (Tr) can be expressed as follows:

Tr = Trotar =1 = Ta.

The delay is computed periodically at a specified interval and
saved in the topology graph. This information is then used to cal-
culate the best path by delay.

3.4 Routing Module

The Routing module utilises the Networkx [16] Python package
to compute shortest paths. NetworkX can be used for creating,
analysing and manipulating networks and network algorithms. It
also includes packages that provide data structures for interpreting
different types of networks, such as simple graphs, directed graphs,
and graphs with parallel edges and self-loops. In addition to these
data structures, various graph algorithms are available for calcu-
lating network properties and structure measures: shortest paths,
betweenness, centrality e.t.c [9]. When the controller receives a
packet_in message from a switch in the network, the routing mod-
ule processes the packet_in message and extracts the source and
destination IP address. It then checks for the best path to the des-
tination, if it already exists it uses the existing path. If it does not
find a path it computes the path and saves it. The routing module
then uses the topology information from the topology module to
install the required flow rules on the switches along the path from
source to destination.

4 TESTING AND RESULTS

The test network is created using Mininet [12] network emulator.
The network consists of 4 OpenFlow switches, 6 hosts and a con-
troller. In order to test the performance of the Constraint-aware
controller, the test network is designed with 3 different paths, each
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having different delay and bandwidth. It is important to note that
Mininet does not have the ability to report the set bandwidth to the
controller because the bandwidth is set in kernel space and Mininet
is not aware of it. Therefore for this experiment, the available band-
width is manually configured on the controller. Also in order for the
delay module to accurately calculate the delay, all network devices
and the controller’s clock need to be synchronised. However, syn-
chronisation is not required in this experiment because all devices
on Mininet share the same clock with the host computer. The net-
work is configured as shown in figure 8. The controller is designed
with the capability to compute the best path using bandwidth, delay
and hop count depending on the application requirement. For these
experiments, the controller is configured to match flows based on
their source IP address. The controller computes the part for H1
(10.0.0.1) using the path with the lowest delay, H3 (10.0.0.3) uses
path with the highest available bandwidth and H5 (10.0.0.5) takes
the path with the shortest path.

Figures 7 shows the round trip time (RTT) for the communication
between different hosts. When H1 pings H2, the average RTT is
24.29ms, which indicates that the computed best path is the path
with the lowest delay, that is, path [SW1-SW2-SW3]. When H3
pings H4, the average RTT is 66.36ms which shows that the best
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path is the path with the highest bandwidth, that is, path [SW1-
SW3-SW4]. Finally when H5 ping H6 the average RTT is 103.1ms
which shows that the path is the path with the shortest hop count,
that is, path [SW1-SW4]. Note that the RTT of the first packet
is considerably higher due to the time taken for the controller
to compute the best path and install corresponding flow on the
switches. This mechanism is designed to work for all types of
network topology. However, as the size of the network increases,
the delay due to real-time monitoring and time taken to compute
best path will increase.

5 CONCLUSION AND FUTURE WORK

An adaptive path provision mechanism can play an important
role in IP networks considering the growth of multimedia applica-
tions, such as video-on-demand, video streaming, online gaming
etc. The constraint-aware controller presented in this paper is a
novel approach for ensuring efficient use of resources in a multi-
path network, thereby improving the Quality of Experience for
users. Constraint-aware routing schemes not only guarantee QoS
requirements but can also increase overall network performance.
This paper provides a framework to simplify the deployment of
multimedia systems. With this approach, network engineers will
no longer need to go through the arduous task of implementing
complex QoS configurations on multiple devices. They only have
to specify network policy and the controller implements this policy
by sending instructions to the OpenFlow devices. For instance, a
network engineer can simply specify the delay requirement for an
application and the controller provisions the link with the specified
requirements.

Future research will focus on the design and implementation of
further components of the constraint-aware controller. This will
include a QoS module that will provide admission control and traffic
shaping functions. Experimental testing will also be expanded to
include tests for other network parameters such as jitter, delay and
bandwidth utilisation. These experiments will also be executed with
hardware devices and a performance comparison will be carried
out against other constraint-aware traffic engineering techniques,
such as MPLS traffic engineering.
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