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ABSTRACT 

The current era can be characterized by the massive reliance on 
computing platforms in almost all domains, such as 
manufacturing, defense, healthcare, government. However, with 
the increased productivity, flexibility, and effectiveness that 
computers provide, comes the vulnerability to cyber-attacks where 
software, or even firmware, gets subtly modified by a hacker. The 
integration of a Trusted Platform Module (TPM) opts to tackle 
this issue by aiding in the detection of unauthorized modifications 
so that devices get remediation as needed. Nonetheless, the use of 
a TPM is impractical for resource-constrained devices due to 
power, space and cost limitations. With the recent proliferation of 
miniaturized devices along with the push towards the Internet-of 
Things (IoT) there is a need for a lightweight and practical 
alternative to the TPM. This paper proposes a cost-effective 
solution that incorporates modest amounts of integrated roots-of-
trust logic and supports attestation of the integrity of the device’s 
boot-up state. Our solution leverages crypto-acceleration modules 
found on many microprocessor and microcontroller based IoT 
devices nowadays, and introduces little additional overhead. The 
basic concepts have been validated through implementation on an 
SoC with an FPGA and a hard microcontroller. We report the 
validation results and highlight the involved tradeoffs.   
Keywords 
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1. INTRODUCTION 
The massive integration of computers in all aspects of the human 
life is to be credited for improving manufacturing, trade, 
healthcare, travel, entertainment, government services, etc. One of 
the key advantages of incorporating computers is the flexibility 
and adaptability provided by the software. Yet, cyber-attacks 
exploit such flexibility through a variety of means to inject 
malicious modules, e.g., malware, botnets, etc. Not only the 
operation of the computers could be altered by a malicious 
software module but also important information could be leaked. 
The consequences could be dramatic and constitute a major 
national security threat. For example, altering the control 
algorithms for a nuclear reactor could lead to a disaster. 
Moreover, the effect of information leakage can put individuals 
and nations at risk. For example, letting classified documents and 
business bids be in the hand of an adversary would be serious 
security and economic threats. Allowing access to personal data 
maintained by government agencies will not only violate the 
privacy of the citizens, but also make them susceptible to physical 
crimes and identity theft.   

One of the subtle venues for injecting malicious modules is 
through software updates. Being able to load an unauthorized 
operating system update is the most serious scenario. In fact, with 
the increased popularity of flash memory, this may be applicable 
to firmware. Preventing unauthorized updates would naturally be 
the intuitive approach; yet it is hard to enforce unless access to a 
device is restricted. Instead, the technical community has 
demanded that changes in the software and hardware 
configuration are to be at least detected [1][2]. The Trusted 
Computing Group (TCG) recognized this need and has established 
a standard for measuring and reporting platform integrity.  The 
TPM, developed and ratified by the TCG, constitutes the industry-
adopted solution for enterprise PCs, servers and embedded 
systems. The TPM specifications defines how to measure and 
attest platform integrity.  Overall, hardware implementation of the 
TPM is preferred; many vendors offer TPM chips to be included 
in the design and is interfaced as a peripheral to the processor.  

With the increased popularity of small computing devices and 
applications of IoT, the need for platform integrity grows both in 
scale and scope. Basically, miniaturized devices are becoming 
pervasive and are being employed in a wide range of applications.  
Most notable among IoT applications are those involving 
controlling physical processes, often referred to as cyber-physical 
systems. The role of IoT devices in this type of application covers 
sensing, computation and actuation; obviously, such a role is quite 
critical and ensuring the integrity of the configuration and 
software on these devices is paramount. However, the constrained 
design of IoT devices makes the incorporation of a TPM 
unsuitable. Generally, an IoT device is subject to resource, size, 
power, and cost constraints; therefore, the standardized TPM 
based solution would not be viable both economically and 
contextually. Hence, a lightweight approach is needed for IoT 
devices. The desired approach fundamentally must cope with 
deign constraints by trading off some of the trust management 
functionally [3].  

The abovementioned issues have motivated the technical 
community to develop suitable schemes. The introduction of 
DICE is among the most notable efforts in that regard [5]. DICE, 
which stands for Device Identifier Composition Engine opts to 
enable attestation without requiring a TPM in order to limit the 
required resources. To do so, DICE uses a secrete device identifier 
to measure the integrity of software modules sequentially during 
device boot-up; such a process yields a sequence of secrets. The 
last secret can be checked by the attester against a known value to 
confirm the device integrity. Unlike the TPM, DICE does not 
provision for storing integrity measurements and does not support 
secure attestation. Thus, DICE may expose the IoT device to a 
replay and impersonation attacks. Basically, if an intermediate 
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secret in the sequence is leaked, it becomes possible for malware 
to impersonate legitimate code by replaying the leaked value. 

This paper strives to overcome the shortcoming of DICE and to 
provide an effective, yet lightweight, solution for ensuring 
platform integrity of IoT devices. The proposed solution leverages 
crypto-acceleration modules found on many microprocessor and 
microcontroller based IoT devices nowadays in order to provide 
secure attestation services. Fundamentally we provide a wrapper 
that provisions for secure storage and reporting of platform 
integrity measurements. Our proposed approach has been 
validated through implementation on an SoC with an ARM-based 
hard processor system (HPS) and an Intel/Altera FPGA. The 
validation results confirm the effectiveness of our approach in 
terms of the supported functionality and low overhead.   We also 
highlight the involved tradeoffs and provide some design 
guidelines. To the best of our knowledge, our approach is the first 
to sustain the key TPM functionality in hardware while addressing 
the design constraints of IoT devices. 
The paper is organized as follows. The next section provides an 
overview of the TPM and DICE, analyzes the shortcoming of 
DICE, and outlines the desired features for our approach. Section 
3 covers related work in the literature.  Our methodology is 
presented in Section 4. Section 5 discusses the prototype-based 
validation and reports the testing results. The paper is concluded 
in Section 6 with a summary of the contribution and future work.  

2. Design Goals  
This section mainly summarizes the functionality of a TPM and 
explains how DICE provides platform integrity.  An analysis is 
then provided to highlight the shortcomings of the DICE based 
methodology and to outline the desirable features for measuring 
and attesting the platform integrity of an IoT device.   

2.1 TPM Overview 
While the TPM has grown into a sophisticated and complex 
hardware security module, as evidenced by its 1,479 page, four-
volume specification, it retains a simple objective at its core. 
Basically, the TPM opts to provide methods for collecting and 
reporting the identities of hardware and software components that 
comprise a platform [4]. A software identity is represented by a 
digest produced from a cryptographic hash of that component.  
The first digest of mutable code on a platform is produced by the 
platform’s Root of Trust for Measurement (RTM), e.g. in boot 
ROM. The RTM delivers the digest to the TPM’s collector, 
known as the Root of Trust for Storage (RTS). The RTS extends 
this and subsequent digests as a cumulative digest of digests 
(referred to as DoDs in this paper). The RTS stores the DoDs into 
protected regions known as Platform Configuration Registers 
(PCRs). Extending a digest in a PCR is done as follow:  

PCRnew	= H (PCRold || digest), 

where H is a secure hash function, ‘||’ is the concatenation 
operator, and digest is the hash of the next software module to be 
executed in the boot sequence. 

Attestation refers to generating a proof to confirm the platform 
integrity. To build an attestation, the TPM’s reporting agent, the 
Root of Trust for Reporting (RTR), quotes selected PCRs by 
digitally signing their DoDs. The RTR signs with its Attestation 
Identity Key (AIK). The AIK is generated by the TPM and 
signed, in the form of a certificate, by its Endorsement Key (EK). 

EK may be provisioned by the TPM manufacturer so that 
assessors who trust the manufacturer can trust the AIK used in 
attestation. Also, the EK public key (EKpub) could be used as the 
hardware identity. 

During the measured boot process, executable modules, beginning 
with the RTM, perform the following steps on subsequent 
modules: load, measure (create a digest by hashing), log, extend, 
and execute (transfer control). The log of digests built is 
commonly known as the event log. An assessor can validate the 
event log by reiterating the Extend operations in an attempt to 
reproduce the DoDs reported in the PCRs. Trust is said to transit 
from the RTM to subsequent modules in that a trail of evidence in 
the PCRs and boot log can be used to assess trustworthiness as a 
whole. Therefore, the sequence of recorded events is described as 
building a transitive trust chain, or chain of trust. In order to 
describe characteristics that affect a platform’s trustworthiness, 
the TCG requires three Roots of Trust, namely RTM, RTS and 
RTR, as described above.  The device should respond to 
attestation confirmation inquiry where a nonce is provided and 
quote is requested in return.  The RTR hashes the concatenation of 
an assessor’s nonce and the DoDs in the PCRs and then encrypts 
(digitally signs) using AIKpriv.  The signed attestation and log 
constitute the device’s response to quote request. Figure 1 
illustrates the attestation process for a TPM. 

A key feature of this architecture is that if a boot module is 
changed, it will be reflected in the DoDs. If that module were 
malicious, to allude detection, it would need to modify the DoDs 
so that it appears benign. Since the only modification permitted is 
Extend, the module would need to calculate a datanew value to 
H(DoDsbad || datanew) in order to produce DoDsgood. This is 
mathematically infeasible. 

2.2 DICE Methodology 
DICE is intended to serve a similar role as that of a TPM that is to 
attest to the trustworthiness of an embedded device [5]. Generally, 
a TPM could constitute an unwarranted overhead for resource and 
cost constrained smart sensing and actuation devices that would 
serve within an IoT. DICE is designed by the TCG for these 
devices that do not have a TPM. While DICE is fundamentally 
similar to an RTM, it does not provide RTS and RTR 
functionality and only supports RTM-like functionality. 
While the TPM has its own secrets (e.g., AIKpriv), DICE specifies 
its secret, accessible only to DICE, as a Unique Device Secret 

(UDS, or Secret0).  DICE extends the UDS with the digest of the 
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first mutable code. The result, and output of DICE is the 
Compound Device Identifier (CDI, or Secret1). When Modulei 
prepares to execute Modulei+1, it computes Secreti+1, destroys 
Secreti, and passes Secreti+1 as summarized by the following 
equations and illustrated in Figure 2:  

Secret0 = UDS, Module0 = DICE 
Secreti+1 = H(Secreti || H(Modulei+1)) 

2.3 DICE Analysis 
DICE’s secrets are akin to the TPM’s DoDs as they are produced 
conceptually in a chain from a trusted root. However, DICE does 
not provide any protection for its secrets as the TPM’s RTS 
protects DoDs with PCRs. Consequently, the secrets are loosely 
protected by untrusted (i.e., mutable, non-root-of-trust) code. 

Under the TPM scheme, it is generally expected that event logs 
and DoDs can be freely shared as they are not cryptographic 
secrets. Under DICE, there is no event log per se as there are no 
trusted mechanisms to protect and report its integrity. This results 
in a reduced ability to attest reliably to the boot state of the 
platform.  

Obviously, secrets must not be accessible to unauthorized entities. 
The loss (i.e. leakage) of a secret makes a DICE-enabled device 
vulnerable to replay and impersonation attacks [5]. Only the 
engine and the (initial) UDS secret are protected. Derived secrets 
are left unprotected. Protection of measurement and attestation 
assets is vital [4][20][26]. 
The type of attestation being developed by the DICE working 
group is Implicit Identity Based Device Attestation [19]. Instead 
of passing Secret2 to Module2, it generates and passes an 
asymmetric key pair, namely the Alias Key, derived from the 
CDI, and the hash of Module2. The result is the same – 
unprotected secrets passed between modules make the process 
vulnerable to attack. 

2.4 Design Objectives 
It is reasonable to expect that certain applications must process 
secrets and that it is desirable to minimize the attack surface 
wherever possible. In the case of how to perform a measured boot 
with attestation, the TCG determined that a specific minimum set 
of discrete hardware, including the RTS and RTR, were essential 
[4]. DICE falls short of these requirements and essentially 
sacrifices robustness to minimize resources. The objective of this 
paper is to satisfy both the original need for the RTS and RTR and 
the need to function on a device without a TPM.  

3. Related Work 
Prior work can be categorized based on how to support attestation 
into hardware and software schemes. The most notable hardware 
solutions are TPM [4] and TrustZone [6][7]. However, these 
solutions are geared for enterprise computing, e.g., servers and 
desktop systems, are not fit for IoT devices due to cost, size and 

power constraints. To support portable devices like smart phones, 
some work has focused on reducing the hardware complexity, or 
pursued a software-based or a hybrid-software and hardware 
solutions. For example, M. Kim, et al. [8] have focused on 
optimizing the hash function implementation within a TPM to suit 
mobile devices. Meanwhile, N Aaraj et al. [9] promote the use for 
a software TPM to overcome the cost constraints for embedded 
devices. The software is to run in a protected execution mode. 
Kursawe and Schellekens [10] opt to simplify the hardware 
implementation of a TPM by moving some of the functionality to 
software. Yet the key complexity in terms of resources and 
asymmetric cryptography support are not tackled and the solution 
does not suit IoT devices. 

The TPM concept is further extended to support dynamic system 
status [11]-[13]. In [11], the idea is to enable attesting to the 
correctness of the control flow within a program in order to detect 
runtime attacks, e.g. stack overflow.  The solution, which is 
hardware based, is geared for cyber-physical systems where the 
integrity of the control software should be monitored both at 
bootstrapping and at runtime. LeMay and Gunter [12] tackle the 
same issue through a software-based approach through the 
inclusion of a micro-kernel that is not remotely upgradeable. A 
similar objective is targeted in [13] to factor in the data generated 
by the program rather than the flow of execution.  Again these 
solutions are not geared for resource-constrained IoT devices. In 
addition, continual attestation is unwarranted for IoT devices 
unless they perform actuation within mission critical applications.    
We argue that our methodology makes hardware-based attestation 
both effective and efficient. 

Supporting attestation for resource-constrained devices has also 
received attention from the research community.  R. N. Akram, et 
al. [14] have studied attestation for smart cards, which are 
becoming very popular in mass transient, university campus, etc.  
DICE, as discussed earlier, is endorsed by the TCG. Variants to 
DICE are also being pursued, e.g. Microsoft RIOT [15]. Again, all 
these solutions are software based and trade off resources for 
robustness by leaving out the RTS and RTS functions. On the 
other hand, some published work opts to mitigate such 
shortcoming by using heterogeneous setups where attestation of 
IoT devices involves unconstrained devices as well.  For example, 
MTRA is a Multiple-Tier Remote Attestation protocol that 
supports IoT setups which involve heterogeneous devices in terms 
of the computational resources [16]. Some of the devices are 
assumed to be equipped with TPM hardware. Meanwhile, the 
attestation of resource-constrained devices is handled through 
software. Basically, a TPM-equipped device will act as an 
assessor for each of the resource-constrained devices that are 
within its communication range. 

Cooperative attestation is another methodology for overcoming 
the resource constraints of IoT devices. For example, in [17], 
devices are grouped into clusters and each cluster is considered as 
an entity whose trust is to be attested. Devices within a cluster run 
distributed consensus algorithms to attest to their individual trust. 
The attestation here is based on a simple operation such as 
reporting a sensor value. Since the devices are homogenous, the 
distributed consensus algorithm, e.g., majority voting, could be 
used to determine outliers and deem them as untrusted. A full 
TPM-based attestation is then performed at the inter-cluster level, 
where the individual operations are divided among the cluster 
members. Instead of asymmetric cryptograph, a residue number 
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system (RNS) based homomorphic share scheme is used to enable 
the generation of a combined cluster-based attestation. We argue 
that cooperative attestation could be impractical and would make 
security hard to ensure. Our approach opts to enable hardware 
support while coping with the resource limitation of the devices. 

4. Proposed Architecture 
The cryptographic primitives found in the TPM to support the 
RTS’s Extend and the RTR’s Quote operations are hash (e.g., 
SHA) and public key (asymmetric) cipher to produce a digital 
signature (e.g., RSA). DICE, on the other hand, omits the RTS 
and RTR. Our objective in this paper is to develop a solution that 
provisions the RTS and RTR support, while staying conscious of 
resource concerns for IoT devices. Our methodology is to pursue 
symmetric rather than asymmetric cryptography and repurpose 
on-chip crypto accelerators to also function as RTS and RTR. 
Since the bulk of encryption needs are met with faster symmetric 
ciphers rather than slower asymmetric alternatives, it is becoming 
increasingly common to find symmetric algorithms integrated into 
microcontroller hardware. For example, variations on the ST 
STM32L081xx, TI MSP430 and the Atmel XMEGA 
microcontrollers have embedded AES acceleration. We argue that 
our methodology strikes a balance between overhead and 
robustness and would suit resource-constrained IoT devices.  

In the balance of this section, we show how integrated hash and 
symmetric cipher accelerators can be augmented to provide the 
needed roots of trust in hardware. This augmentation can be 
thought of as a “wrapper” with virtually no disruption to the core 
crypto accelerator logic, or “engine”. The wrapper would function 
as a trusted, special-purpose interface to the general-purpose 
accelerator. Thus, as manufacturers dedicate silicon to these 
accelerators, they could find that a fractional increase could 
provide an important layer of trust attestation for very little cost. 
We confirm that in Section 4 when discussing our prototype-
based validation of our methodology.  

4.1 Supporting Extend Operation 
While the TPM supports multiple PCRs and multiple hashing 
algorithms, our solution will be stripped down to a single PCR 
and a single hashing algorithm. Note that the PCR is to be 
protected from arbitrary writes, and may only be updated with 
Extend. The initial value of PCR is 0, and may only be reset with 
a full platform reset. 
Figure 3 illustrates a notional implementation of Extend using a 
generic hash engine. The blue boxes represent the unmodified 
hash core and the digest register. The orange box and arrows 
represent the additional logic (i.e., wrapper) added to perform an 
Extend. The wrapper includes a PCR and a small state machine 

that control the operation of the hash engine. It is assumed that the 
digest to be extended has already been produced. The operation 
proceeds as follows: (1) the PCR and (2) DIGEST are effectively 
concatenated by feeding them sequentially to the hash engine 

where H(PCR||DIGEST) is generated, and (3) the result is written 
back to the PCR. 

4.2 Supporting Quote Operation 
Instead of quoting multiple PCRs with one of the TPM-supported 
asymmetric ciphers, our approach will quote one PCR using a 
symmetric cipher. This will require the device and the assessor of 
the attestation to possess, or otherwise indirectly use, a shared 
secret. The attestation is built by signing (or encrypting) the hash 
of the concatenation of the PCR and an assessor’s challenge 
nonce, i.e., E(H(PCR||NONCE)). 

Figure 4 illustrates the operation of QUOTE, which proceeds as 
follows: (1) the PCR and (2) the challenge nonce are fed to the 
hash engine sequentially, and (3) hashed to produce a digest as 
H(PCR||NONCE) that is (4) sent to the cipher’s input block, the 
(5) device secret is place in the cipher’s key to (6) encrypt the 
digest, (7) the key is zeroed to prevent unauthorized use, and (8) 
the resulting signature, E(H(PCR||NONCE) is delivered to the 
host.   

5. Prototype 
To demonstrate the viability of our lightweight attestation method, 
a prototype was implemented to gain an understanding of the 
resource consumption necessary for each part of the method. The 
prototype was built using the DE1-SoC Development Kit, which 
is hardware design platform built around the Altera System-on-
Chip (SoC) FPGA and combines the ARM dual-core Cortex-A9 
hardcore processor. The ARM processor is responsible for 
invoking Extend and Quote during and after measured boot, 
initially from ROM. It also represents the less secure portion of an 
embedded device, as it is vulnerable to changes in software. The 
FPGA will be used to implement the secure hardware portion of 
the methods that perform Extend and Quote, which would 
otherwise be constructed in an ASIC. 

5.1 Crypto Accelerators 
Ideally, the implementation of the wrappers should depend very 
little on the choice of hash and cipher algorithms, as the focus is 
on producing lightweight wrappers. In our initial conventional 
prototype, the SHA256 hash [27] and AES cipher algorithms were 
selected. Like the optimized prototype presented in section 6, this 
prototype produces a 128-bit signature, but from a truncated 256-
bit digest as depicted in Figure 4, step 4. Truncation of digests is 
addressed in Section 7 of [27]. 

5.2 Hash Wrapper 
The hash wrapper is used to execute extend operations by 

controlling the SHA256 engine to hash host modules while 
preventing important information, such as the PCR, from being 
maliciously altered by the software. To accomplish this task, the 
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wrapper is implemented as a state machine which receives signals 
from the ARM processor and controls the hardware execution.  

Figure 5 illustrates the hardware setup of the state machine and 
how it interacts with the multiplexer, and the SHA256 engine. The 
state machine acts as the arbiter between the software and 
hardware; it receives the hash, extend, overwrite, and end signals 
from the ARM processor and then controls the hardware 
components to produce the output necessary for the request. This 
layout prevents the software from having direct control of the 
SHA engine. To control the input of the SHA engine, two 32-bit 
input multiplexers are used. In this way, the SHA engine can be 
fed either a message input from the ARM processor for normal 
operation or be fed register values directly for Extend or Quote 
operations. The counter is used to control 32-bit data slicing of the 
256 bit inputs. For example, when performing an Extend 
operation, the state machine controls the multiplexer and counter 
to first feed the 256-bits PCR, then 256-bits Digest to the SHA 
engine in 32 bit blocks in the correct order. It is important to note 
that the Quote signal is present in the diagram, although Quote is 
technically part of RTR. The need for this signal will be explained 
in the next section.  

Because the goal of the prototype is to minimize the resource 
consumption, the data width of the HDAT_input is set to 32 bits at 
a cost of performance speed. For example, in a previous 
implementation, the data width was set to 512 bits because 
SHA256 processes 512 bits at a time. This allowed the engine to 
load the message in one clock cycle. However, this incurred large 
costs since the multiplexer had to have 512 bits inputs, which 
greatly increases the combinational logic.  In addition, it required 
a 512-bit register within the SHA engine to prevent race 
conditions, which grows the number of needed registers. Thus, the 
HDAT_input was decreased to 32 bits. This number was selected 
because SHA256 needs to process a minimum of 32 bits every 
clock cycle. While such data slicing increases the number of clock 
cycles needed to load the message from one to sixteen, it greatly 
reduces the size of the multiplexer and register.  

The PCR is protected from malicious software attacks through 
two methods. First, the PCR only reads the output from the SHA 
engine. It does not have any other input. Second, the enable signal 
of the register is controlled by the state machine. With these two 
methods, an attacker, i.e., though malicious software, cannot 
overwrite the PCR with their own value. An attacker also cannot 

control the input of the PCR register, nor is able to control the 
enable signal to allow overwriting the PCR. 

5.3 Cipher Wrapper 
The cipher wrapper is used to execute Quote operations using a 
lightweight symmetric-key algorithm, which is AES in this 
prototype. The goal is to sign the PCR securely. Doing so requires 
protection of the secret key, the PCR contents, and the signing 
mechanism. Such protection is accomplished by using hardware 
to sign the PCR with the symmetric key instead of software. 

Figure 6 illustrates the data path of the cipher wrapper and its 
interface with the ARM processor. The main components are the 
state machine, counter (not shown), data slicers, and multiplexer, 
and the AES engine [32]. The state machine is used to arbitrate 
between the ARM processor and the FPGA to prevent direct 
control of the AES engine during sensitive operations. It receives 
signals encrypt, decrypt and quote from the ARM processor, and 
in turn controls the other components. The multiplexer is used to 
control whether the plaintext input of AES is fed messages from 
ARM processor or the H(PCR || NONCE). This allows for general 
purpose use of the AES engine or for Quote operations. The 
counter and the data slicers are slightly different from their 
counterparts in the hash wrapper. For example, the cipher 
wrapper’s counter only needs a data width of three instead of four 
because the engine deals with a maximum data width of 256, or 
eight 32-bit blocks.  
When performing Quote operations, the state machine requests 
the digest of PCR||NONCE from the hash wrapper through the 
hash_sig signal. If the RTS wrapper is idle, it will hash the 
PCR||NONCE by controlling its multiplexer to feed in the 
PCR||NONCE. Once a valid digest is calculated, the wrapper will 
read in the leftmost 128 bits and encrypt it with the secret key. To 
prevent race conditions, hash_sig signal is kept high to prevent 
any other hash or Extend operations from being executed until the 
Quote operation is complete. This prevents the PCR||NONCE 
digest from accidentally being rewritten with a different value.  
To interface with the processor, the 128-bit plaintext input are fed 
to the AES engine in multiple 32-bit blocks with the use of the 
data slicer and counter. The data slicer extracts 32 bits from the 
input, while the counter controls which 32 bits are extracted. 
While this increases the clock cycles required to load the input 
message, it reduces the multiplexer from having 128 bit data 
width to only 32 data width. 

5.4 Software 
Preferably, the measurement chain should be started by a Root of 
Trust for Measurement. Since the objective is only to restore the 

RTS and RTR that would have otherwise been provided by a 
TPM, the prototyping does not focus on providing an RTM. On 
the selected hardware, the Boot ROM could have been written to 

 
Figure 5: Data Path of the Hash Wrapper 
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function as an RTM. Since the Boot ROM is literally stored in 
read-only memory, the measurement chain begins in the code 
loaded and executed by the Boot ROM, i.e., the Secondary 
Program Loader (SPL). 

The SPL (40KB), like the Boot ROM (24KB), is limited to 64KB 
as both the on-chip RAM and ROM are 64KB each. The SPL’s 
main purpose is to initialize the memory controller to access the 
external SDRAM (1GB), and locate, load and execute the next 
stage, which is the much larger (235KB) U-Boot. The SPL was 
augmented to create a DevID, initialize the RTS/RTR, hash U-
Boot, extent its digest and initialize an event log with that digest. 
The purpose of DevID is to allow an assessor to lookup the 
corresponding shared secret. DevID is calculated by quoting 
“DeviceIdentifier” before any extends (i.e. the PCR is 0). The 
address of the event log and DevID is passed to U-Boot via 
register R0. 

SPL and U-Boot are both part of the Das U-Boot Universal Boot 
Loader [21] suite. The source was obtained from within the Altera 
Embedded Design Suite [22], as patched by the Terasic System 
CD build process [23]. U-Boot is a highly configurable, 
interactive, scriptable boot loader. Loading operations may occur 
from many locations for many purposes. Support is decentralized, 
making insertion of appropriate measure/log/extend operations 
tedious. Nevertheless, sufficient hooks were placed to permit the 
measured loading of a Linux operating system – in this case, 
Ångström. These measurements include the device tree blob 
(DTB) [24] and zImage [25], and are appended to the event log 
received from SPL. 
To boot Linux, the address of zImage and the DTB are specified 
in the “bootz” command. After the DTB has been loaded, and 
measured, U-Boot inserts an “elog” node with entries for each 
measurement in the log into the DTB. Once Linux is booted, the 
event log is conveniently available in /proc/device-tree/elog/.  

The attestation process was simulated using the process shown in 
Figure 7. After receiving an attestation response, the assessor can 
verify the quote as follows: (1) retrieve the shared secret from the 
provisioning process based on the DevID, (2) decrypt sig, 
compute H(PCR||NONCE)  and verify that they are equal (if so, 
the PCR value can be trusted to have been produced by a known 

device in response to this attestation request). If the PCR is 
unknown, (3) re-compute the DoDs from elog and compare to the 
reported PCR value (if equal, the event log is intact). The assessor 

can then make a device trust decision based on the DoDs and/or 
individual digests, e.g. by looking them up in known-good or 
known-bad databases. This process is illustrated in Figure 8. 

 
Figure 8: Notional assessment process. 

6. Additional Optimizations 
The prototype discussed above has been designed to be true to the 
TCG’s modus operandi. In this section we propose resource 
optimizations for decreasing the impact of adding Extend and 
Quote as a root of trust to a device.  

6.1 Resource Reduction 
• Elimination of conventional hash: The largest component of our 

initial prototype is the SHA-256 hash engine. Since it has been 
shown that block ciphers can be made to support hashing [29], 
the complexity of our solution can be greatly reduced by 
eliminating the conventional hash engine, and rewiring the state 
machine to use the block cipher for hashing. For that, we used 
the Davies-Meyer (DM) approach as illustrated in Figure 9. 
Message fragments, Mi, are used as encryption keys in this 
scheme. 

• Use of lightweight cipher: While AES is very popular, it was 
not specifically designed for resource constrained 
environments. We selected the Simon cipher [28] for the 
optimized prototype as it requires few hardware resources, and 
was readily available from, though never required by, our 
sponsor. Its performance also happens to be tuned for 
implementing in hardware. 

• Compression Consolidation: The method by which hash 
algorithms, such as SHA, produce message digests is via 
Merkle-Damgård (MD) construction [30]. MD operates on a 
function that compresses two inputs into one output. To hash a 
sequence of message fragments (M), the process is repeated 
where one input (D) to the compression function (C) is the 
output of the previous round. This can be summarized by Di = 

C(Di-1, Mi). The TCG extends digests to PCRs in a similar 
manner, as follows: PCRi = H(PCRi-1 || Di) with PCR0 = 0. In 
the case of SHA256, the H operation is C(C(IV, PCRi-1 || Di), 

 
Figure 7: Summary of the attestation process in the 

validation prototype 
 

 
Figure 9: Using the Davies-Meyer approach for hash 

implementation, where Hi = EMi(Hi-1) ⊕  Hi-1 

 



 

PAD). That means that for every extend, an IV (initialization 
value) and PAD are compressed into each intermediate result 
when they should only be used once. To do so, we consolidate 
the algorithms with: PCRi = C(PCRi-1, Di) where PCR0 = IV. 
Padding could be compressed in when the PCR is used, i.e. 
during Quote. 

• Elimination of Decrypt Logic: If a device only requires the 
abilities to Extend and Quote for measurement and attestation, 
and does not require full, general-purpose crypto acceleration, 
then the decrypt function could also be eliminated. Only the 
encrypt portion of the cipher is required for signing and to 
implement the DM hash. 

6.2 Optimized Prototype 
Figure 10 illustrates the data path for the optimized prototype. The 
most noticeable difference between this approach and our initial 
prototype is the integration of the wrappers, where only one state 
machine controls the various components. The state machine 
arbitrates signals hash, extend, and quote from the host processor. 
It reads in those signals, and then controls the data slicer, counter 
(not shown), and multiplexer to feed in the necessary inputs to the 
Simon encrypt engine to perform hash, Extend and Quote 
operations.  

To perform a hash, selDI and selCV are used to control the 
multiplexers that feed into din (plaintext) and cvin (key) inputs of 
the Simon engine. These signals control the multiplexers to feed 
DSR (Digest and Signature Register) data to din while hdat input 
from the host processor is fed to cvin input. The Data slicer and 
Counter components are used to feed the 128-bit messages to 
Simon in 32-bit blocks in the correct order. This reduces the size 
of multiplexers as stated earlier. Once the Ciphertext output is 
calculated, the selDI signal is set so that the XOR unit is fed DSR 
as one of the inputs. Thus, DSR is written with Emi(Hi-1) ⊕  Hi-1. 

Executing an Extend resembles the hash operation except for two 
differences. First, selDI and selCV are set so that PCR data is fed 
to the Simon engine’s din input, while DSR, which contains the 
digest to extend, is fed to cvin input. Second, once dout is 
calculated, it is XORed with and written to the PCR instead of 
DSR. This is accomplished through signals selDI and en_PCR.  

However, a Quote operation is more complex because it requires 
both hash and encrypt operations. It requires the hash of PCR and 
a NONCE that is provided by the host via hdat. This is 

accomplished by setting selDI and selCV to feed PCR to Simon 
engine’s din and hdat to cvin. The Ciphertext output is then fed to 
the XOR gate with DSR to produce the necessary digest, which 
will be stored in DSR. The DSR data is then encrypted with the 
Unique Device Secret (UDS) through selDI and selCV. After 
feeding DSR to the Simon engine, DSR data is reset to 0’s. This is 
done so that once the Ciphertext output is valid, we can set selDI 
so that output is XORed with the DSR data, which is all zeros. 
Any value XORed with zeros will return that value unchanged. In 
other words, the output of the Simon engine, which is the 
encrypted signature, will not be altered by the XOR unit and 
stored in DSR. The register will contain the encrypted signature, 
which is then read by the host.  

The digest and PCR lengths were reduced from 256 to 128 bits, 
not in an attempt to optimize by sacrificing security, but to fit 
more naturally with the available accelerator’s block size. Smaller 
devices that provide crypto acceleration may only provide, for 
example, AES-128. Also, the largest block size in the reference 
Simon implementation is 128 bits.  

7. Results 
The designs of the crypto cores and wrappers supporting 
hardware-rooted-trust measurement and remote attestation were 
implemented on an Intel Cyclone V SoC FPGA, as peripherals for 
the in-built ARM processor.  The measurement units used for 
quantifying the resource consumption of the FPGA design are the 
Adaptive Logic Module (ALM) and Block Memory Bits (BMB). 
ALMs are the building blocks of the FPGA. Each ALM comprises 
an 8-input adaptive look table (ALUT) to implement general 
combinatorial logic, four storage registers, and two adders. On the 
other hand, BMB is a measure of the amount of embedded 
memory block resources used.  For Intel FPGAs, embedded 
memory refers to the dense dedicated memory structures provided 
on FPGAs, which provide an alternative to exhausting a large 
amount of ALMs for implementation of memory (i.e. distributed 
memory).  In Table 1, the required resources to implement the 
Extend and Quote wrappers for the initial (conventional) and the 
optimized prototypes are provided.  For the design of the 
conventional approach that includes AES and SHA hardware that 
could be found on a microcontroller with hardware crypto 
support, the size of the additional wrappers was 442 ALMs, 
representing a 26.7% increase over its crypto accelerator engines’ 
1657 ALMs.  For the design of the optimized approach using a 
lighter Simon-Encrypt hardware module, the ALM count was 
reduced by 87%, while reducing the number of BMB to 0. For 
reference, the Simon hardware with wrappers together would be 
roughly 1/3 the size of an OpenMSP430 [31]. 

 

Table 1: ALM\BMB Consumption of Conventional and 
Optimized Prototypes 

8. Conclusions 
Advances in microelectronics have made it possible to develop 
small-scale computational platforms that can also be 
internetworked to form an IoT and serve numerous applications. 

 
Figure 10: Data Path of Optimized Implementation 

 



 

The increased popularity of IoT motivates the need for 
lightweight, yet robust, attestation of the integrity of the 
computing platform of the involved devices. Existing trust 
attestation technologies, such as the TPM, would impose 
unacceptable cost and power overhead to the IoT devices and 
would be thus deemed unsuitable. The TPM alternatives proposed 
by the technical community, such as DICE, leave out key security 
features, namely RTS and RTR, in order to reduce complexity. In 
this paper we have proposed viable, hardware-based approaches 
for protecting the measurement and attestation process on IoT 
devices with low overhead. Our methodology leverages crypto 
accelerators found on many microprocessors and microcontroller 
based systems and incorporates a lightweight state machine to 
drive them securely. 
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