

IoT Boot Integrity Measuring and Reporting

Tom Broström
Cyber Pack Ventures, Inc.

5850 Waterloo Road Suite 140
Columbia, MD 21045

tbrostrom@cyberpackventures.com

John Zhu, Ryan Robucci, and Mohamed Younis
Department of Computer Science and Electrical Engineering

University of Maryland Baltimore County
1000 Hilltop Circle, Baltimore, MD 21250

zhujohn1, robucci, younis@umbc.edu

ABSTRACT

The current era can be characterized by the massive reliance on
computing platforms in almost all domains, such as
manufacturing, defense, healthcare, government. However, with
the increased productivity, flexibility, and effectiveness that
computers provide, comes the vulnerability to cyber-attacks where
software, or even firmware, gets subtly modified by a hacker. The
integration of a Trusted Platform Module (TPM) opts to tackle
this issue by aiding in the detection of unauthorized modifications
so that devices get remediation as needed. Nonetheless, the use of
a TPM is impractical for resource-constrained devices due to
power, space and cost limitations. With the recent proliferation of
miniaturized devices along with the push towards the Internet-of
Things (IoT) there is a need for a lightweight and practical
alternative to the TPM. This paper proposes a cost-effective
solution that incorporates modest amounts of integrated roots-of-
trust logic and supports attestation of the integrity of the device’s
boot-up state. Our solution leverages crypto-acceleration modules
found on many microprocessor and microcontroller based IoT
devices nowadays, and introduces little additional overhead. The
basic concepts have been validated through implementation on an
SoC with an FPGA and a hard microcontroller. We report the
validation results and highlight the involved tradeoffs.
Keywords

Trusted platform, IoT, Integrity, Attestation, Security, Measured
boot.

1. INTRODUCTION
The massive integration of computers in all aspects of the human
life is to be credited for improving manufacturing, trade,
healthcare, travel, entertainment, government services, etc. One of
the key advantages of incorporating computers is the flexibility
and adaptability provided by the software. Yet, cyber-attacks
exploit such flexibility through a variety of means to inject
malicious modules, e.g., malware, botnets, etc. Not only the
operation of the computers could be altered by a malicious
software module but also important information could be leaked.
The consequences could be dramatic and constitute a major
national security threat. For example, altering the control
algorithms for a nuclear reactor could lead to a disaster.
Moreover, the effect of information leakage can put individuals
and nations at risk. For example, letting classified documents and
business bids be in the hand of an adversary would be serious
security and economic threats. Allowing access to personal data
maintained by government agencies will not only violate the
privacy of the citizens, but also make them susceptible to physical
crimes and identity theft.

One of the subtle venues for injecting malicious modules is
through software updates. Being able to load an unauthorized
operating system update is the most serious scenario. In fact, with
the increased popularity of flash memory, this may be applicable
to firmware. Preventing unauthorized updates would naturally be
the intuitive approach; yet it is hard to enforce unless access to a
device is restricted. Instead, the technical community has
demanded that changes in the software and hardware
configuration are to be at least detected [1][2]. The Trusted
Computing Group (TCG) recognized this need and has established
a standard for measuring and reporting platform integrity. The
TPM, developed and ratified by the TCG, constitutes the industry-
adopted solution for enterprise PCs, servers and embedded
systems. The TPM specifications defines how to measure and
attest platform integrity. Overall, hardware implementation of the
TPM is preferred; many vendors offer TPM chips to be included
in the design and is interfaced as a peripheral to the processor.

With the increased popularity of small computing devices and
applications of IoT, the need for platform integrity grows both in
scale and scope. Basically, miniaturized devices are becoming
pervasive and are being employed in a wide range of applications.
Most notable among IoT applications are those involving
controlling physical processes, often referred to as cyber-physical
systems. The role of IoT devices in this type of application covers
sensing, computation and actuation; obviously, such a role is quite
critical and ensuring the integrity of the configuration and
software on these devices is paramount. However, the constrained
design of IoT devices makes the incorporation of a TPM
unsuitable. Generally, an IoT device is subject to resource, size,
power, and cost constraints; therefore, the standardized TPM
based solution would not be viable both economically and
contextually. Hence, a lightweight approach is needed for IoT
devices. The desired approach fundamentally must cope with
deign constraints by trading off some of the trust management
functionally [3].

The abovementioned issues have motivated the technical
community to develop suitable schemes. The introduction of
DICE is among the most notable efforts in that regard [5]. DICE,
which stands for Device Identifier Composition Engine opts to
enable attestation without requiring a TPM in order to limit the
required resources. To do so, DICE uses a secrete device identifier
to measure the integrity of software modules sequentially during
device boot-up; such a process yields a sequence of secrets. The
last secret can be checked by the attester against a known value to
confirm the device integrity. Unlike the TPM, DICE does not
provision for storing integrity measurements and does not support
secure attestation. Thus, DICE may expose the IoT device to a
replay and impersonation attacks. Basically, if an intermediate

AIoTAS, June 2018, Los Angeles, CA, United States
© Copyright held by the owner/author(s).

secret in the sequence is leaked, it becomes possible for malware
to impersonate legitimate code by replaying the leaked value.

This paper strives to overcome the shortcoming of DICE and to
provide an effective, yet lightweight, solution for ensuring
platform integrity of IoT devices. The proposed solution leverages
crypto-acceleration modules found on many microprocessor and
microcontroller based IoT devices nowadays in order to provide
secure attestation services. Fundamentally we provide a wrapper
that provisions for secure storage and reporting of platform
integrity measurements. Our proposed approach has been
validated through implementation on an SoC with an ARM-based
hard processor system (HPS) and an Intel/Altera FPGA. The
validation results confirm the effectiveness of our approach in
terms of the supported functionality and low overhead. We also
highlight the involved tradeoffs and provide some design
guidelines. To the best of our knowledge, our approach is the first
to sustain the key TPM functionality in hardware while addressing
the design constraints of IoT devices.
The paper is organized as follows. The next section provides an
overview of the TPM and DICE, analyzes the shortcoming of
DICE, and outlines the desired features for our approach. Section
3 covers related work in the literature. Our methodology is
presented in Section 4. Section 5 discusses the prototype-based
validation and reports the testing results. The paper is concluded
in Section 6 with a summary of the contribution and future work.

2. Design Goals
This section mainly summarizes the functionality of a TPM and
explains how DICE provides platform integrity. An analysis is
then provided to highlight the shortcomings of the DICE based
methodology and to outline the desirable features for measuring
and attesting the platform integrity of an IoT device.

2.1 TPM Overview
While the TPM has grown into a sophisticated and complex
hardware security module, as evidenced by its 1,479 page, four-
volume specification, it retains a simple objective at its core.
Basically, the TPM opts to provide methods for collecting and
reporting the identities of hardware and software components that
comprise a platform [4]. A software identity is represented by a
digest produced from a cryptographic hash of that component.
The first digest of mutable code on a platform is produced by the
platform’s Root of Trust for Measurement (RTM), e.g. in boot
ROM. The RTM delivers the digest to the TPM’s collector,
known as the Root of Trust for Storage (RTS). The RTS extends
this and subsequent digests as a cumulative digest of digests
(referred to as DoDs in this paper). The RTS stores the DoDs into
protected regions known as Platform Configuration Registers
(PCRs). Extending a digest in a PCR is done as follow:

PCRnew	= H (PCRold || digest),

where H is a secure hash function, ‘||’ is the concatenation
operator, and digest is the hash of the next software module to be
executed in the boot sequence.

Attestation refers to generating a proof to confirm the platform
integrity. To build an attestation, the TPM’s reporting agent, the
Root of Trust for Reporting (RTR), quotes selected PCRs by
digitally signing their DoDs. The RTR signs with its Attestation
Identity Key (AIK). The AIK is generated by the TPM and
signed, in the form of a certificate, by its Endorsement Key (EK).

EK may be provisioned by the TPM manufacturer so that
assessors who trust the manufacturer can trust the AIK used in
attestation. Also, the EK public key (EKpub) could be used as the
hardware identity.

During the measured boot process, executable modules, beginning
with the RTM, perform the following steps on subsequent
modules: load, measure (create a digest by hashing), log, extend,
and execute (transfer control). The log of digests built is
commonly known as the event log. An assessor can validate the
event log by reiterating the Extend operations in an attempt to
reproduce the DoDs reported in the PCRs. Trust is said to transit
from the RTM to subsequent modules in that a trail of evidence in
the PCRs and boot log can be used to assess trustworthiness as a
whole. Therefore, the sequence of recorded events is described as
building a transitive trust chain, or chain of trust. In order to
describe characteristics that affect a platform’s trustworthiness,
the TCG requires three Roots of Trust, namely RTM, RTS and
RTR, as described above. The device should respond to
attestation confirmation inquiry where a nonce is provided and
quote is requested in return. The RTR hashes the concatenation of
an assessor’s nonce and the DoDs in the PCRs and then encrypts
(digitally signs) using AIKpriv. The signed attestation and log
constitute the device’s response to quote request. Figure 1
illustrates the attestation process for a TPM.

A key feature of this architecture is that if a boot module is
changed, it will be reflected in the DoDs. If that module were
malicious, to allude detection, it would need to modify the DoDs
so that it appears benign. Since the only modification permitted is
Extend, the module would need to calculate a datanew value to
H(DoDsbad || datanew) in order to produce DoDsgood. This is
mathematically infeasible.

2.2 DICE Methodology
DICE is intended to serve a similar role as that of a TPM that is to
attest to the trustworthiness of an embedded device [5]. Generally,
a TPM could constitute an unwarranted overhead for resource and
cost constrained smart sensing and actuation devices that would
serve within an IoT. DICE is designed by the TCG for these
devices that do not have a TPM. While DICE is fundamentally
similar to an RTM, it does not provide RTS and RTR
functionality and only supports RTM-like functionality.
While the TPM has its own secrets (e.g., AIKpriv), DICE specifies
its secret, accessible only to DICE, as a Unique Device Secret

(UDS, or Secret0). DICE extends the UDS with the digest of the

Secure	Hash

Secure	Hash
RTM

RTS

Digest	of		Digests	(DoDs)
Attestation	
Identity	Key	

RTRPlatform	Configuration	Registers

Hash Hash

….
Boot	ROM

SW	Module	
#1

SW	Module	
#(n-1)

SW	Module	
#n

Order	of	execution	

Hash

SW	Module	
#2

Encryption	Logic

Figure 1: Illustraing how the TPM concept can be applied to

boot measurment and attestation.

first mutable code. The result, and output of DICE is the
Compound Device Identifier (CDI, or Secret1). When Modulei
prepares to execute Modulei+1, it computes Secreti+1, destroys
Secreti, and passes Secreti+1 as summarized by the following
equations and illustrated in Figure 2:

Secret0 = UDS, Module0 = DICE
Secreti+1 = H(Secreti || H(Modulei+1))

2.3 DICE Analysis
DICE’s secrets are akin to the TPM’s DoDs as they are produced
conceptually in a chain from a trusted root. However, DICE does
not provide any protection for its secrets as the TPM’s RTS
protects DoDs with PCRs. Consequently, the secrets are loosely
protected by untrusted (i.e., mutable, non-root-of-trust) code.

Under the TPM scheme, it is generally expected that event logs
and DoDs can be freely shared as they are not cryptographic
secrets. Under DICE, there is no event log per se as there are no
trusted mechanisms to protect and report its integrity. This results
in a reduced ability to attest reliably to the boot state of the
platform.

Obviously, secrets must not be accessible to unauthorized entities.
The loss (i.e. leakage) of a secret makes a DICE-enabled device
vulnerable to replay and impersonation attacks [5]. Only the
engine and the (initial) UDS secret are protected. Derived secrets
are left unprotected. Protection of measurement and attestation
assets is vital [4][20][26].
The type of attestation being developed by the DICE working
group is Implicit Identity Based Device Attestation [19]. Instead
of passing Secret2 to Module2, it generates and passes an
asymmetric key pair, namely the Alias Key, derived from the
CDI, and the hash of Module2. The result is the same –
unprotected secrets passed between modules make the process
vulnerable to attack.

2.4 Design Objectives
It is reasonable to expect that certain applications must process
secrets and that it is desirable to minimize the attack surface
wherever possible. In the case of how to perform a measured boot
with attestation, the TCG determined that a specific minimum set
of discrete hardware, including the RTS and RTR, were essential
[4]. DICE falls short of these requirements and essentially
sacrifices robustness to minimize resources. The objective of this
paper is to satisfy both the original need for the RTS and RTR and
the need to function on a device without a TPM.

3. Related Work
Prior work can be categorized based on how to support attestation
into hardware and software schemes. The most notable hardware
solutions are TPM [4] and TrustZone [6][7]. However, these
solutions are geared for enterprise computing, e.g., servers and
desktop systems, are not fit for IoT devices due to cost, size and

power constraints. To support portable devices like smart phones,
some work has focused on reducing the hardware complexity, or
pursued a software-based or a hybrid-software and hardware
solutions. For example, M. Kim, et al. [8] have focused on
optimizing the hash function implementation within a TPM to suit
mobile devices. Meanwhile, N Aaraj et al. [9] promote the use for
a software TPM to overcome the cost constraints for embedded
devices. The software is to run in a protected execution mode.
Kursawe and Schellekens [10] opt to simplify the hardware
implementation of a TPM by moving some of the functionality to
software. Yet the key complexity in terms of resources and
asymmetric cryptography support are not tackled and the solution
does not suit IoT devices.

The TPM concept is further extended to support dynamic system
status [11]-[13]. In [11], the idea is to enable attesting to the
correctness of the control flow within a program in order to detect
runtime attacks, e.g. stack overflow. The solution, which is
hardware based, is geared for cyber-physical systems where the
integrity of the control software should be monitored both at
bootstrapping and at runtime. LeMay and Gunter [12] tackle the
same issue through a software-based approach through the
inclusion of a micro-kernel that is not remotely upgradeable. A
similar objective is targeted in [13] to factor in the data generated
by the program rather than the flow of execution. Again these
solutions are not geared for resource-constrained IoT devices. In
addition, continual attestation is unwarranted for IoT devices
unless they perform actuation within mission critical applications.
We argue that our methodology makes hardware-based attestation
both effective and efficient.

Supporting attestation for resource-constrained devices has also
received attention from the research community. R. N. Akram, et
al. [14] have studied attestation for smart cards, which are
becoming very popular in mass transient, university campus, etc.
DICE, as discussed earlier, is endorsed by the TCG. Variants to
DICE are also being pursued, e.g. Microsoft RIOT [15]. Again, all
these solutions are software based and trade off resources for
robustness by leaving out the RTS and RTS functions. On the
other hand, some published work opts to mitigate such
shortcoming by using heterogeneous setups where attestation of
IoT devices involves unconstrained devices as well. For example,
MTRA is a Multiple-Tier Remote Attestation protocol that
supports IoT setups which involve heterogeneous devices in terms
of the computational resources [16]. Some of the devices are
assumed to be equipped with TPM hardware. Meanwhile, the
attestation of resource-constrained devices is handled through
software. Basically, a TPM-equipped device will act as an
assessor for each of the resource-constrained devices that are
within its communication range.

Cooperative attestation is another methodology for overcoming
the resource constraints of IoT devices. For example, in [17],
devices are grouped into clusters and each cluster is considered as
an entity whose trust is to be attested. Devices within a cluster run
distributed consensus algorithms to attest to their individual trust.
The attestation here is based on a simple operation such as
reporting a sensor value. Since the devices are homogenous, the
distributed consensus algorithm, e.g., majority voting, could be
used to determine outliers and deem them as untrusted. A full
TPM-based attestation is then performed at the inter-cluster level,
where the individual operations are divided among the cluster
members. Instead of asymmetric cryptograph, a residue number

Order	of	execution	

Unique	device	secret

Boot	ROM
SW	Module	

#1

Compound	Device	
Identifier	(Secret	1)

….DICE

Hash
SW	Module	

#2

Secret	2

Hash

Hash

SW	Module	
#3

Secret	3

Hash

Secure	
Hash

Secure	
Hash

Hash Hash

Figure 2: Illustration of DICE in operation. Note the absence

of RTS and RTR.

system (RNS) based homomorphic share scheme is used to enable
the generation of a combined cluster-based attestation. We argue
that cooperative attestation could be impractical and would make
security hard to ensure. Our approach opts to enable hardware
support while coping with the resource limitation of the devices.

4. Proposed Architecture
The cryptographic primitives found in the TPM to support the
RTS’s Extend and the RTR’s Quote operations are hash (e.g.,
SHA) and public key (asymmetric) cipher to produce a digital
signature (e.g., RSA). DICE, on the other hand, omits the RTS
and RTR. Our objective in this paper is to develop a solution that
provisions the RTS and RTR support, while staying conscious of
resource concerns for IoT devices. Our methodology is to pursue
symmetric rather than asymmetric cryptography and repurpose
on-chip crypto accelerators to also function as RTS and RTR.
Since the bulk of encryption needs are met with faster symmetric
ciphers rather than slower asymmetric alternatives, it is becoming
increasingly common to find symmetric algorithms integrated into
microcontroller hardware. For example, variations on the ST
STM32L081xx, TI MSP430 and the Atmel XMEGA
microcontrollers have embedded AES acceleration. We argue that
our methodology strikes a balance between overhead and
robustness and would suit resource-constrained IoT devices.

In the balance of this section, we show how integrated hash and
symmetric cipher accelerators can be augmented to provide the
needed roots of trust in hardware. This augmentation can be
thought of as a “wrapper” with virtually no disruption to the core
crypto accelerator logic, or “engine”. The wrapper would function
as a trusted, special-purpose interface to the general-purpose
accelerator. Thus, as manufacturers dedicate silicon to these
accelerators, they could find that a fractional increase could
provide an important layer of trust attestation for very little cost.
We confirm that in Section 4 when discussing our prototype-
based validation of our methodology.

4.1 Supporting Extend Operation
While the TPM supports multiple PCRs and multiple hashing
algorithms, our solution will be stripped down to a single PCR
and a single hashing algorithm. Note that the PCR is to be
protected from arbitrary writes, and may only be updated with
Extend. The initial value of PCR is 0, and may only be reset with
a full platform reset.
Figure 3 illustrates a notional implementation of Extend using a
generic hash engine. The blue boxes represent the unmodified
hash core and the digest register. The orange box and arrows
represent the additional logic (i.e., wrapper) added to perform an
Extend. The wrapper includes a PCR and a small state machine

that control the operation of the hash engine. It is assumed that the
digest to be extended has already been produced. The operation
proceeds as follows: (1) the PCR and (2) DIGEST are effectively
concatenated by feeding them sequentially to the hash engine

where H(PCR||DIGEST) is generated, and (3) the result is written
back to the PCR.

4.2 Supporting Quote Operation
Instead of quoting multiple PCRs with one of the TPM-supported
asymmetric ciphers, our approach will quote one PCR using a
symmetric cipher. This will require the device and the assessor of
the attestation to possess, or otherwise indirectly use, a shared
secret. The attestation is built by signing (or encrypting) the hash
of the concatenation of the PCR and an assessor’s challenge
nonce, i.e., E(H(PCR||NONCE)).

Figure 4 illustrates the operation of QUOTE, which proceeds as
follows: (1) the PCR and (2) the challenge nonce are fed to the
hash engine sequentially, and (3) hashed to produce a digest as
H(PCR||NONCE) that is (4) sent to the cipher’s input block, the
(5) device secret is place in the cipher’s key to (6) encrypt the
digest, (7) the key is zeroed to prevent unauthorized use, and (8)
the resulting signature, E(H(PCR||NONCE) is delivered to the
host.

5. Prototype
To demonstrate the viability of our lightweight attestation method,
a prototype was implemented to gain an understanding of the
resource consumption necessary for each part of the method. The
prototype was built using the DE1-SoC Development Kit, which
is hardware design platform built around the Altera System-on-
Chip (SoC) FPGA and combines the ARM dual-core Cortex-A9
hardcore processor. The ARM processor is responsible for
invoking Extend and Quote during and after measured boot,
initially from ROM. It also represents the less secure portion of an
embedded device, as it is vulnerable to changes in software. The
FPGA will be used to implement the secure hardware portion of
the methods that perform Extend and Quote, which would
otherwise be constructed in an ASIC.

5.1 Crypto Accelerators
Ideally, the implementation of the wrappers should depend very
little on the choice of hash and cipher algorithms, as the focus is
on producing lightweight wrappers. In our initial conventional
prototype, the SHA256 hash [27] and AES cipher algorithms were
selected. Like the optimized prototype presented in section 6, this
prototype produces a 128-bit signature, but from a truncated 256-
bit digest as depicted in Figure 4, step 4. Truncation of digests is
addressed in Section 7 of [27].

5.2 Hash Wrapper
The hash wrapper is used to execute extend operations by

controlling the SHA256 engine to hash host modules while
preventing important information, such as the PCR, from being
maliciously altered by the software. To accomplish this task, the

Figure 3: Hash engine with Extend wrapper

Figure 4: Hash and cipher engines with Quote wrapper

wrapper is implemented as a state machine which receives signals
from the ARM processor and controls the hardware execution.

Figure 5 illustrates the hardware setup of the state machine and
how it interacts with the multiplexer, and the SHA256 engine. The
state machine acts as the arbiter between the software and
hardware; it receives the hash, extend, overwrite, and end signals
from the ARM processor and then controls the hardware
components to produce the output necessary for the request. This
layout prevents the software from having direct control of the
SHA engine. To control the input of the SHA engine, two 32-bit
input multiplexers are used. In this way, the SHA engine can be
fed either a message input from the ARM processor for normal
operation or be fed register values directly for Extend or Quote
operations. The counter is used to control 32-bit data slicing of the
256 bit inputs. For example, when performing an Extend
operation, the state machine controls the multiplexer and counter
to first feed the 256-bits PCR, then 256-bits Digest to the SHA
engine in 32 bit blocks in the correct order. It is important to note
that the Quote signal is present in the diagram, although Quote is
technically part of RTR. The need for this signal will be explained
in the next section.

Because the goal of the prototype is to minimize the resource
consumption, the data width of the HDAT_input is set to 32 bits at
a cost of performance speed. For example, in a previous
implementation, the data width was set to 512 bits because
SHA256 processes 512 bits at a time. This allowed the engine to
load the message in one clock cycle. However, this incurred large
costs since the multiplexer had to have 512 bits inputs, which
greatly increases the combinational logic. In addition, it required
a 512-bit register within the SHA engine to prevent race
conditions, which grows the number of needed registers. Thus, the
HDAT_input was decreased to 32 bits. This number was selected
because SHA256 needs to process a minimum of 32 bits every
clock cycle. While such data slicing increases the number of clock
cycles needed to load the message from one to sixteen, it greatly
reduces the size of the multiplexer and register.

The PCR is protected from malicious software attacks through
two methods. First, the PCR only reads the output from the SHA
engine. It does not have any other input. Second, the enable signal
of the register is controlled by the state machine. With these two
methods, an attacker, i.e., though malicious software, cannot
overwrite the PCR with their own value. An attacker also cannot

control the input of the PCR register, nor is able to control the
enable signal to allow overwriting the PCR.

5.3 Cipher Wrapper
The cipher wrapper is used to execute Quote operations using a
lightweight symmetric-key algorithm, which is AES in this
prototype. The goal is to sign the PCR securely. Doing so requires
protection of the secret key, the PCR contents, and the signing
mechanism. Such protection is accomplished by using hardware
to sign the PCR with the symmetric key instead of software.

Figure 6 illustrates the data path of the cipher wrapper and its
interface with the ARM processor. The main components are the
state machine, counter (not shown), data slicers, and multiplexer,
and the AES engine [32]. The state machine is used to arbitrate
between the ARM processor and the FPGA to prevent direct
control of the AES engine during sensitive operations. It receives
signals encrypt, decrypt and quote from the ARM processor, and
in turn controls the other components. The multiplexer is used to
control whether the plaintext input of AES is fed messages from
ARM processor or the H(PCR || NONCE). This allows for general
purpose use of the AES engine or for Quote operations. The
counter and the data slicers are slightly different from their
counterparts in the hash wrapper. For example, the cipher
wrapper’s counter only needs a data width of three instead of four
because the engine deals with a maximum data width of 256, or
eight 32-bit blocks.
When performing Quote operations, the state machine requests
the digest of PCR||NONCE from the hash wrapper through the
hash_sig signal. If the RTS wrapper is idle, it will hash the
PCR||NONCE by controlling its multiplexer to feed in the
PCR||NONCE. Once a valid digest is calculated, the wrapper will
read in the leftmost 128 bits and encrypt it with the secret key. To
prevent race conditions, hash_sig signal is kept high to prevent
any other hash or Extend operations from being executed until the
Quote operation is complete. This prevents the PCR||NONCE
digest from accidentally being rewritten with a different value.
To interface with the processor, the 128-bit plaintext input are fed
to the AES engine in multiple 32-bit blocks with the use of the
data slicer and counter. The data slicer extracts 32 bits from the
input, while the counter controls which 32 bits are extracted.
While this increases the clock cycles required to load the input
message, it reduces the multiplexer from having 128 bit data
width to only 32 data width.

5.4 Software
Preferably, the measurement chain should be started by a Root of
Trust for Measurement. Since the objective is only to restore the

RTS and RTR that would have otherwise been provided by a
TPM, the prototyping does not focus on providing an RTM. On
the selected hardware, the Boot ROM could have been written to

Figure 5: Data Path of the Hash Wrapper

Figure 6: Data Path of the Cipher Wrapper

function as an RTM. Since the Boot ROM is literally stored in
read-only memory, the measurement chain begins in the code
loaded and executed by the Boot ROM, i.e., the Secondary
Program Loader (SPL).

The SPL (40KB), like the Boot ROM (24KB), is limited to 64KB
as both the on-chip RAM and ROM are 64KB each. The SPL’s
main purpose is to initialize the memory controller to access the
external SDRAM (1GB), and locate, load and execute the next
stage, which is the much larger (235KB) U-Boot. The SPL was
augmented to create a DevID, initialize the RTS/RTR, hash U-
Boot, extent its digest and initialize an event log with that digest.
The purpose of DevID is to allow an assessor to lookup the
corresponding shared secret. DevID is calculated by quoting
“DeviceIdentifier” before any extends (i.e. the PCR is 0). The
address of the event log and DevID is passed to U-Boot via
register R0.

SPL and U-Boot are both part of the Das U-Boot Universal Boot
Loader [21] suite. The source was obtained from within the Altera
Embedded Design Suite [22], as patched by the Terasic System
CD build process [23]. U-Boot is a highly configurable,
interactive, scriptable boot loader. Loading operations may occur
from many locations for many purposes. Support is decentralized,
making insertion of appropriate measure/log/extend operations
tedious. Nevertheless, sufficient hooks were placed to permit the
measured loading of a Linux operating system – in this case,
Ångström. These measurements include the device tree blob
(DTB) [24] and zImage [25], and are appended to the event log
received from SPL.
To boot Linux, the address of zImage and the DTB are specified
in the “bootz” command. After the DTB has been loaded, and
measured, U-Boot inserts an “elog” node with entries for each
measurement in the log into the DTB. Once Linux is booted, the
event log is conveniently available in /proc/device-tree/elog/.

The attestation process was simulated using the process shown in
Figure 7. After receiving an attestation response, the assessor can
verify the quote as follows: (1) retrieve the shared secret from the
provisioning process based on the DevID, (2) decrypt sig,
compute H(PCR||NONCE) and verify that they are equal (if so,
the PCR value can be trusted to have been produced by a known

device in response to this attestation request). If the PCR is
unknown, (3) re-compute the DoDs from elog and compare to the
reported PCR value (if equal, the event log is intact). The assessor

can then make a device trust decision based on the DoDs and/or
individual digests, e.g. by looking them up in known-good or
known-bad databases. This process is illustrated in Figure 8.

Figure 8: Notional assessment process.

6. Additional Optimizations
The prototype discussed above has been designed to be true to the
TCG’s modus operandi. In this section we propose resource
optimizations for decreasing the impact of adding Extend and
Quote as a root of trust to a device.

6.1 Resource Reduction
• Elimination of conventional hash: The largest component of our

initial prototype is the SHA-256 hash engine. Since it has been
shown that block ciphers can be made to support hashing [29],
the complexity of our solution can be greatly reduced by
eliminating the conventional hash engine, and rewiring the state
machine to use the block cipher for hashing. For that, we used
the Davies-Meyer (DM) approach as illustrated in Figure 9.
Message fragments, Mi, are used as encryption keys in this
scheme.

• Use of lightweight cipher: While AES is very popular, it was
not specifically designed for resource constrained
environments. We selected the Simon cipher [28] for the
optimized prototype as it requires few hardware resources, and
was readily available from, though never required by, our
sponsor. Its performance also happens to be tuned for
implementing in hardware.

• Compression Consolidation: The method by which hash
algorithms, such as SHA, produce message digests is via
Merkle-Damgård (MD) construction [30]. MD operates on a
function that compresses two inputs into one output. To hash a
sequence of message fragments (M), the process is repeated
where one input (D) to the compression function (C) is the
output of the previous round. This can be summarized by Di =

C(Di-1, Mi). The TCG extends digests to PCRs in a similar
manner, as follows: PCRi = H(PCRi-1 || Di) with PCR0 = 0. In
the case of SHA256, the H operation is C(C(IV, PCRi-1 || Di),

Figure 7: Summary of the attestation process in the

validation prototype

Figure 9: Using the Davies-Meyer approach for hash

implementation, where Hi = EMi(Hi-1) ⊕ Hi-1

PAD). That means that for every extend, an IV (initialization
value) and PAD are compressed into each intermediate result
when they should only be used once. To do so, we consolidate
the algorithms with: PCRi = C(PCRi-1, Di) where PCR0 = IV.
Padding could be compressed in when the PCR is used, i.e.
during Quote.

• Elimination of Decrypt Logic: If a device only requires the
abilities to Extend and Quote for measurement and attestation,
and does not require full, general-purpose crypto acceleration,
then the decrypt function could also be eliminated. Only the
encrypt portion of the cipher is required for signing and to
implement the DM hash.

6.2 Optimized Prototype
Figure 10 illustrates the data path for the optimized prototype. The
most noticeable difference between this approach and our initial
prototype is the integration of the wrappers, where only one state
machine controls the various components. The state machine
arbitrates signals hash, extend, and quote from the host processor.
It reads in those signals, and then controls the data slicer, counter
(not shown), and multiplexer to feed in the necessary inputs to the
Simon encrypt engine to perform hash, Extend and Quote
operations.

To perform a hash, selDI and selCV are used to control the
multiplexers that feed into din (plaintext) and cvin (key) inputs of
the Simon engine. These signals control the multiplexers to feed
DSR (Digest and Signature Register) data to din while hdat input
from the host processor is fed to cvin input. The Data slicer and
Counter components are used to feed the 128-bit messages to
Simon in 32-bit blocks in the correct order. This reduces the size
of multiplexers as stated earlier. Once the Ciphertext output is
calculated, the selDI signal is set so that the XOR unit is fed DSR
as one of the inputs. Thus, DSR is written with Emi(Hi-1) ⊕ Hi-1.

Executing an Extend resembles the hash operation except for two
differences. First, selDI and selCV are set so that PCR data is fed
to the Simon engine’s din input, while DSR, which contains the
digest to extend, is fed to cvin input. Second, once dout is
calculated, it is XORed with and written to the PCR instead of
DSR. This is accomplished through signals selDI and en_PCR.

However, a Quote operation is more complex because it requires
both hash and encrypt operations. It requires the hash of PCR and
a NONCE that is provided by the host via hdat. This is

accomplished by setting selDI and selCV to feed PCR to Simon
engine’s din and hdat to cvin. The Ciphertext output is then fed to
the XOR gate with DSR to produce the necessary digest, which
will be stored in DSR. The DSR data is then encrypted with the
Unique Device Secret (UDS) through selDI and selCV. After
feeding DSR to the Simon engine, DSR data is reset to 0’s. This is
done so that once the Ciphertext output is valid, we can set selDI
so that output is XORed with the DSR data, which is all zeros.
Any value XORed with zeros will return that value unchanged. In
other words, the output of the Simon engine, which is the
encrypted signature, will not be altered by the XOR unit and
stored in DSR. The register will contain the encrypted signature,
which is then read by the host.

The digest and PCR lengths were reduced from 256 to 128 bits,
not in an attempt to optimize by sacrificing security, but to fit
more naturally with the available accelerator’s block size. Smaller
devices that provide crypto acceleration may only provide, for
example, AES-128. Also, the largest block size in the reference
Simon implementation is 128 bits.

7. Results
The designs of the crypto cores and wrappers supporting
hardware-rooted-trust measurement and remote attestation were
implemented on an Intel Cyclone V SoC FPGA, as peripherals for
the in-built ARM processor. The measurement units used for
quantifying the resource consumption of the FPGA design are the
Adaptive Logic Module (ALM) and Block Memory Bits (BMB).
ALMs are the building blocks of the FPGA. Each ALM comprises
an 8-input adaptive look table (ALUT) to implement general
combinatorial logic, four storage registers, and two adders. On the
other hand, BMB is a measure of the amount of embedded
memory block resources used. For Intel FPGAs, embedded
memory refers to the dense dedicated memory structures provided
on FPGAs, which provide an alternative to exhausting a large
amount of ALMs for implementation of memory (i.e. distributed
memory). In Table 1, the required resources to implement the
Extend and Quote wrappers for the initial (conventional) and the
optimized prototypes are provided. For the design of the
conventional approach that includes AES and SHA hardware that
could be found on a microcontroller with hardware crypto
support, the size of the additional wrappers was 442 ALMs,
representing a 26.7% increase over its crypto accelerator engines’
1657 ALMs. For the design of the optimized approach using a
lighter Simon-Encrypt hardware module, the ALM count was
reduced by 87%, while reducing the number of BMB to 0. For
reference, the Simon hardware with wrappers together would be
roughly 1/3 the size of an OpenMSP430 [31].

Table 1: ALM\BMB Consumption of Conventional and
Optimized Prototypes

8. Conclusions
Advances in microelectronics have made it possible to develop
small-scale computational platforms that can also be
internetworked to form an IoT and serve numerous applications.

Figure 10: Data Path of Optimized Implementation

The increased popularity of IoT motivates the need for
lightweight, yet robust, attestation of the integrity of the
computing platform of the involved devices. Existing trust
attestation technologies, such as the TPM, would impose
unacceptable cost and power overhead to the IoT devices and
would be thus deemed unsuitable. The TPM alternatives proposed
by the technical community, such as DICE, leave out key security
features, namely RTS and RTR, in order to reduce complexity. In
this paper we have proposed viable, hardware-based approaches
for protecting the measurement and attestation process on IoT
devices with low overhead. Our methodology leverages crypto
accelerators found on many microprocessors and microcontroller
based systems and incorporates a lightweight state machine to
drive them securely.

9. ACKNOWLEDGMENTS
Our thanks to the Information Assurance Research Group in the
National Security Agency’s Research Directorate who sponsored
this work.

10. REFERENCES
[1] Wang, J., et al., Survey on key technology development and

application in trusted computing. China Communications,
13, (2016), 70-90.

[2] Kinney, S. Trusted Platform Module Basics 1st Ed.: Using
TPM in Embedded Systems. (2006) Elsevier.

[3] Shepherd, C. et al., Secure and Trusted Execution: Past,
Present, and Future - A Critical Review in the Context of the
Internet of Things and Cyber-Physical Systems. in
Proceedings TRUSTCOM’16, (Tianjin, China, 2016), IEEE.

[4] Trusted Platform Module Library, Part 1: Architecture,
Family “2.0”, Level 00 Revision 01.38, (September 29,
2016), section 9.5.5 Integrity Measurement and Reporting

[5] Trusted Platform Architecture Hardware Requirements for a
Device Identifier Composition Engine.
https://www.trustedcomputinggroup.org

[6] ARM, ARM Security Technology, Building a Secure System
using TrustZone Technology, ARM White Paper, 2009.

[7] Samsung Electronics, White Paper: Samsung KNOX
Premium, Samsung Electronics, Sep. 2014.

[8] Kim, M., D. G. Lee, and J. Ryou. Compact and unified
hardware architecture for SHA-1 and SHA-256 of trusted
mobile computing. Personal Ubiquitous Comput. 17, 5 (June
2013), 921-932.

[9] Aaraj, N. A. Raghunathan, and N. K. Jha. Analysis and
design of a hardware/software trusted platform module for
embedded systems. ACM Trans. Embed. Comput. Syst. 8, 1,
Article 8 (January 2009), 31 pages.

[10] Kursawe, K. and D. Schellekens. Flexible µTPMs through
disembedding. In Proceedings of ASIACCS '09 (Sydney,
Australia, March 2009), ACM, 116-124.

[11] Das, S., W. Zhang and Y. Liu, Reconfigurable Dynamic
Trusted Platform Module for Control Flow Checking. in
Proceedings of the Annual Symposium on VLSI (Tampa, FL,
2014), IEEE press, 166-171.

[12] LeMay, M., and C. A. Gunter, Cumulative Attestation
Kernels for Embedded Systems, IEEE Transactions on Smart
Grid, 3, 2, (2012), 744-760.

[13] Gu, L., et al.. Remote attestation on program execution.
In Proceedings of STC '08 (Alexandria, VA, October 2008).
ACM, 11-20.

[14] Akram, R. N., K. Markantonakis and K. Mayes, Trusted
Platform Module for Smart Cards. in Proceedings of
NTMS’14 (Dubai, UAE 2014), IEEE press, 1-5.

[15] England, P., et al. RIoT - A Foundation for Trust in the
Internet of Things, Technical report MSR-TR-2016-18,
Microsoft Corp, April 2016.

[16] Tan, H., G. Tsudik and S. Jha, MTRA: Multiple-tier remote
attestation in IoT networks. in Proceedings of CNS’17 (Las
Vegas, NV, 2017), IEEE press, 1-9.

[17] Hamadeh, H., S. Chaudhuri and A. Tyagi, Area, Energy, and
Time Assessment for a Distributed TPM for Distributed
Trust in IoT Clusters. In Proceedings of iNIS’15 (Indore,
India, December 2015), IEEE press, 225-230.

[18] Foundational Trust for IoT and Resource Constrained
Devices. https://trustedcomputinggroup.org

[19] Implicit Identity Based Device Attestation (draft).
https://trustedcomputinggroup.org, Nov 2017.

[20] Maat: A Platform Service for Measurement and Attestation,
arXiv:1709.10147 [cs.CR], https://arxiv.org/abs/1709.10147

[21] Das U-Boot -- the Universal Boot Loader,
https://www.denx.de/wiki/U-Boot/WebHome, DENX
Software Engineering

[22] Altera SoC EDS Standard edition, v17.0,
http://dl.altera.com/soceds/17.0/?edition=standard,
host_tools/altera/preloader/uboot-socfpga.tar.gz

[23] DE1-SoC CD-ROM (rev.F Board), v5.1.1,
../Demonstrations/SOC_FPGA/de1_soc_GHRD/software/spl
_bsp/Makefile. http://www.terasic.com.tw

[24] u-boot-2017.11-rc3,
arch/arm/dts/socfpga_cyclone5_de1_soc.dtb

[25] https://releases.rocketboards.org/release/2017.10/gsrd/bin/lin
ux-socfpga-gsrd-17.1std-cv.tar.gz (sdimage.tar.gz)

[26] BIOS Integrity Measurement Guidelines (Draft), NIST SP
800-155.

[27] Secure Hash Standard, FIPS PUB 180-4,
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

[28] The Simon and Speck Families of Lightweight Block
Ciphers, https://eprint.iacr.org/2013/404.pdf

[29] Winternitz. R., A secure one-way hash function built from
DES. In Proceedings of the IEEE Symposium on Information
Security and Privacy, (1984) IEEE Press, 88-90.

[30] Merkle. R.C., Secrecy, authentication, and public key
systems. Stanford Ph.D. thesis 1979, pages 13-15.

[31] openMSP430 :: Area and speed analysis,
https://opencores.org/project,openmsp430,area%20and%20s
peed%20analysis

[32] Avalon AES ECB-Core (128, 192, 256 Bit),
https://opencores.org/project/avs_aes

