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Abstract— Time Sensitive Networks (TSN) are a novel tech-
nology that combines the larger bandwidth capabilities of Eth-
ernet with determinism and fault tolerance for safety relevant
real time systems. TSN offers bounded latency for the time
triggered (TT) communication by transmitting messages ac-
cording to a global schedule. Most of the scheduling algorithms
in this context provide the solution only from the perspective
of scheduling constraints and do not consider the impacts of
routing on the scheduling problem. Therefore, these algorithms
are not capable to provide effective results in the domain
of many real time systems. To address interdependence of
routing and scheduling constraints, we introduce a heuristic list
scheduler (HLS). Our approach generates valid schedules using
joint routing and scheduling constraints in one step. Due to
this approach, ability to find feasible schedules is dramatically
increased in comparison to the schedulers with fixed routing. In
addition, HLS supports multi-cast communication, distributed
real time applications and inter-flow dependencies. Experimen-
tal results shows the significant increase in the schedulability
because of the task and message scheduling combined with
routing.

I. INTRODUCTION

Ethernet is capable of providing the high level of band-
widths across the networks but it is not able to fulfill
the requirements which are essential for safety-critical real
time systems. Industrial applications like robotics, machine
control, avionics and railway all require a high level of
temporal predictability in data exchanges. TSN is a standard
[1] that offers temporal properties with several extensions
of Ethernet. TSN provides a promising scheduling technique
called Time Aware Shaper (TAS). TAS enables the imple-
mentation of time as a correction metric [2] and because of
this metric the deterministic behavior can be guaranteed for
hard real time systems.

For deterministic delivery of TT streams, all devices
should be synchronized according to a global time us-
ing a robust clock synchronization mechanism (e.g. IEEE
802.1ASrev). To deploy TAS, every port of a device with
TSN capabilities dedicates a certain number of queues for
the TT communication and schedules the transmission of
the messages using the Gate Control List (GCL) concept.
The GCL defines the status of a queue gate at every time
instant. TAS by means of GCL ensures that every TT flow
has collision-free access to the outgoing port. As a result
of the deployment of clock synchronization and TAS, the
conventional Ethernet networks can be used for real time
applications with strict deadlines and low jitters.

The knowledge of the network topology and the spec-
ifications of the TT flow are essential for calculating the
global schedule. This computation is off-line because of the
complexity exist in the scheduling problems. In TSN, the
port-specific GCLs can be calculated as a part of the global
schedule generation.

In large time sensitive systems with large number of L2
switches, end devices and links between them, for each
TT stream a tremendous number of scheduling possibilities
arises. Furthermore, the search space for valid schedules
becomes bigger because of the possibility of distributing real
time applications over different processing nodes. Therefore
in this context it is vital to introduce the search space that
results in finding the feasible schedule.

As the scheduling problem of TT communication is NP-
complete, for finding a global feasible schedule different
system abstractions can be introduced. Most of the algo-
rithms in TT scheduling provide the fixed routing as an
input to the scheduler and as a result ignore the effects
of routing on scheduling decisions. While this assumption
simplifies the overall scheduling problem, it may lead to
an infeasible schedule for a system which is schedulable
[4]. In [4] and [5] the global transmission schedule is
determined by considering routing and scheduling constraints
both on one level. An ILP based approach is used for this
purpose which slows down the scheduling process and is
not feasible for large scale networks. These solutions also
do not cover other requirements of real time systems like
multi-cast communication patterns, distributed applications
and inter flow dependencies.

We propose a Heuristic List Scheduler (HLS) for the
global schedule generation in TSN. Our proposed solution
merges the scheduling and routing constraints into one set of
constraints. To be more specific, our algorithm despite of the
majority of the existing solutions, computes the port specific
GCL by employing joint routing and scheduling constraints
in a single step. HLS also considers TT flows with different
priorities and multi-cast patterns. In addition to the afore-
mentioned advantages, our solution enables the distribution
of real time applications over available processing nodes.

The main objective of HLS is to meet the deadlines of
mission-critical applications and at the same time optimize
the TT communication overhead and transmission makespan.
For this reason, our algorithm minimizes the time intervals
between the scheduled time slots. This strategy decreases
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the number of guard bands that are reserved before every
scheduled time slot to guarantee contention-free access to
the outgoing physical link.

We also implement a basic list scheduler (LS) in order to
evaluate the schedulability of our algorithm. The basic list
scheduler computes the global schedule based on the shortest
paths between the end systems. In the experimental evalua-
tion the proposed algorithm is applied to different network
structures and TT traffic patterns. The results show that HLS
improves the schedulability and transmission makespan of
TT traffic remarkably as compared to the basic list scheduler.

The rest of the paper is structured as follows. Section II,
discusses the related work. The system model is presented in
section III. Section IV discusses the scheduling problem of
time sensitive systems. Section V introduces the routing and
scheduling constraints. In the following section, our heuristic
algorithm is described in more details. Section VII discusses
the experimental results. Finally the paper is concluded in
the last section.

II. RELATED WORK

In last years extensive work has been done in context
of scheduling problems arising from GCL. In [10] authors
considers the GCL synthesis for each port of a TSN capable
device based on the ILP approach. This work optimally
allocates resources to the TT flows and calculates the global
schedule. Authors in [7] formulate the different scheduling
constraints of TAS in multi hop switched networks. They
also validate that GCL guarantees the deterministic delivery
of TT messages. In this work, Optimization Modulo Theories
(OMT) and Satisfiability Modulo Theories (SMT) are used
for finding the feasible schedule. In all above studies, the
routing and scheduling problems are solved separately.

Another study in [5] develops an ILP based scheduling
solution for the joint routing and scheduling constraints.
For the experimental assessment different network topologies
and traffic patterns are considered. In addition, these results
are evaluated using two performance metrics: (i) scheduling
capability and (ii) end to end delay. In [4] routing and
scheduling problems of TT communication are solved in a
single step by using a set of Pseudo-Boolean (PB) variables.
This work also uses a multi objective optimization algo-
rithm to enhance the design space exploration, derived from
the joint routing and scheduling constraints. This solution
does not consider time sensitive applications with different
periodicity which plays a key role in the deployment of
TSN. The aforementioned ILP based solutions become time
consuming specially in case of large scale time triggered
networks. Furthermore, the multi cast requirements and inter
dependencies of TT flows are not considered in these works.

Our heuristic list scheduler computes global schedule with
short computational time and provides feasible schedules for
many real world scenarios. Due to the combined routing and
scheduling constraints, the heuristic algorithm finds solution
where an optimal scheduler (with fixed routing) would fail
to provide a feasible solution while at the same time offering
better scalability. HLS performs task binding to support the
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Fig. 1: An example of system model

distribution of real time applications. In addition to the all
properties mentioned above, our algorithm supports multi-
cast transmission along with the inter-flow dependencies.

III. SYSTEM MODEL

In this work we employ two graphs. The network topology
and TT communication are modeled with an architecture
graph and an application graph respectively. These graphs are
given as an input to the scheduler. Fig.1 presents an example
of the proposed system model. Different scheduling possi-
bilities for TT communication are generated by mapping the
application graph to the architecture graph.

A. Application Graph

An application graph is represented by a directed acyclic
graph GP(Tc,FT T ). GP comprises of computational tasks as
vertexes while the TT flows transmitted between the tasks
are considered as edges. Hence each task can have multiple
successor tasks and as a result the system model supports
multi-cast TT flows [9].

B. Architecture Graph

An architecture graph is represented by an undirected
graph GA(Rc,Ld). This graph comprises of end systems and
TSN switches Rc = ES∪ S where Rc is the set of vertexes.
There are duplex physical links Ld between different network
elements which are considered as edges.

C. Assumptions for System Model

1) All end systems and TSN switches are synchronized
according to the global time.

2) Computational tasks generate the TT messages. It is
important to note that all physical links l ∈ Ld are
bidirectional. Because of this, multiple TT frames can
access the same link via different directions simulta-
neously.

IV. PROBLEM FORMULATION

In TSN three types of traffic classes are transmitted over
the network. These types of traffics are (i) AVB streams, (ii)
Best Effort (BE) messages and (iii) TT flows. BE traffic and
AVB streams are not having any strict timing requirements.
Our scheduling algorithm finds the GCL of each port of a
TSN capable device and it reflects the injection time of TT
flows routed through that device. The injection time f .IT
determines the time instant at that the execution of parent
computational task is completed and the sender end system



starts transmitting the TT flow. Our algorithm generates an
accurate GCL in order to avoid the interference of BE traffic
and AVB streams with TT transmission. We only compute
the transmission schedule table of TT messages. Non-TT
frames (BE and AVB) are transmitted when no TT messages
are scheduled over the same physical links.

For each computational task t ∈ Tc, t.ST is the start time
of task and t.ET is the execution time of task. Each TT flow
f ∈ FT T is identified by fn (size), fp (period), fsen ∈ ES,
frec ∈ES, fd (deadline), f .e2eD (end to end delay) and f .arr
(arrival time). fd determines the maximum admissible end
to end latency while f .e2eD specifies the actual end to end
delay for flow delivery. The arrival time ( f .arr) indicates the
time instant at that all TT frames are delivered to the receiver
end system. A TT flow in TSN can be comprised of more
than one frame. fn is equal to the number of TT frames which
are sent consecutively within one fp multiplied by the length
of the frame. fp represents the periodicity of a TT flow as
all frames are sent periodically. For simplicity, we consider
that a TT flow remains in a TSN capable device just for the
processing time which can be calculated as follow.

fPT =
PR(device)

fn

where PR represents the processing rate. In order to
achieve deterministic behavior in scheduled and synchro-
nized networks, all port specific GCL start simultaneously
and are repeated over a hyper period. The Hyper period is
the Least Common Multiple (LCM) of all fp values.

V. SCHEDULING AND ROUTING CONSTRAINTS

This section presents the combined constraints of schedul-
ing and routing as defined in [7] and [10].

1) Resource Allocation Constraint: Each computational
task is assigned only to one end system. All the infor-
mation related to the end systems and the requirements
of the application are provided by the system designer
within the application graph. The end system on which
a task can be assigned is selected from the eligible end
systems denoted by t.AvailableSystems.

∀t ∈ Tc,es ∈ t.AvailableSystems :

t.processor = es

2) Path-Dependent Constraint: For the purpose of loop
elimination TT flows are restricted to pass through
each node only once. fr is comprised of all the adjacent
links which form the path from the sender to the
receiver. The value of fr is equal to one of the routing
possibilities between sender and receiver end systems.

l j = (s, t) ∈ Ld : R = (l j, ..., l j+n), ...,(lk..., lk+m)

fr ∈ R

3) Contention-free Constraint: Each TT flow can take a
particular link for routing, if the TT flow has unique
access to the physical link for the time duration of fT D

just after its transmission starts. The transmission delay
fT D of a TT flow on a particular link can be calculated
as follow.

l j ∈ Ld : fl j.T D =
fn

l j.bw

where bw represents the bandwidth. End devices em-
ploy the store and forward approach for switching TT
packets.
An important assumption in our algorithm is that a
TSN capable device will dedicate only one queue
per port to the TT traffic. To avoid interleaving of
different TT flows in one TT queue, we employ the
flow isolation constraint defined in [7]. This constraint
is addressed by collision-free access to egress ports
and the attached links for a duration of fPT + fl j.T D.
This constraint is considered for every link present in
fr.
The duration of exclusive access on two adjacent links
in fr is phase aligned. This assumption implies that
buffering of TT frames is not permitted in our proposed
system model. The time interval for specific access
within each link is calculated with respect to fPT +
fl j.T D of the previous adjacent link in fr.

∀(l j, l j+1) ∈ fr :

fl j+1 .IT = fl j .IT + fPT + fl j .T D

4) Application-Specific Periodicity Constraint: The peri-
odicity of TT flows can be varied for different real
time applications. Therefore the dedicated time slots
for each TT flow on a certain link of fr is scheduled
considering other TT streams which access to the same
physical links periodically.

5) Inter-Flow Dependency Constraint: Each computa-
tional task can only start transmitting its TT messages
after the arrival of all TT flows that are sent by its
predecessors.

∀ f ∈ FT T ,∀ f ∈ pred( f ) :

f .e2eD = ∑
l∈ f r

( f PT + f .T D)

f .IT + f .e2eD+ fsen.ET ≤ f .IT

6) Delivery Deadline Constraint: Each TT flow that is
transmitted by a computational task should be de-
livered to the successor task within the predefined
deadline of the flow.

∀ f ∈ FT T : f .IT + f .e2eD≤ fd

VI. HEURISTIC LIST SCHEDULER

We develop a Heuristic List Scheduler (HLS) which
generates the optimal global schedule for transmission of TT
messages. Precisely our goal is to minimize the make span
of TT communication using joint routing and scheduling
constraints. Our HLS algorithm uses the following steps.



Algorithm 1 Heuristic List Scheduler

1: procedure HUERISITICLISTSCHEDULER
2: makespan← 0
3: assign priority to each computational task
4: T sorted← sorttasks(on prioirity decsendent order)
5: ∀t ∈ T sortedunscheduled:
6: makespan← Scheduler(t)
7: return makespan
8: procedure SCHEDULER(Task t)
9: if task t is unscheduled and task t waits for incoming

TT flows then
10: ∀ f ∈ F t.incomingflows: Scheduler(f.sen)
11: pred_tasks_scheduled← true
12: else if pred_tasks_scheduled or task t.child==false

then
13: ST← 0
14: for p ∈ s.AvailableSystems do
15: t.ST← 0
16: f.arr← 0
17: R = f indroutes(sen,rec)
18: for r ∈ R do
19: IT← FindET
20: arr← f .IT + f .e2eD
21: if arr > fd then:
22: go to the next route
23: if f .arr == 0 or arr < f .arr then:
24: f .arr← arr
25: fr← r
26: f .IT ← IT
27: ST ←max(ST, f.arr)
28: if f .ST == 0 or t.ST > ST then:
29: t.ST ← ST
30: t.processor← p
31: makespan←max(makespan,t.ST+t.ET)
32: return makespan

1) For each task HLS calculates the priority using its
critical path. In an application graph, the task’s critical
path is set to the total communication cost (CC f =
fPT + fl j.T D) of the longest path between the prede-
cessor task and that task.

2) After this the HLS sorts the computational tasks and
schedules them one by one from highest to lowest
priorities. For each task the incoming TT flows are
determined first. If the task requires TT flows from pre-
decessor tasks before starting its own TT transmission
(as shown in constraint 5) then HLS schedules all the
previous tasks first (c.f line 10). If all the predecessor
tasks are already scheduled or the current task does not
wait for any incoming TT flow then the task is assigned
to an available end system from t.AvailableSystems.

3) HLS initializes t.ST and f .arr to 0. Then it finds all the
routing possibilities between the sender and receiver
end systems considering constraint 2.

4) For each of possible routes, HLS finds the earliest
injection time considering constraint 3 and 4 (c.f line
19). If the earliest injection time violates the constraint
6 then our algorithm finds the next best route which
results in the optimized makespan (c.f line 22). Con-
straint 6 should not be violated because it will lead
to infeasible global schedules. To find the schedule
with optimized makespan, the route which results in
the minimum f .arr is chosen and f .r and f .IT are
updated accordingly (c.f line 23-26).

5) In line 27, the task start time is updated considering
constraint (5). According to the routes of all incoming
flows, the task is assigned to the end system that leads
to the optimized transmission make span (c.f line 28-
30). The makespan specifies the time instant at which
the execution of all computational tasks is completed.

TABLE I: Parameters for TT flow in Fig.1

Period (µs) deadline (µs) cost (µs)
f0 400 150 40
f1 500 70 20
f2 400 200 16
f3 500 244 25

To implement LS, we use same procedure as Algorithm 1.
The only difference is we consider the shortest path instead
of examining all possible routes (c.f line 28-30). The Gantt
charts presented in Fig.2 depicts the transmission schedules
calculated by LS and HLS. In this example, the system
model shown in Fig.1 is used as an input to our schedulers.
Table I lists the communication cost for each TT flow of
this application graph (Fig.1 (b)). Fig.2 (b) shows that our
overall make span for HLS is improved from 243us to 215us
as compared to the make span resulting from LS. The reason
for this improvement is that the LS utilizes only a few fixed
routes (i.e. shortest path) due to which rest of the routes
remain underutilized. This increases the overall load on some
of the physical links. HLS selects the best route according to
the joint routing and scheduling constraints which increases
the load balancing across the network. The optimization of
the make span is important in cases where we are specifically
dealing with large time triggered systems.

VII. EXPERIMENTAL EVALUATION

In our experiments, the SNAP library [12] is used to
generate different system models.

A. Network Topology
For our experimental evaluation we consider two types

of networks (i) mesh and (ii) ring. Each network as shown
in Fig.3 has 10 switches which are connected to 5 end
systems. The mesh topology is considered for our algorithm
evaluation because it has more routing possibilities and
higher connectivity, while the ring topology addresses the
typical structure for industrial systems. The bandwidth of
all physical links is assumed as 1Gbps. In addition, the
processing time for each data byte in every TSN capable
device is considered 4 nanoseconds.
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B. Application Graph

In our application graph we uses 20 tasks having 3
different sets of TT flow. The parameters of these flow sets
are presented in Table II. The application graph is structured
as a random fire forest directed graph [12]. For simplicity,
every multi-cast traffic is considered as sets of unicast TT
flow. It is important to note the potential systems on which
computational tasks can be processed is selected randomly.
The execution time of all tasks is set to 3 microseconds.
The implementation of HLS and LS is performed in C++.
The experiments are run on a T460 ThinkPad with 32GB of
memory and 2.4GHz Intel i5 CPU.

TABLE II: Parameters for TT flow

Period (µs) deadline (µs) size (bytes)
TC1 100 150 100
TC2 300 150 200
TC3 500 150 300

C. Experiments and Results

This section shows the results of our HLS algorithm in
comparison with the LS which serves as a typical two-step

scheduling solution. We evaluate the impact of varying loads
using these parameters (i) make span, (ii) schedulability
and (iii) execution time. In the experiments, we employ
the mesh structure and three different numbers of TT flows
(60,80,100). The ratio of each aforementioned flow set in
every TT traffic pattern is 33.3 %. In addition, for every
network utilization pattern, we run 100 different test cases.

Fig. 4: Average Make Span of LS and HLS

1) Make span: As shown in Fig.4, the make span of HLS
for varying traffic loads is improved by an average of 28%
as compared to the LS. HLS improves the make span by
decreasing end to end delays of TT flows. The main objective
of HLS is to compute the TT transmission schedule which
leads to better bandwidth utilization and the optimum number
of guard bands. To achieve this, HSL minimizes the gap
between scheduled time slots and also merges the time slots
of consecutive TT frames on a specific link.

2) Schedulability: The graph in Fig.5 shows the schedu-
lability ratio of HLS and LS based on the varying loads.
The schedulability ratio of LS is 0.32 on average whereas for
HLS this ratio is 0.94 on average. The graph shows that HLS
outperforms LS in terms of schedulability specially when
the number of TT flows increases. The reason is that the
increasing number of TT flows in case of LS leads to the
violation of the delivery delay constraint because of over
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utilization of certain physical links. HLS avoids this issue
by sending TT flows on multiple routes.

TABLE III: Execution Time of LS and HLS with varying
TT loads and mesh topology

LS HLS
TT flows Avg Exec Time (s) Avg Exec Time (s)

60 0.102 0.49
80 0.102 0.84
100 0.103 1.58

3) Execution Time: As listed in Table III HLS needs
more time to find the global schedule of TT communication
as compare to LS. LS is faster because it selects only the
shortest path for routing while HLS considers different paths
and applies the joint scheduling and routing constraints for
finding the schedule.
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4) Network Dependency: We repeated the test scenarios
with 60 different TT flows but using the ring topology. This
is done to show the impact of different network structures on
HLS performance as compare to LS. It is clear from the Fig.6
that the schedulability of LS is significantly degraded when
the ring topology is used. The reason is that the ring topology
with the same number of TT flows may lead to higher utiliza-
tion of network resources as compared to the mesh structure.
Therefore, LS is not able to support the delivery deadline
constraint of TT flows. HLS in both cases performed better.
In the mesh topology we have more routing possibilities.
This feature enhances the load balancing capability of our

schedulers. Because of this reason the scheduelability of both
HLS and LS for mesh is better as compared to the ring
topology in case of similar traffic loads.

VIII. CONCLUSION

In this paper we proposed the heuristic list scheduler to
generate a feasible TT transmission schedule. In contrast
to the conventional scheduling techniques which apply the
routing and scheduling constraints separately, our solution
solves both routing and scheduling problems in one step.
We introduce a system model comprised of an application
graph and an architecture graph which is used as an input
to our scheduler. As an additional benefit, the proposed
scheduling technique also allows the distribution of real
time applications and multi-cast traffic patterns. In order to
evaluate our algorithm, a basic list scheduler is implemented
which uses the fixed routing mechanism.

The simulation results shows the impact of varying net-
work designs and utilization on the make span and execution
time. Overall HLS improves the make span by 28% as
compared to LS. The reduced make span may also lead
to a lower number of guard bands and more compact TT
transmission schedules. Results also shows that in case of
high traffic loads HLS enhances the overall schedulability
ratio over LS.
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