
SDN-based configuration solution for IEEE 802.1 Time
Sensitive Networking (TSN)

Siwar BEN HADJ SAID, Quang Huy TRUONG, and Michael BOC
Institut LIST, CEA

Université Paris-Saclay
F-91120, Palaiseau, France

{siwar.benhadjsaid, quanghuy.truong, michael.boc}@cea.fr

ABSTRACT
Maintenance and update of Time-Sensitive Network
(TSN) configurations pose an immediate challenge
on the ”Time-to-Integrate” aspect of new devices
and traffics: adding new communicating sensors on
production lines, adding new Engine Control Units
(ECUs) or new software applications in a car. Mean-
while, the Software-Defined Networking (SDN) ap-
proach has proven its effectiveness to ensure proper
quality of service for ongoing traffics even in evolving
topologies and its ability to integrate a multitude of
features (configuration parameters, specific metric
computation, etc.). In this regard, this paper inves-
tigates a first step in the instantiation of the fully
centralized IEEE 802.1Qcc model using the SDN
approach targeting industrial and automotive con-
texts. We discuss how SDN can speed-up the Time-
to-Integrate process by analyzing how one of the
most important TSN standards, i.e., IEEE 802.1AS
can be configured in such a framework.

CCS Concepts
•Computer systems organization → Embedded sys-
tems; Redundancy; Robotics; •Networks → Network reli-
ability;

Keywords
TSN, SDN, time synchronization

1. INTRODUCTION
Factory digitalization or zero defect manufacturing are

ongoing initiatives that put stress on existing communica-
tion network infrastructures designed to ensure forwarding
of critical traffics between machines. In the automotive sec-
tor as well, new hardware and software are proposed to en-
sure better comfort and new features for autonomous dri-
ving sharing the same network infrastructure designed for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

c© 2018 ACM. ISBN .

DOI:

legacy critical control/command traffics. In those two sec-
tors, there is a need to facilitate the coexistence of critical,
time sensitive traffics with less critical or best effort traf-
fics. In this sense, the IEEE Time Sensitive Network (TSN)
working group proposes a set of amendments to IEEE stan-
dards that features time synchronization, traffic scheduling,
gates control, and frame preemption to name a few in order
to achieve such seamless coexistence.

Precise scheduling of traffics using TSN standards requires,
however, a complete knowledge of the network infrastruc-
ture and of traffics. Indeed, although it is possible to re-
serve resources for best effort traffics, there are different
levels of requirements even in non-critical traffic that may
cause intricate configurations, e.g., setting critical traffic as
best effort to ensure a bounded latency of non-critical traf-
fics while ensuring that the final forwarding will ensure the
maximum latency of critical traffics. Such configurations
are time-consuming (each standard specifies a certain num-
ber of parameters and constraints that are inter-dependent)
and require offline configuration/simulation tools to ensure
the respect of traffics constraints.

In non-deterministic Ethernet networks, Software-Defined
Networking (SDN) is a paradigm that provides a great range
of freedom to flexibly and centrally reconfigure networks.
The basic idea of SDN is to control the behavior of network
devices by a logically centralized controller. Centralized con-
figuration approaches adapted from the concept of SDN can
help to overcome the issue of re-scheduling traffic and de-
ploying the TSN configuration on the network.

This paper explores an SDN-based instantiation of the
IEEE 802.1Qcc fully centralized architecture around the con-
figuration of the time synchronization standard. This stan-
dard is central to the operation of gates (IEEE 802.1Qbv)
and to the reconstruction of clocks for multimedia traffics
(IEEE 1722). We list the constraints and the requirements
of the time synchronization standard in the automotive and
industrial contexts, and propose an approach to ensure their
fulfillment in a dynamic environment using an SDN frame-
work.

The rest of the paper is structured as follows: Section 2
explores the ongoing efforts around the centralization of de-
terministic network management. Then, Section 3 discusses
through concrete use cases, why SDN could be beneficial
for TSN network management. Section 4 gives an overview
of the SDN solution used for this IEEE Qcc instantiation.
Section 5 describes the mechanisms deployed to configure
time synchronization in a testbed (IEEE 802.1AS). Finally,
Section 6 concludes this paper.

valya_000
Text Box
 RTN18, July 2018, Barcelona, Spain
 © 2018 Copyright held by the owner/author(s).

2. RELATED WORK
The configuration of real-time networks is a complex prob-

lem that has been highlighted in the past [15]. [9, 16, 7] were
among the first studies to discuss, via use cases, the benefits
that SDN could provide to the management systems of in-
dustrial networks. [11] was the first work to propose a proof-
of-concept where the SDN concept is applied to real-time
Ethernet. However, this proof-of-concept was more about
the integration between OpenFlow protocol and Powerlink
real-time Ethernet to show how the SDN manage the data-
path in special use cases such as link failure. In our work,
we want to propose a complete SDN solution able to con-
figure all TSN features even the ones that are not related
to datapath management such as the time synchronization
configuration.

The relevance of our work is highlighted by the fact that
two major standardization bodies, IEEE and IETF, are work-
ing on standardizing an automatic and flexible configura-
tion framework for deterministic networks. The IEEE 802.1
TSN Working Group (WG) proposed the amendment IEEE
802.1Qcc [13] where three network configuration models are
specified: fully distributed, centralized network/distributed
user, and fully centralized. In term of managing traffic
schedules, paths for data, redundant paths and time syn-
chronization, a centralized configuration approach seems to
be more relevant for TSN configuration. Also, the IETF
DetNet WG prefers having a centralized control and man-
agement plane that will ensure deterministic data paths that
operate over Layer 2 bridged (i.e. through the collabora-
tion with the centralized network configuration model of
TSN WG) and Layer 3 routed networks [8]. The fully cen-
tralized configuration model is depicted in Figure 1. It is
composed of Centralized User Configuration (CUC) entity
and a Centralized Network Configuration (CNC). While the
CUC is responsible for building up the applications’ require-
ments, computing the configuration setting and enforcing it
(e.g. setting up gates schedules, reserving resources, etc.) in
Bridges are done consistently by CNC. Therefore, CNC will
be in charge of configuring TSN features namely credit-based
shaper, frame preemption, scheduled traffic, per-stream fil-
tering and policing, and frame replication and elimination
for reliability. The IEEE 802.1Qcc configuration model still
lacks many details about the functionality to be included in
the CNC and how it will ensure the management of Bridges.
Several existing management protocols can fill the gap such
as NETCONF, RESTCONF, and SNMP.

[4, 10] proposed to combine between machine to machine
communication protocol (OPC UA) and TSN networks in
order to respect the constraints imposed by industrial au-
tomation. Both of these studies rely on the fully centralized
model of IEEE 802.1Qcc and use NETCONF protocol for
the communication between CNC and Bridges in the net-
work. [10] presents, in details, the different components as
well as the workflow of their configuration solution. How-
ever, the proposed solution was particularly focusing on the
self-configuration of traffic scheduling feature. In addition,
the feasibility of the solution has not been proven.

Unlike the above studies, we are proposing an SDN-based
instantiation of IEEE 802.1Qcc fully configuration centrali-
zed model that is able to configure any TSN feature in the
network. Moreover, we are showing, via a testbed, how our
solution allows to configure the time synchronization feature.

Figure 1: Fully centralized network model of IEEE
802.1Qcc

3. WHY DO WE NEED SDN FOR TSN NET-
WORKS CONFIGURATION?

The anticipated configuration complexity of TSN networks
is a very hot topic in automotive and industrial contexts.
In fact, adding new TSN mechanism leads to an increased
number of parameters to be configured in End stations and
Bridges. Moreover, choosing the adequate values for these
parameters depends on different information such as traffic
pattern, network topology, etc. Therefore, during engineer-
ing and validation tests, the effort of configuring the net-
working devices becomes high and severely influences the
competitiveness.

Usually, the configuration/reconfiguration process of an
automotive or industrial network requires the use of offline
configuration tools such as simulation or network modeling
tools. For example, because of the changing of network re-
quirement, firstly, network engineers need to re-examine the
network characteristics e.g. all traffic pattern (e.g. mes-
sage size and periodicity, source and destination, traffic con-
straints), characteristics of each device (e.g. processing ca-
pabilities, the mean residence time of messages inside the
device, queue sizes, etc.) and each link (e.g. bitrate, propa-
gation delay, etc.). Based on such characteristics, an appro-
priate configuration for the network is generated using an
offline tool. After that, each device will be configured man-
ually according to the new configuration. The increasing
number of parameters, that needs to be configured, causes
extra costs during engineering, testing, and validation stage
as configuration errors may happen. In addition, the Time-
to-Integrate of the new configuration is also one of the major
concerns while this whole manual process must take time.

When the change in the network topology or traffic pat-
tern happens more frequently, the static and manual con-
figuration manner is no more adapted. Therefore, a dy-
namic and centralized configuration solution such as SDN
is required to manage such situations. In the following, we
provide some examples where we can see that the manual
configuration is no more suitable.

3.1 Change in network topology
Adding a new device or a new feature to the network

will lead to generating a new configuration setting using
offline tools, shutting down all networking devices and re-
configuring them. For instance, adding new ECU to auto-
motive network leads to adding new traffic. Consequently,

after determining the pattern of new traffic, new gates sched-
ules (IEEE 802.1Qbv) should be calculated using the offline
tool with respect to the QoS of the whole existing traffic.
After shutting down the network, the new schedules should
be configured in the networking devices.

With the SDN solution, the network reconfiguration can
be done on-the-fly without interrupting the network oper-
ation. The SDN controller may detect the added device
and configure it. It can also detect the new traffic pat-
tern by monitoring the message frequency, size, and des-
tination. Based on that information, the controller deter-
mines to which VLAN the data flow can be assigned, config-
ures this VLAN in the device, computes new gate schedules
with respect to this new traffic, and then updates the traffic
scheduling accordingly.

3.2 Time synchronization configuration
The time synchronization for TSN networks has been spec-

ified in the standard IEEE 802.1AS [12]. In order to ensure
an accurate time synchronization, IEEE 802.1AS imposes
several constraints such as:

• There is only one time domain and one GrandMaster
in the network.

• All networking devices (End stations and Bridges) shall
be IEEE 802.1AS capable. As a consequence, all net-
working devices shall implement the Best Master Clock
Algorithm (BMCA). This algorithm will ensure that
there is only one GrandMaster to which the other net-
working devices are slaves.

• All networking devices shall allow to configure 15 pa-
rameters [3]: parameters related to GrandMaster se-
lection (priority1 and priority2), parameters related to
propagation delay calculation (e.g. delayAsymmetry,
initialLogPdelayReqInterval, etc.), parameters related
to time synchronization (e.g. initialLogAnnounceIn-
terval, initialLogSyncInterval, etc.)

• The frequency with which IEEE 802.1AS messages are
sent shall be the same in the network (e.g. all network-
ing devices shall send the Sync message each 125 µs).

• The network shall not include more than 7 hops (clocks
are synchronized up to 1 µs over 7 hops).

In networks that exhibit a strong requirement for low
start-up time, it would be preferable not to support dynamic
algorithms such as BMCA and clock spanning tree during
network operation in order to reduce the startup timing sys-
tem [2]. This leads to having more parameters to be config-
ured in each device, as shown in Table 1 with respect to the
AVnu specification for automotive TSN, thereby spending
more effort on configuration.

Table 1: parameters to be configured for setting up
the GrandMaster and clock spanning tree

IEEE 802.1AS AVnu specification

priority1 portRole

priority2 isGM

grandmasterIdentity

asCapable

In case the network uses BMCA to select the GrandMas-
ter, only priority1 and priority2 parameters are needed to
be configured in devices. However, in the case of not us-
ing BMCA and the clock spanning tree algorithms, net-
work engineer should configure in each device the follow-
ing parameters: portRole, isGM, grandmasterIdentity and
asCapable. More specifically, the boolean isGM is used to
indicate whether the device is the GrandMaster. The grand-
masterIdentity parameter indicates the GrandMaster iden-
tity when the isGM is set to false. As there is no clock
spanning tree, network engineers should configure for each
Ethernet port the parameters portRole and asCapable. In
the portRole, they should indicate the role of the Ethernet
port (i.e. Master/Slave). In the boolean asCapable, they
should indicate whether the current device and the device
at the other end of the link attached to this port can inter-
operate with each other via the IEEE 802.1AS protocol.

Consequently, according to AVnu specification, network
engineers should decide which device will be the GrandMas-
ter and the related clock spanning tree. Then, besides the
other IEEE 802.1AS configurable parameters (i.e. parame-
ters related to the frequency with which messages are sent),
they should manually configure other devices with the four
parameters that we cited beforehand. However, when the
Grandmaster fails, network engineers should replace it with
a new Grandmaster and, consequently, reconfigure all de-
vices to consider the new GrandMaster.

With SDN solutions as we will show in the Section 5, the
network reconfiguration will be an easy task. We need only
to specify in the SDN controller the Grandmaster identity.
Knowing the network topology, it computes the clock span-
ning tree to determine the portRole of each Ethernet port
in each device. Then, it configures devices accordingly. For
instance, in each device non-GrandMaster, it sets the isGM
to false, configures grandmasterIdentity parameter, sets the
role of each Ethernet port, and configures the frequency with
which IEEE 802.1AS messages are sent.

3.3 Metrics monitoring
Because the offline tools are not able to provide thor-

oughly the entire run-time attributes. Metrics such as link
propagation delay or packet residence time in the Bridge
should be correctly estimated to avoid errors in the calcu-
lation of configuration settings. For that network, engineer
should setup testbeds beforehand in order to correctly mea-
sure these metrics. Such task is time consuming and any
error in the testbed setting impacts the final outputs of an
offline configuration generator solution. Instead, in the SDN
solution, the SDN controller can push a default configura-
tion in the network (i.e. it could be the output of an offline
tool). Then, it can monitor and measure, during network
operation, the propagation delay of each link by setting the
appropriate probes. Then, if the measured delay is differ-
ent from what was considered in the default configuration, it
will compute new configuration based on the changed values
and reconfigure the network accordingly.

4. SDN ARCHITECTURE OVERVIEW
In this section, we provide an overview of SDN compo-

nents and particularly we are focusing on NEON software,
an SDN solution developed by CEA LIST that supports fast
devices configuration and services deployment - within sec-
onds - in dynamic and unconfigured infrastructures contexts

Figure 2: NEON software.

[6] [17]. Figure 2 shows NEON software decomposition. The
communication between the different component uses com-
mands in JSON format.

4.1 NEON southbound API
This module is responsible for adapting and configuring

managed networking devices such as access points, routers,
or gateways. It is an active module listening for commands
sent by NEON controller or services. In addition, it is able
to communicate with software and hardware resources in
the managed network devices in order to configure them
according to commands sent by the controller.

Moreover, this module detects any change in the network-
ing device such as the activation of a new network interface
and notifies NEON controller about it. In addition, NEON
southbound API can provide NEON controller with statis-
tics on several metrics such as the network bandwidth usage.

4.2 NEON controller
It is a logically centralized entity and represents the intel-

ligence of the whole network. Beyond merely ensuring the
routing related tasks, it must ensure all aspects of manage-
ment and reliability of the network. The controller manages
all managed networking devices via their NEON southbound
protocol APIs.

On the other hand, the controller communicates with its
different services via NEON northbound protocol. It can
relay requests and replies coming from the services to the
managed networking devices. In addition, the controller pro-
vides NEON services with an abstract view of the network
topology (which may include statistics and events).

4.3 NEON services
They are presented as software running on top of the con-

troller. Several network functions (e.g. security, routing,
monitoring, ...) could run as NEON services; connected to
the controller through a TCP/IP connection, they receive
events such as a new device is added to the network and
react accordingly. For example, they use some predefined
NEON protocol action messages to configure interfaces in
the data plane or to get specific statistics.

5. SDN SOLUTION FOR TSN NETWORK
CONFIGURATION

In this section, we present the SDN solution that we de-

Figure 3: NEON integration in IEEE 802.1Qcc fully
centralized model.

veloped for IEEE 802.1 TSN network configuration. First,
we give an overview of the architecture. As SDN solution,
we decided to use NEON software that we described in Sec-
tion 4. Particularly, we focus on NEON services namely
configTSN and EthernetTSN that we developed to ensure
the adequate TSN configuration. Each time, we show the
mapping between our solution and the IEEE 802.1Qcc fully
centralized model. After that, we show how our solution is
able to configure the time synchronization feature on each
device in the network with respect to IEEE 802.1AS require-
ments.

5.1 Architecture Overview
The architecture of our SDN-based configuration solu-

tion is depicted in Figure 3. NEON controller with NEON
services, particularly configTSN and EthernetTSN, can be
mapped to the CNC entity in the IEEE 802.1Qcc fully cen-
tralized model.

• NEON southbound API: Devices in the network
(Bridges and End stations) shall support NEON south-
bound API that will be responsible for receiving config-
uration information from NEON controller and apply-
ing it to themselves. We extended NEON southbound
API with plugins that are responsible for generating
the adequate commands to configure the device. First,
at startup, the NEON southbound API connects to
NEON controller. Then, it receives, from NEON con-
troller, a configuration request that contains parame-
ters with their configuration values. Depending on the
vendor, the NEON southbound API forwards the con-
figuration request to the adequate plugin that will be
in charge of configuring the device with the received
configuration values.

• NEON controller: It participates in TSN configu-

ration via two tasks. First, it is responsible for noti-
fying EthernetTSN service whenever a device is up in
the network and, then, relaying JSON request/reply
between the service and the device. The second task
of NEON controller is to notify ConfigTSN service
with any change in the network (e.g. new device in
the network, link/device failure, faulty device, over-
load situation, link delay, etc.). Following this notifi-
cation, ConfigTSN service can determine a new config-
uration and update configuration files with new values.
For example, NEON controller can command NEON
southbound API to monitor the propagation delay of
a specific link. In case the measured propagation de-
lay is different from the default value that has been
configured at the network startup, NEON southbound
API notifies NEON controller. The latter notifies Con-
figTSN service with the measured value.

• ConfigTSN: The role of this service is to produce
the adequate configuration files for each device in the
network. This service may start with a default configu-
ration that was generated by an offline tool to prepare
for each device its proper default configuration file.
As in NEON solution, NEON southbound API gener-
ates and associates each device with a unique identifier
(UUID), ConfigTSN associates the name of each con-
figuration file with the UUID of the targeted device.
Along with network operation, NEON controller relays
any event (e.g. new device, new flow, link failure, the
measured propagation delay, etc.) to the ConfigTSN
service that will compute and generate new configura-
tion files.

• EthernetTSN: The role of this service is to prepare
the configuration requests to be sent to each device
in the network. As the parameters to be configured
in each device are vendor-specific, this service will be
in charge of matching between the parameters that
are presented in the configuration file generated by
the ConfigTSN service and the YANG data model re-
lated to that device. When NEON controller detects
the presence of a new device equipped with NEON
southbound API, the controller informs EthernetTSN
service and provides it with the UUID of this device.
The service will look for the configuration file associ-
ated with this UUID. Then, it matches between the
configuration file and the device YANG data model,
prepares and sends to the device the appropriate con-
figuration command.

5.2 Time synchronization deployment
The time synchronization is a key feature in TSN networks

[12]. We developed a proof-of-concept where we used our
solution to configure and deploy the time synchronization in
a small network. The testbed is shown in Figure 4. It is
composed of 2 End stations (Talker and Listener) connected
via 2 TSN switches.

• End station: It is an embedded platform equipped
with a Linux and an HP Intel I210-T1 Ethernet card
[14]. The I210 chipset supports the TSN standards
IEEE 802.1AS and IEEE 802.1Qav. We installed the
software linuxptp [5] that allows managing IEEE 802.1AS.

Figure 4: Time synchronization deployment proof-
of-concept.

• TSN switch: It is produced by ANALOG DEVICES
[1]. It is equipped with 2-ports (100 Base-Tx) TSN
Ethernet module. The switch supports IEEE 802.1AS
and IEEE 802.1Qbv standards. The configuration of
the switch is done via a web interface.

We install NEON southbound API in each End station.
NEON controller and the NEON services described above
are installed in a standard Linux-based server that is con-
nected to both end stations.

When the TSN switches are turned on, the BMCA is pro-
grammed to start automatically. The GrandMaster selec-
tion consists in comparing, one by one, between 5 attributes
namely priority1, clockClass, clockAccuracy, offsetScaled-
LogVariance, priority2 and clockIdentity. Today, among
these 5 attributes, the board offers the possibility to con-
figure only priority1 and priority2. We configured in both
switches to have the same values for priority 1 (246) and
priority2 (248). The BMCA operation has led to selecting
switch 1 to be the GrandMaster.

The ConfigTSN prepared the default configuration files for
each end station. In the configuration file associated to the
end station (talker), the priority1 is set to 246. However, in
the configuration file of End station (listener), the priority1
is set to 133. According to the standard IEEE 802.1AS, pri-
orities with lower values take precedence on priorities with
higher values. Therefore, after running the configuration
process, the end station (listener) should be chosen as the
GrandMaster, as it has the lowest value of priority1.

In our configuration solution, we require the IEEE 802.1AS
YANG data model. For that, we get inspired by the IEEE
802.1AS Management Information Base (MIB) to specify
the appropriate YANG model. We published this model in
the Internet draft [3].

In the End station (Talker) and End station (Listener),
we start NEON southbound API programs with a UUID-1
and UUID-2, respectively. When NEON controller receives
connection requests from these End stations, it notifies the
EthernetTSN service. This latter will look for the configu-
ration file related to each device and do the matching with
the IEEE 802.1AS YANG data model [3]. Then, it pre-
pares the adequate configuration command to be sent for
each device. Upon receiving the configuration commands,
NEON southbound API starts linuxptp software with the
received configuration values. By having a look at the lin-

uxptp software output in the End station (talker), we can
see that it indicates the End station (listener) identity as
the Grandmaster identity. Moreover, we checked the time
synchronization on the web interface of each TSN switch.
Both of these web interfaces indicate that the end station
(listener) has been selected to be GrandMaster.

5.3 Discussion and next steps
Through the example of time synchronization deployment,

we showed that our solution is able to manage (i.e. start/stop,
configure/reconfigure) on-the-fly the time synchronization
module in End stations. As End stations are Linux-based
platforms and linuxptp is an open software, it was possible
to develop a plugin in NEON southbound API that can eas-
ily manage linuxptp. Conversely, the web interfaces were the
only way to configure the TSN switches that we are using.
Although we are able to create a plugin in NEON south-
bound API to configure these switches via HTTP requests,
this is still not the appropriate manner to ensure the auto-
matic configuration that we are targeting. Ideally, the TSN
switch vendors shall expose monitoring and configuration
APIs of their devices and provide their data model (YANG,
MIB or JSON) as well. Nowadays, TSN switch vendors are
aware of this critical issue and some of them are working
towards exposing APIs of their devices [18].

For the future work, there are many directions. From
implementation aspects, the current version of ConfigTSN
service needs to be enhanced. Today’s, it does not react
to the notifications received from NEON controller about
changes in the network topology. The evolution of this ser-
vice will consist in implementing the required mechanisms
to consider these notifications and react accordingly. For
example, when the GrandMaster disappears from the net-
work (i.e. device failure), ConfigTSN should designate a de-
vice from the network to be the GrandMaster, generate new
configuration files and trigger the EthernetTSN service to
push this configuration in the network. Moreover, from the-
oretical aspects, integrating the artificial intelligence in our
solution, in order to compute the adequate traffic scheduling
for the network, will be considered.

6. CONCLUSION
In this paper, we highlighted the need for SDN solutions

to ensure an easy and automatic (re-)configuration of indus-
trial and automotive networks. Particularly, we proposed
an SDN-based network configuration solution based on the
use of NEON software, an SDN solution developed by CEA-
LIST that ensure the dynamic configuration of networks. A
first proof-of-concept has been developed where we showed
how our solution enables an automatic configuration of the
time synchronization feature in the network.

7. REFERENCES
[1] ANALOG DEVICES. TSN evaluation kit.

http://www.innovasic.com/products/tsn-kit. [Online;
accessed 16-April-2018].

[2] AVnu Alliance. Automotive Ethernet AVB Functional
and Interoperability Specification, Revision 1.5.
specification, 2016.

[3] S. Ben Hadj Said and M. Boc. YANG Model of IEEE
802.1AS. Technical Report
draft-benhadjsaid-detnet-gptp-yang-00, 2018.

[4] D. Bruckne, R. Blair, M.-P. Stanica, A. Ademaj,
W. Skeffington, D. Kutscher, S. Schriege, R. Wilmes,
K. Wachswender, L. Leurs, M. Seewald, R. Hummen,
E.-C. Liu, and S. Ravikumar. OPC UA TSN A new
Solution for Industrial Communication.

[5] R. Cochran. The Linux PTP project.
http://linuxptp.sourceforge.net/. [Online; accessed
13-April-2018].

[6] S. Decremps, S. Imadali, and M. Boc. Fast
Deployment of Services in SDN-based Networks: The
Case of Proxy Mobile IPv6. Procedia Computer
Science, 40:100 – 107, 2014. MoWNet’2014.

[7] J. L. Du and M. Herlich. Software-defined networking
for Real-time Ethernet. In ICINCO (2), pages
584–589, 2016.

[8] J. Farkas, B. Varga, R. Cummings, Y. Jiang, and
Y. Zha. DetNet Flow Information Model. Technical
Report draft-ietf-detnet-flow-information-model-01,
2018.

[9] A. Gopalakrishnan. Applications of software defined
networks in industrial automation, 2014.

[10] M. Gutiérrez, A. Ademaj, W. Steiner, R. Dobrin, and
S. Punnekkat. Self-configuration of IEEE 802.1 TSN
networks. In Emerging Technologies and Factory
Automation (ETFA), 2017 22nd IEEE International
Conference on, pages 1–8. IEEE, 2017.

[11] M. Herlich, J. L. Du, F. Schörghofer, and P. Dorfinger.
Proof-of-concept for a software-defined real-time
ethernet. In Emerging Technologies and Factory
Automation (ETFA), 2016 IEEE 21st International
Conference on, pages 1–4. IEEE, 2016.

[12] IEEE. Timing and Synchronization for Time-Sensitive
Applications in Bridged Local Area Networks. IEEE
P802.1AS, 2011.

[13] IEEE. Bridges and bridged networks amendment:
Stream reservation protocol (SRP) enhancements and
performance improvements. IEEE P802.1Qcc/D2.1,
2018.

[14] Intel. Intel Ethernet Controller I210 Datasheet.
https://www.intel.com/content/dam/www/public/us/
en/documents/datasheets/
i210-ethernet-controller-datasheet.pdf. [Online;
accessed 16-April-2018].

[15] G. Kálmán. Mass configuration of network devices in
industrial environments. In The Twelfth International
Conference on Networks (ICN 2013), pages 107–111.
IEEE, 2013.

[16] G. Kálmán. Applicability of software defined
networking in industrial ethernet. In
Telecommunications Forum Telfor (TELFOR), 2014
22nd, pages 340–343. IEEE, 2014.

[17] M. Labraoui, M. Boc, and A. Fladenmuller.
Self-configuration mechanisms for SDN deployment in
Wireless Mesh Networks. In 2017 IEEE 18th
International Symposium on A World of Wireless,
Mobile and Multimedia Networks (WoWMoM), pages
1–4, June 2017.

[18] TTTech. DE IP Solution Edge. https://www.tttech.
com/products/industrial/deterministic-networking/
fpga-asic/de-ip-solution-edge/. [Online; accessed
16-April-2018].

