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ABSTRACT

The continuously increasing degree of automation in many ar-

eas (e.g. manufacturing engineering, public infrastructure) lead

to the construction of cyber-physical systems and cyber-physical

networks. To both, time and energy are the most critical operating

resources. Considering for instance the Tactile Internet specifi-

cation, end-to-end latencies in these systems must be below 1ms,

which means that both communication and system latencies are

in the same order of magnitude and must be predictably low. As

control loops are commonly handled over different variants of net-

work infrastructure (e.g. mobile and fibre links) particular attention

must be payed to the design of reliable, yet fast and energy-efficient

data-transmission channels that are robust towards unexpected

transmission failures. As design goals are often conflicting (e.g.

high performance vs. low energy), it is necessary to analyze and

investigate trade-offs with regards to design decisions during the

construction of cyber-physical networks.

In this paper, we present Δelta, an approach towards a tool-

supported construction process for cyber-physical networks. Δelta
extends the previously presented X-Lap tool by new analysis fea-

tures, but keeps the original measurements facilities unchanged.

Δelta jointly analyzes and correlates the runtime behavior (i.e. per-

formance, latency) and energy demand of individual system compo-

nents. It provides an automated analysis with precise thread-local

time interpolation, control-flow extraction, and examination of la-

tency criticality. We further demonstrate the applicability of Δelta
with an evaluation of a prototypical implementation.
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1 INTRODUCTION

With the increasing degree of automation in domains such as man-

ufacturing engineering, mobility and logistics, as well as public

infrastructure, great efforts are being made to close the gap between

cyber (or digital) and physical processes, commonly described as

cyber-physical systems (CPS). The communication between these

CPSs is becoming particularly important, as control loops are han-

dled over different variants of network infrastructure (e.g. fibre

links, LTE/5G) to make measurements (i.e. sensor data) available

from a variety of systems and implement the necessary, distributed

coordination. These communicating systems are commonly re-

ferred to as cyber-physical networks (CPN) and represent a special

division of real-time networks. CPNs share the requirements of the

underlying cyber-physical systems which implies that such net-

works must ensure fault-tolerance or resilience, provide real-time

characteristics, allow the execution of distributed tasks, and incor-

porate self-sufficient systems which are battery driven and demand

low-power operations with predictable energy footprints.

CPNs not only require novel solutions on all layers of a com-

munication stack (i.e. transport, network, operating system and

hardware), they also demand for cross-layer integrations to fulfill

these requirements [12]. The work on solutions for the arising chal-

lenges requires tools that analyze the timing behavior as well as

the energy demand at system level. Correspondingly, such develop-

ment tools support the construction process of CPNs and allow the

evaluation of system changes, validate guarantees (i.e. as to time

and energy demand), and guide the process of decision making for

further improvements of the system design. This paper presents
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and evaluates an approach towards tool-based, automated timing

and energy demand analysis of CPNs. The approach improves and

extends X-Lap [17], a timing-analysis tool specifically designed for

CPNs. We demonstrate the validity of the proposed approach by an-

alyzing the Predictably Reliable Real-time Transport (PRRT) protocol,

which is a transport layer protocol for CPNs. PRRT respects appli-

cation constraints, such as maximum latency and tolerance to lost

messages, and parametrizes its internal mechanisms for congestion

and error control to fulfill these.

The contribution of this paper is threefold:

• We present an approach which jointly captures, analyzes,

and correlates the runtime behavior (i.e. performance, la-

tency) and energy demand of CPNs

• We propose an automated analysis which provides precise

thread-local time interpolation, control-flow extraction,

and analysis of latency criticality.

• We extend our analysis to compare multiple sets of traces,

which automatically extracts the impact of code changes

or hardware configurations (i.e. varying processor speeds).

The remainder of this paper is structured as follows: Section 2

gives background information as well as related work. Section 3

presents details on the implementation, while Section 4 shows

the evaluation results. Section 5 concludes the paper and gives

directions for further research and implementation.

2 BACKGROUND AND RELATEDWORK

In CPSs and CPNs in particular, we see that the requirements that

are posed [12] cannot be fulfilled by analyzing the network or

operating system independently. However, the networking and

operating systems domains have been using completely different

sets of tools to evaluate system performance and validate adher-

ence to design goals. Typically, this process involves abstracting

away the other domain [5, 19] and simplifying it by characterising

representative loads (from a system perspective) or representative

task execution times (from a network perspective). With the pre-

cision and timescale required for CPSs [2], these abstractions are

no longer sufficient and it is required to properly co-design and

analyze both domains at the same time [3, 4].

Communication and operating system latencies used to be in

different orders of magnitude (communication: 10ms to 10s; system:

10us to 1ms), if we for instance consider applications running on the

Internet and covering large physical distances. In contrast, CPN ap-

plications have stricter time constraints (cf. the Tactile Internet [6]),

e.g. a total end-to-end latency of 1ms, so that the two domains

tend to contribute to the overall latency more evenly. For the net-

working domain, this means that the communication distances are

strictly limited (below 300km to achieve 1ms propagation delay

with speed of light) and queueing delays must be kept as close to

zero as possible, using pacing and congestion control. The latter is

already motivated in previous work on data center networking [1],

which does not deal with real-time requirements, but still requires

that the delays are predictable and low [4]. Considering that data

centers and clouds are going to play an import role in offloading

tasks for upcoming CPN applications, these approaches will also

be part of network stacks tailored to the needs of CPNs.

Another approach to timing and energy-demand analysis is off-

line static analysis, before run-time. The goal of such an analysis

is typically to derive a worst-case execution time (WCET) [22] and

worst-case travel time (WCTT) [14] for network protocols. Δelta
and X-Lap, in contrast, monitor the behavior at run-time. In con-

sequence, Δelta is inherently restricted to the actually observed

behavior, and it cannot guarantee that the collected samples cover

worst-case scenarios. However, this approach is still viable for soft

real-time systems that are often too complex for exhaustive static

analysis. Besides, the information gathered with X-Lap and Δelta
can be used to verify timing information gained by static analy-

sis. An example for a tool-based approach for the construction

of real-time networks based on static analysis is RT-Appia [18].

This framework composes protocol components to real-time net-

work stacks. Thus, the protocol stack is tailored to the application

demand in order to improve WCET analyzability.

2.1 X-Lap

X-Lap1 [17] is a timing analysis tool specifically designed for CPNs.

In these networks, the network protocol stacks are often tightly cou-

pled with operating system in order to fulfill real-time requirements

with high reliability. X-Lap therefore works cross-layer, by profiling

the performance on transport, operating system and network layer.

Furthermore, it works on multiple nodes and allows to correlate the

timing information taken on these systems, without explicit clock

synchronization. X-Lap consists of two components: 1) a set of C-

level calls to be injected into the code for capturing high resolution

clock- and cycle-stamps with minimal overhead; 2) a set of analysis

procedures to determine the causes of latency and jitter. Sender and

receiver systems that use these C-level calls are going to produce a

table with packet traces after termination, which gives the clock-

and cycle stamps together with the packet sequence number. After-

wards, the processing chain of X-Lap interpolates timestamps—we

only take them when necessary, because cycle-stamps lead to a

lower overhead induced by the profiling—and calculates the dura-

tions of certain processing steps, as well as the overall execution

time by different threads. Consequently, X-Lap is able to compute

exact processing durations for fine-grained processing steps of ev-

ery packet, through the entire CPN—providing insights that other

(single-layer) tools, e.g. wireshark2 for networking or valgrind3

for systems, cannot deliver.

2.2 Predictably Reliable Real-time Transport

Weuse X-Lap for evaluating the Predictably Reliable Real-time Trans-

port (PRRT)4 protocol [8]. PRRT is a protocol that aims to overcome

the shortcomings of existing transport layer protocols, such as TCP,

UDP and QUIC [7], in particular with respect to time- and resilience-

awareness. In contrast to these solutions, PRRT provides a partially

reliable ordered datagram streamwith bounded latency, in contrast to

TCP (fully reliable ordered byte stream), UDP (datagram stream) and

QUIC (multiplexed fully reliable ordered byte streams with reduced

number of round-trips), which all do not provide bounds on timing.

1http://xlap.larn.systems
2https://www.wireshark.org/
3http://valgrind.org/
4http://prrt.larn.systems



Δelta: Differential Energy-Efficiency, Latency, and Timing Analysis for Real-Time Networks ECRTS-RTN’18, July 2018, Barcelona, Spain

PRRT achieves this by a) letting the application state its require-

ments on maximum latency and acceptable residual error rate and

b) incorporating this into the protocol’s operation, together with

measurements of the channel’s propagation delay, loss rate and

bottleneck bandwidth. Therefore, it is necessary that code segments

across multiple threads within PRRT take a predictable amount of

time and face only minimal jitter. For achieving predictable delay

on the network layer, PRRT uses multiple mechanisms: First, it uses

adaptive hybrid error correction [13] to chose and optimal configura-

tion for providing proactive (FEC) and reactive (ARQ) error control,

based on the application constraints and channel parameters. An

optimal coding scheme ensures that after the application’s maxi-

mum tolerable latency, at most it’s maximum tolerable residual loss

is present. Second, it uses packet pacing to adjust its effective send-

ing rate to the bottleneck bandwidth, effectively avoiding queueing

delays when packets are send out in bursts. Finally, pacing together

with measurements on the propagation delay are used to compute

the congestion window over the given path and avoid further losses

due to competitions for bandwidth with other applications.

In general, evaluations using X-Lap can be executed with other

transport layer protocols as well, as long as the source code is avail-

able and can be changed to inject clock- as well as cyclestamping

calls. Furthermore, the protocol must provide some notion to iden-

tify packets, e.g. a sequence number, so that traces for individual

pieces of data can be generated.

3 IMPLEMENTATION

The implementation of Δelta bases on X-Lap [17], and reuses its

high-precision, low-interference time-stamping architecture. How-

ever, it significantly extends the off-line analysis component, pro-

viding additional insights and increasing automation.

The analysis approaches we present in this paper augment the

timing analysis facilities of X-Lap by a differential approach that

compares the timing of multiple experiments. We extract informa-

tion that are particularly useful for the design, implementation, and

evaluation of real-time networks.

The analysis approaches work retroactively, in the sense that

they derive information from observing a real-time network stack

in action. Such information is necessarily imprecise because it is

restricted to the actually observed behavior. However, we show in

the following, that we can derive valuable information with little

design-time and run-time costs. Proactive approaches that predict

the behavior, for instance by static analysis, are beyond the scope

of this paper.

3.1 Control Flow Reconstruction

When searching for and mitigating the interferences between dif-

ferent processing steps in a transport stack, the control flow graph

is an essential tool to foster the analysis. As control flows can vary

between different protocol versions or even minimal code changes,

it is crucial for a cross-layer analysis to extract this piece of infor-

mation from the captured data. Obviously, this cannot fully replace

the expertise of a developer and a thorough analysis of the source

code, but in particular with concurrent systems, such an empirical

approach can greatly support the development process.

The reconstruction works as follows: We compute a happens-

before relation [10]A→+ B of eventsA and B if, for every packet,A
has a lower time-stamp than B. IfA�+ B and B �+ A,A and B are

concurrent. Concurrency can occur if events happen in different

threads, or in interrupt handlers, such as timers.

Since happens-before is transitive, we derive a happens-directly-

before relation A→ B of events A and B if A→+ B and no event E
exists with A→+ E →+ B. This relation reconstructs control flows,

because it reveals the sequence of events in the protocol stack. A

representative sub-graph is depicted in Figure 1, showing the flow

packets follow through a specific version of the PRRT stack.

3.2 Latency-Criticality Analysis

The analysis steps in the following sections rely on the information

whether the duration of a specific code segment impacts the end-

to-end latency. We therefore need to quantify the relation between

code segments and the end-to-end latency. Thereto, we define

the latency criticality of a code segment 〈A,B〉, as the Pearson

correlation coefficient between the duration of 〈A,B〉 and the end-

to-end (E2E) latency, over all packets in a trace. This value describes

whether the E2E latency depends on the duration of a code segment.

Thereby, we utilize the control flow reconstruction to automatically

detect whether A and B refer to an actual code segment in the

protocol stack.

The latency-criticality analysis measures how individual code

segments influence the end-to-end delay. Thus, it gives a hint

on which parts of the protocol are worth considering for further

optimization, to fulfill the requirements of CPNs.

3.3 Timing-Predictability Analysis

A key property of CPNs, as well as real-time networks, is timing

predictability. Therefore, our analysis identifies protocol parts that

exhibit unpredictable behavior.

The reasons for non-reproducible timing behavior are many-fold.

For instance, many network protocols incorporate concurrency

due to timers, task synchronization or thread interaction. Besides,

hardware and software-related interference such as cache misses

or OS noise [21] influence the timing behavior of code segments.

Furthermore, the timing of specific code segments might depend on

current channel properties (e.g. packet loss or propagation delay).

In order to identify code parts where the timing behavior is not

sufficiently predictable, we run the same exact version of the code

multiple times and trace each packet using X-Lap. Afterwards, we

reconstruct the control flow from the timestamps to identify the

code segments of interest.

For each code segment, we apply the k-sample Anderson-Darling-

Test [20]. This stochastic test is a well-established method to check

whether multiple samples are derived from the same distribution.

While, technically, the durations are drawn from the same actual

runtime-distribution of code segments, the actual data might show

significant differences between consecutive runs.

The stochastic test only classifies timing behavior as “different”

when it is certain, given a configurable significance parameter.

When the test is not certain enough, it classifies the timing distri-

butions as “similar”. However, this test can give false-negatives

when timing is actually unpredictable but, incidentally, behaves the
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PrrtSendStart PrrtSubmitPackage PrrtSendEnd

LinkTransmitStart

PrrtTransmitStart

PrrtTransmitEndLinkTransmitEnd

ChannelTransmit

LinkReceive

ChannelReceive

DecodeStart DecodeEnd HandlePacketStart

Figure 1: A control flow graph reconstructed from the happens-directly-before relation

same at all observed experiment runs. However, if the test result

is “different”, then the two experiment runs have certainly shown

different timing behavior.

The actual importance of the unpredictability results depends

on the latency criticality of the code segment. At some protocol

parts, unpredictability can be expected, for instance, regarding

timers that cause concurrent code execution. Therefore, the timing

unpredictability results should be analyzed jointly with the results

of the latency-criticality analysis.

3.4 Modification Tracking

When changing parts of the implementation of protocols, the timing

behavior of (at the first glance) independent protocol parts can

change. The reason is interference that is sometimes hidden: For

instance, cache effects and contention on hardware buses can cause

non-trivial interference between seemingly independent protocol

parts. Besides, if the timing of network packets changes slightly,

the entire protocol behavior might adapt.

Our analysis reveals such timing interference. We execute differ-

ent protocol versions and, for each version, capture packet traces

with X-Lap. Then, we apply the Anderson-Darling-Test similar to

the timing predictability evaluation described in Section 3.3. This

test reveals code segments where the timing behavior has changed.

We can also identify control flow changes using the automated

control flow reconstruction described in Section 3.1.

3.5 Energy-Efficiency Analysis

Another use of differential analysis for real-time networks is energy-

efficiency optimization. Modern hardware components offer mul-

tiple “knobs” that affect power demand as well as performance.

These configurations include processor frequencies and sleep states

with varying wake-up latencies. Identification of the most efficient

states while maintaining desired real-time behavior is therefore a

complex problem [16].

To analyze the relation between energy demand and perfor-

mance, we trace packets with X-Lap and measure the end-to-end

latency. Simultaneously, we measure the energy demand of the

sender and the receiver hosts during the experiment. We repeat

these measurements for the various configurations of the hardware

and thereby identify the most energy-efficient setup.

3.6 Slowdown Analysis

Besides finding the most energy-efficient hardware configuration,

Δelta offers additional fine-grained timing information, giving in-

sight into the detailed behavior of individual protocol parts.

To analyse how protocol parts behave under different hardware

power states, we measure a fast and a slow experiment run. Then,

we reconstruct the control flow and, for each code segment X , we

compute the average delays DX ,f ast and DX ,slow , from the fine-

grained timing information of the respective experiment runs. We

compute the slowdown SX of each segment, and we normalize the

slowdown values using the end-to-end slowdown:

SX =
DX ,slow

DX ,f ast
S∗X =

SX
SE2E

The normalized slowdown reveals whether the duration a code

segment depends on the processor speed. If S∗
X

is above 1, the

segment latency suffers from the slow hardware configuration. A

value below 1, however, means that the performance loss at a code

segment is less than the end-to-end performance loss.

4 EVALUATION

We evaluate our analysis approaches using X-Lap and PRRT. We

obtain detailed package traces and submit them to the Δelta analysis
techniques described in Section 3. The purpose of this evaluation is

to find out whether the analysis techniques presented in Section 3

produce meaningful results. We therefore apply them to a real-time

networking protocol, PRRT.

4.1 Experimental Setup

We run all experiments on two nodes in a dedicated networking

testbed to make sure that only minimal interference on the hosts

and the network disturb our experiments.

4.2 Control Flow Reconstruction

To evaluate the control flow reconstruction, we have traced 4095

packets with X-Lap. Figure 1 depicts a representative sub-graph

of the computed happens-directly-before relation. For events that

happen in the same thread, the analysis reconstructs the control

flow reliably. However, one computed flow was a false-positive

because, by chance, an event in one thread always happened before

another event in another thread. We also encountered one false-

negative, where two events happened nearly simultaneously and

the clock resolution was not sufficient to order the two timestamps.

4.3 Latency Criticality Evaluation

We evaluate the latency criticality of all code segments identified

by the control flow reconstruction. Figure 2 visualizes results for

the most-critical code segments. The values correspond loosely to

the average segment latency, because jitter is often proportional to

the duration. Therefore, long segments correlate stronger with the
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Figure 2: Latency criticality of protocol parts

end-to-end latency. However, some segments have low criticality

because of concurrency in the protocol stack.

4.4 Timing Predictability Evaluation

To evaluate the timing predictability analysis, we have traced two

samples with 100 packets each. Both samples use identical code re-

visions, and the hardware frequency was fixed to 3GHz. We run the

Anderson-Darling-Test on both data sets, which reveals that 9 code

segments have non-reproducible timing, 5 of which were expected

because of concurrency or interaction with the network hardware.

Out of the 4 remaining segments, only one has a relatively high

latency criticality (<PrrtSendStart,PrrtSubmitPackage>). Thus,

the analysis gives a hint where the protocol implementation can be

optimized to improve timing predictability.

4.5 Modification Tracking and Evaluation

We repeat the timing predictability analysis, but we add an artificial

sleep call as a dummy code modification that impacts the timing

behavior of a single code segment. The sleep call was already in

a segment with non-reproducible timing, at the sender side. We

compare the results with the timing reproducibility analysis to elim-

inate segments where we know that the timing changes between

experiment runs. The analysis reveals that two code segments at

the receiver side change their timing behavior, according to the

Anderson-Darling-Test. Thus, our analysis reveals interference

between protocol parts.

4.6 Energy Efficiency

We evaluate the system energy efficiency at three performance

states: We configure our system to run at a fixed speed of 1GHz,

2GHz, or 3GHz, for each evaluation run. Thereby, we use X-Lap

to measure the end-to-end package latency. Simultaneously, we

measure the energy demand with RAPL [9].

We compute the average ET2 metric [15] per packet, because it

is a fair comparison for DVFS settings. Figure 3 summarizes the

evaluation results. Thereby, the most energy-efficient configuration

is neither the fastest nor the slowest. This result is well-aligned
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Figure 3: Energy efficiency at different processor speed set-
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Figure 4: Normalized slowdown for code segments

with other research [11]. This outcome also indicates that energy

efficiency needs actual energy measurements to find the optimal

hardware configuration.

4.7 Normalized Slowdown

We further analyse the precise packet timings at 2 GHz and 3GHz

and compute the normalized slowdown for each code segment,

using the control flow reconstruction to identify relevant code seg-

ments. The results are summarized in Figure 4, showing that on

the one hand, we find a relatively high normalized slowdown at

the <DecodingStart,DecodingEnd> segment, because the decod-

ing operation is CPU bound. On the other hand, memory-bound

segments, such as <CopyOutputStart,CopyOutputEnd>, exhibit
a low normalized slowdown. These results indicate that different

error codes (or optimized versions of it) might allow to use a more

energy-efficient hardware configuration.
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5 CONCLUSION

This paper has introduced Δelta, a collection of analysis techniques

for cyber-physical networks. In summary, these novel techniques

offer detailed insight on the fine-grained timing behavior and en-

ergy demand. We automatically reconstruct control flows from

time measurements. We utilise this information in a differential

analysis approach to detect code segments with unpredictable tim-

ing. Additionally, our analysis detects the impact on code revisions

on the overall system behavior. The evaluation shows that minor

changes in one processing step can indeed change the timing of var-

ious other, seemingly unrelated, parts of the protocol. We further

combine precise timing information with actual energy measure-

ments. Our analysis identifies the most energy-efficient hardware

configuration, and evaluates quantitatively which code segments

tolerate low processor speeds.

In summary, our proposed approach helps designers of cyber-

physical networks to verify timing properties, to reduce the end-to-

end latency and jitter, and to increase the energy efficiency of the

overall systems.

In future work, we are going to apply these analyses to improve

transport protocol stacks for cyber-physical networks, to achieve

predictably low end-to-end latency and a high energy efficiency.
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