
The Open PCA Pump Project
An Exemplar Open Source Medical Device as a Community Resource

John Hatcliff
Brian Larson
hatcliff@ksu.edu
brl@ksu.edu

Kansas State University

Todd Carpenter
todd.carpenter@adventiumlabs.com

Adventium Labs

Paul Jones
Yi Zhang

Joseph Jorgens
Paul.Jones@fda.hhs.gov
Paul.Jones@fda.hhs.gov

Joseph.Jorgens@fda.hhs.gov
US Food and Drug Administration

ABSTRACT
Building safe and secure interoperable medical devices with ac-
companying assurance artifacts is challenging. Many start-up com-
panies have great ideas for innovation, but are not familiar with
appropriate safety/security-critical engineering processes, architec-
ture principles, risk management, and assurance techniques. Larger,
more experienced, companies may face hurdles in re-engineering
their devices for interoperability and greater security. In academia,
researchers often have good techniques for addressing some of the
issues above, but are not familiar with how a realistic medical device
is developed and assured. Building a prototype medical device for a
classroom project or research work to validate proposed techniques
is often a huge effort.

The Open PCA Pump illustrates a full suite of realistic devel-
opment artifacts including use cases, requirements, architecture
models, verified source code, testing and simulation infrastructure,
risk management artifacts, and assurance cases that can be used to
develop shared understanding of medical device innovations across
the academic, industry, and regulatory communities.1

CCS CONCEPTS
• Computer systems organization→ Embedded software;

KEYWORDS
reference architecture, requirements, assurance case, AADL, med-
ical device, PCA pump, interoperable, safety, security, exemplary
design artifacts, model-based engineering, BLESS, formal specifica-
tion, software correctness proofs

1 INTRODUCTION
Many improvements inmedical device capabilities are being achieved
through rapid advances in technology. More effective sensing of
physiological parameters, less disruptive and more controllable
1 This work is sponsored in part by US National Science Foundation Food and Drug Ad-
ministration Scholar-in-Residence program (CNS 1238431,1355778,1446544,1565544),
the Department of Homeland Security (DHS) Science and Technology Directorate,
Homeland Security Advanced Research Projects Agency (HSARPA), Cyber Security
Division (DHS S&T/HSARPA/CDS) BAA HSHQDC- 14-R-B0005, the Government of
Israel and the National Cyber Bureau in the Government of Israel via contract number
D16PC00057.

Copyright held by the owner/author(s).
MCPS’18, April 2018, Porto, Portugal.
The authors wished to acknowledge the second author Brian Larson for his vision for
the Open PCA Pump and his work as the primary creator of the original Open PCA
Pump artifacts.

therapy delivery, greater computational power provided by proces-
sors that use less resources, better data storage and communication,
more effective data analytics, smaller form factors, lower manufac-
turing costs, and greater architectural flexibility are all contributing
to device innovation. Advances in interoperability are enabling
individual devices to be flexibly arranged into different “system of
systems” structures to achieve greater care-giver work flow efficien-
cies, improved automation through “closed loop” decision making
and control, and more effective use of data [10].

However, there are challenges in continuing and accelerating
the pace of innovation while achieving appropriate medical device
safety and security. Architectures are growing more complex. Small
companies have interesting ideas for innovation, but they are often
not familiar with safety/security-critical development approaches
or relevant regulatory regimes. Larger companies are struggling
to adapt legacy architectures and code bases to address security
concerns and flexibility needed for developing families of related
products. while maintaining consistency and backward compat-
ibility with legacy products. Industry teams often lack the skills
necessary to develop safe, secure, and efficient closed loop control
applications.

Medical devices are examples of safety-critical cyber-physical
systems (CPS) – they are built from, and depend upon, the seamless
integration of computational and physical components.2 Numer-
ous well-documented opportunities exist for CPS science and CPS
community activites to impact the medical device domain, and con-
versely the medical world has many interesting problems that can
drive research in the CPS community [21].

Continued progress in bridging these domains requires better
cross-fertilization between
a) Academic communities including CPS, software engineering,

hybrid systems, and formal verification research areas,
b) Medical device companies and industry associations,
c) Health care practitioners,
d) Standards development organizations and regulatory agencies,

and
e) Third-party safety/security certification organizations.
Unfortunately, several barriers inhibit shared learning. For ex-

amples, medical device manufacturers invest their own money to
make advances, and may choose to keep certain information propri-
etary so they can remain competitive, and regulatory agencies are

2https://www.nsf.gov/news/special_reports/cyber-physical/

https://www.nsf.gov/news/special_reports/cyber-physical/

constrained from reporting on details of safety/security problems
to avoid revealing proprietary information.

In academia, students and researchers don’t have access to real-
istic devices (and especially device implementations and artifacts
used in development of devices) – due to manufacturers keeping
proprietary information for themselves. Additionally, students and
instructors find it difficult to access medical device development
and safety standards, and they don’t understand the concerns of
regulatory reviewers or nature of regulatory artifacts [13]. CPS
researchers are producing significant technical advances, but for
the reasons above they often do not realistically position their tech-
nologies in the context of a medical device. For example, significant
gaps in safety and security engineering and regulatory evidence
can impede uptake of new innovations.

Similarly, industry may also be unfamiliar with advanced sys-
tems engineering and software development technologies. Even if
they are familiar, without convincing demonstration of benefits in
a medical device context, they may view untried technologies as
unacceptable cost and schedule risks.

Regulatory agencies are often unfamiliar with advanced CPS
architectures, modeling, and verification technologies, and without
evidence, they cannot assume these innovations will support man-
ufacturer safety and security claims that they are responsible for
reviewing [13]. Correspondingly, the CPS community itself does
not understand or has not made an appropriate effort to explain
how their solutions lead to reduced risks and increased confidence
in the correctness of claims.

Standards development organizations, which typically work to
codify community best practices in standards requirements, are
unfamiliar with how to accommodate advanced technologies. More-
over, they don’t have the basic non-proprietary illustrations of ap-
plications of those technologies to include in standards rationale
and supporting informative annexes and technical reports.

2 OPEN PCA PUMP PROJECT GOALS
The Open Patient Controlled Analgesic (PCA) Pump project [28]
was created to help break down these barriers. The project is a
joint research effort between Kansas State University researchers,
US Food and Drug Administration (FDA) engineers, and industry
experts. The project aims to provide an open source design artifacts
for a realistic medical device – a PCA Pump – that illustrate ad-
vanced development and assurance technologies in the context of
realistic development processes and work products used to support
safety and security reviews.

The development of the original Open PCA Pump artifacts was
sponsored by the US National Science Foundation FDA Scholar-in-
Residence Program, which has the goals of (a) improving regula-
tory science by transitioning academic research results in quality
processes and rigorous development, verification, and assurance
techniques, (b) informing the academic community of regulatory,
safety, and security challenges.

The Open PCA Pump artifacts are being used by the Intrinsi-
cally Secure, Open, and Safe Cyber-physically Enabled, Life-critical
Essential Services (ISOSCELES) project sponsored by the US De-
partment of Homeland Security Cyber-Physical System Security
(CPSSec) research program led byAdventiumLabs. TheDHSCPSSec

project supports research to improve the security of critical infras-
tructure technologies. The ISOSCELES project is developing an
open-source software platform, running on generic hardware, to
provide both safety and security features for networked, interop-
erable medical devices to be used by (small) manufacturers more
knowledgeable about medical function than computer security. The
original Open PCA Pump requirements and architecture have been
adapted to show how the general ISOSCELES platform can be spe-
cialized for a particular medical function.

3 AVAILABLE MATERIALS
Below we provide a summary of currently-available materials.

3.1 Development Artifacts
Concept of Operations A concept of operations document doc-
uments stakeholders, user needs, and an extensive collection of
use cases addressing normal operations and response to fault
conditions and other safety/security-related events. Use case dia-
grams capturing important device/patient/operator interactions
are defined and simulated with jUCMNav [1].

Requirements Following the US Federal Aviation Administra-
tion’s Requirements Engineering Management Handbook, [22] a
requirements document [20] provides functional, safety, and se-
curity requirements, tracing of the requirements to stakeholders,
goals, and use- or exception-cases, and allocation of requirements
to functional architecture component(s) responsible for imple-
menting each requirement.

Architecture The system architecture is specified in the Archi-
tecture Analysis and Design Language (AADL).

Formal Behavior Specifications Specifications are attached to
the architecture using the Behavior Language for Embedded Sys-
tems with Software (BLESS) [17][19].

Implementation Real-time thread behaviors are specified using
state machines attached as BLESS annex subclauses and are fully
implemented using KSU’s Sireum Scala-based framework from
which C code suitable for embedded systems is generated.

Correctness Proof Inductive proofs that implementationmet spec-
ification are stated and proved using the BLESS framework.

Risk Management Error behavior is modeled with AADL’s error
modeling annex (EMV2) [15][18] for hazard analysis and risk
controls.

Assurance Case An assurance case for the Open PCA Pump’s
safety and effectiveness is specified using NOR-STA [24], which
references requirements, architecture and verification artifacts.

3.2 Domain Background Materials
As noted in Section 1, one of the challenges for academics working
on safety-critical systems (and medical devices in particular) is
to understand real domain issues. Two of the authors gained this
experience by directly working in themedical device community for
several years in engineering leadership roles, but this is not always
convenient. To address this, the Open PCA Pump project gathered
resources that can be used by individual researchers or in classroom
settings to understand real-world PCA pump requirements and use-
cases in real-world settings.

Example categories of Open PCA Pump domain resources:

PCA Pump Training Videos Links to publicly available training
for nurses on the setup and operation of PCA pumps.

Clinical Guidelines Guidelines, workflows, and best practices
for safety from hospitals and health care.

Physician Order Forms Forms used by hospitals physicians to
specify PCA pump therapy for patients.

PCA Pump Product Manuals User manuals and service manu-
als for selected PCA pumps currently on the market.

Safety Issues Clinical studies of pump safety issues and video
lectures from industry experts on PCA pump safety incidents.

3.3 Pedagogical Materials
The Open PCA Pump project provides the following resources for
classroom instructors and individual researchers:

PCA Pump Background Slides and recorded video lectures on
PCA Pump background and clinical use.

Requirements Slides and recorded lectures on engineering re-
quirements for safety-critical systems using the FAA’s Require-
ments Engineering Management Handbook (REMH) [22].

Architecture Specifications Slides and recorded lectures on use
of AADL on a simple medical device example.

Risk Management Lecture slides overviewing medical device
risk management terminology and the ISO 14971 medical device
risk management standard.

Project Concepts Description of possible classroom / research
project involving the Open PCA Pump material.

4 PCA PUMP BACKGROUND
A PCA infusion pump is used to infuse pain medication into a
patient’s blood stream through an intravenous (IV) line. Pain med-
ication is prescribed by a licensed physician, which is dispensed
by the hospital’s pharmacy. The pharmacy places the drug into
a labeled vial, and the vial is typically moved by hospital staff to
a drug cabinet located in the hospital ward associated with the
patient’s room. A clinician retrieves the vial from the drug cabinet,
loads the vial into the pump, and attaches the pump’s drug dispens-
ing tube to the patient’s IV line. By interacting with the pump’s
operator interface, the clinician enter parameters that indicate the
prescribed drug and amounts of drug to infuse during different in-
fusion modes. The pump infuses a prescribed basal flow rate (basal
infusion mode) which may be augmented by a patient-requested
bolus (this mode is activated when the patient presses a hand-held
button) or a clinician-requested bolus (this mode is activated by the
clinician via the device operator interface). When entering parame-
ters, the clinician also set limits on total drug volume that can be
infused over a set time period (e.g., one hour) and also sets a “lock
out interval” indicating a time period that must elapse between
each patient bolus dose. These limits provide safeguards against
overinfusion of the drug – which is a significant hazard associated
with a PCA Pump.

PCA pumps, unfortunately, have been associated with a large
number of adverse events [5, 14]. The FDA notes [6] that while PCA
pumps (and infusion pumps in general) have allowed for a greater
level of control, accuracy, and precision in drug delivery—thereby
reducing medication errors and contributing to improvements in

Figure 1: Example PCA Pump

patient care—infusion pumps have been associated with persis-
tent safety problems. From 2005 through 2009, 87 infusion pump
recalls were conducted by firms to address identified safety prob-
lems. Infusion pump problems have been observed across multiple
manufacturers and pump types. Through analysis of pump-related
adverse event reports and device recalls, FDA has concluded that
many of these problems appear to be related to deficiencies in device
design and engineering[6].

Through the Infusion Pump Improvement Initiative [6], FDA is
taking broad steps to reduce infusion pump problems. Specifically,
FDA aims to establish additional requirements for infusion pump
manufacturers, proactively facilitate device improvements, and in-
crease user awareness of problems and best engineering practices.
As an example of best engineering practices, the FDA Guidance
for Infusion Pumps [7] now recommends that pump manufactur-
ers provide an assurance case with their regulatory submissions.
These activities indicate the significant concerns that FDA has with
pump safety, and they provide an impetus for research in software
engineering, safety, security, and verification & validation applied
to pump development. We hope to enable such research to some
extent with the Open PCA Pump artifacts described herein.

5 OPEN PCA PUMP DEVELOPMENT
ARTIFACTS

In the sections below, we give a brief walkthrough of the exemplar
artifacts provided by the Open PCA Pump Project.

5.1 Concept of Operations
The purpose of a Concept of Operations (ConOps), e.g., presented
in INCOSE Systems Engineering Handbook [29] is to identify users
(more generally stakeholders), the environment in which system
will operate, the needs to the users to be addressed by system
functionality, and use cases of how users expect to interact with
the pump. The ConOps documents the detailed use and exception
cases following the methodology presented in the FAA’s REMH
[22] (which is based on [4]). Use cases describe normal operation.
Exception cases describe response to hazards or other deviations
from expected operation.

Both use and exception cases were developed as use case maps
– graphical depictions of use case actions, actors, and branches –
using jUCMNav [1]. Textual use and exception cases correspond
to their use case maps. The ability of jUCMNav to define, set, and

test variables denoting properties of use case steps, and execute
‘scenarios’ revealed several errors and omissions in use cases.

Use cases are linked to other artifacts in the following ways:
• the description of functional behavior in the use cases are used
to identify primary functions of the device and to derive require-
ments for those functions,
• use case interactions indicate primary interfaces for the device
which are reflected in the device architecture,
• use cases indicate information to be exchanged which is refined
into requirements for data models and contraints,
• use cases indicate risk controls including moving the device to
a safe state, operator notifications, etc.,
• use cases indicate security functions including operator autho-
rization, etc., and
• uses indicate sequences of interactions that should be reflected
in system test cases.

Researchers can experiment with different use case formalizations,
and techniques to derive requirements and tests from use cases.

5.2 Requirements
Open PCA Pump requirements derive from use and exception cases
of the ConOps. The requirements address the infusion function-
ality of the primary infusion modes, correctness of information
input/output over the operator interface (including standards com-
pliant alarm notifications), validation of operator-entered infusion
settings using drug libraries, functionality of risk controls that sys-
tem faults and exceptional circumstances, and security features
of the pump. The requirements also address functionality of an
interoperability interface for accessing pump functionality over the
network via a medical application platform [10, 16]. Each require-
ment has a unique textual identifier to support traceability.

The requirements document also includes a section on system
design. This section provides a high-level overview of the Open
PCA Pump architecture, and listings that allocate each requirement
to one or more components of the design. This enables traceability
between the architecture and the requirements (using the require-
ments identifiers mentioned above).

Researchers can use the requirements as case studies for ana-
lyzing requirements consistency and completeness, expressing re-
quirements in various formal specification languages, decomposing
requirements to interface specifications, or building requirements
compliant implementations.

5.3 Architecture
An AADL system architecture defines the structure of the PCA
pump as components with precisely-defined interactions. OMG’s
SysML [25] is a popular, general purpose system modeling language.
In contrast, SAE International’s AADL was created specifically for
embedded electronics systems using software, and for that purpose it
is far superior. AADL has both graphical and textual representations.
The graphical editor in the Open-Source AADL Tool Environment
(OSATE) keeps graphical and textual representations synchronized
allowing both to be edited consecutively.

Figure 2 shows theAADL graphical view of the PCApump’s high-
level functional architecture. The fluid subsystem holds the drug
reservoir, mechanical pump, and monitors of flow rate and pressure.

The power subsystem provides stable DC power from AC mains or
battery backup. The operation subsystem determines normal behav-
ior and some exceptional behavior. The safety subsystem monitors
other subsystems for malfunction, and handles exception cases to
provide patient safety. The most basic elements of the functional
architecture are hardware devices and software threads. AADL
properties specify whether a thread is periodic (time-triggered) or
sporadic (event-triggered). Communication between elements is re-
alized using publish-subscribe event communication (with optional
event payloads) or shared data cells with automatic propagation of
updates between components that use the cell. These basic notions
enable expression of a variety of high-level communication pat-
terns. Real-time properties of both threading and communication
can be specified using AADL properties.

Figure 2: Functional Architecture

The PCA Pump architecture specification serves as a “single
source of truth” about system components and communication
from which source code for interfaces and communication is auto-
matically generated. The architecture provides structural abstrac-
tion of the system for framing several different types of analyses
including schedulability,control/data flow, and error propagation
(see [11] for an expanded discussion). It is also used for defining in-
teraction points and interfaces to which one may add contracts that
capture behavioral interface specifications (see Section 5.4). Hav-
ing the architecture serve as a touch point for all of these aspects
encourages consistency and traceability.

Researchers can use the architecture description to compare and
contrast other architecture description languages, evaluate differ-
ent forms of architecture level analyses, and evaluate architecture-
driven code generation approaches.

5.4 Formal Specifications and Behavior
The Open PCA Pump artifacts provide an excellent opportunity to
illustrate and evaluate formal behavioral specification languages
as well techniques for demonstrating the implementations comply
to formal specification languages. The Open PCA Pump artifacts
include specifications and behaviors written in the Behavior Lan-
guage for Embedded Systems with Software (BLESS).

AADL can be enhanced with annex sublanguages. BLESS is
phrased as an AADL annex sublanguage. Components are specified
by BLESS::Assertion properties attached to component features,
usually ports. For out(going) event ports, the assertion property
states what is true about the system at the instant an event is issued.
Conversely, in(coming) event port assertions state what is assumed
at the instant an event arrives at that port. Connections between
ports support assume-guarantee contracts.

Individual component behavior is expressed in BLESS annex sub-
clauses as state-transition machines, that may perform an action
(execute a simple program) when a transition is taken. The state-
transition machines are annotated with assertion to be a ‘proof
outline’ containing all of the information necessary to prove that
operational behavior meets its declarative specification. The BLESS
proof engine (a plugin to OSATE available at [19]) generates verifica-
tion conditions, and with interactive selection of tactics, transforms
proof outlines into an inductive proof that every possible execution
meets its specification.

A safety feature of the pump that reduces the chance of over-
dose is a physician-specified “lock out interval” that disables the
effect of the patient bolus request button for a period of time after
the initiation of a patient bolus. The prevents the patient from giv-
ing themselves doses too frequently. The Patient_Bolus_Checker
thread enforces the lock out interval and shows a simple example of
BLESS specification and behavior. Assertions are contained within
double angle brackets (« »).� �
thread Patient_Bolus_Checker

features
Minimum_Time_Between_Bolus: in data port ICE_Types::Minute

{BLESS::Assertion => "<<:=MINIMUM_TIME_BETWEEN_BOLUS>>";};
Patient_Button_Request: in event port;
Patient_Request_Not_Too_Soon: out event port

{BLESS::Assertion => "<<PATIENT_REQUEST_NOT_TOO_SOON(now)>>";};
Patient_Request_Too_Soon: out event port

{BLESS::Assertion => "<<PATIENT_REQUEST_TOO_SOON(now)>>";};
end Patient_Bolus_Checker;� �� �
thread implementation Patient_Bolus_Checker.i

annex BLESS
{**
invariant <<LPB()>>
variables

last_patient_bolus: time:=0
<<LPB: :Patient_Request_Not_Too_Soon@last_patient_bolus and

not (exists t:time in last_patient_bolus ,,now
that Patient_Request_Not_Too_Soon@t)>>;

states
start: initial state

<<last_patient_bolus=0 and now=0 and LPB()>>;
run: complete state

<<LPB()>>;
check_last_bolus_time: state

<<LPB() and Patient_Button_Request@now>>;
done: final state;

transitions
go: start -[]-> run{};
button: run -[on dispatch Patient_Button_Request]-> check_last_bolus_time{};
nottoosoon: check_last_bolus_time

-[(now -Minimum_Time_Between_Bolus?) > last_patient_bolus]-> run
{ <<LPB() and Patient_Button_Request@now and

(now -MINIMUM_TIME_BETWEEN_BOLUS@now) > last_patient_bolus>>
Patient_Request_Not_Too_Soon!
; <<Patient_Request_Not_Too_Soon@now>>
last_patient_bolus:=now

<<Patient_Request_Not_Too_Soon@now and last_patient_bolus=now>>};
toosoon: check_last_bolus_time

-[(now -Minimum_Time_Between_Bolus?) <= last_patient_bolus]-> run
{Patient_Request_Too_Soon!};

quit: run -[on dispatch stop]->done{};
**};

end Patient_Bolus_Checker.i;� �
5.5 Risk Management
International standards such as ISO 14971 mandate risk manage-
ment processes for medical device develop that including identify

how a device might harm the patient, performing hazard analy-
sis to identify the faults and other root causes that can lead to
harms, designing risk controls to reduce the severity or likelihood
of such scenarios, and verifying the risk controls are appropriately
implemented. AADL’s Error Modeling annex (EMv2) provides an-
notations that can be attached to the architecture specifications
to document possible sources of faults, component failure modes,
propagations of the effects of faults and errors, and points at which
a system can cause harms by interacting with its environment. Var-
ious reports can be automatically derived from this information
including Fault Tree Analyses (FTA) diagrams and Failure Modes
and Effects Analysis (FMEA) tables (see [18] for an illustration of
EMv2 applied to a simpler infant incubator medical device).

The Open PCA Pump artifacts currently provide EMv2 annota-
tions for selected components. Complete annotations will be added
in the coming months. The risk management content is essential
for medical device safety compliance and regulatory submissions,
but it is often overlooked in the academic community. Researchers
can use the Open PCA Pump risk management artifacts to under-
stand how a realistic hazard analysis might be constructed for a
medical device, experiment with extracting the EMv2-based infor-
mation into different types of hazard analysis reporting, evaluate
alternative approaches to capturing hazard analyses with different
levels of precision, investigate solution strategies to risk manage-
ment challenges in interoperable medical systems [12], and propose
strategies for how risk controls might be specified and verified in
conjunction with the hazard analysis models.

6 ISOSCELES
The Open PCA Pump Project provides two ways to experiment with
pump implementations. The KSU Sireum framework [27] is used to
automatically generate source-level interfaces and communication
infrastructure, and developers can use Sireum to (a) implement the
internal behaviors of components (or these can be autogenerated
from BLESS) and (b) simulate the behavior of the entire pump. The
simulation prototype provides an operator interface graphical user
interface and demonstration interfaces for seeding various types of
faults and safety-related events.

The ISOSCELES project [3] is providing a platform on which the
Open PCA Pump can be deployed. ISOSCELES is a reference im-
plementation for mixed-criticality medical and Internet of Things
(IoT) systems. Based on a strong separation architecture, the refer-
ence implementation enables manufacturers to focus on the clinical
side of their product, reducing the time and effort recreating the
underlying safe and secure platform and associated regulatory ev-
idence. ISOSCELES has been instantiated on the Xen hypervisor,
and the seL4 and NOVA separation microkernels. The Xen version
is suitable for low criticality devices, and easily supports rapid pro-
totyping. The seL4 version is highly hardened and fits in a small
memory footprint. ISOSCELES targets low-power x86 and ARM em-
bedded processors. The current seL4 prototype runs on Intel-Atom
and AMD G-series. The Xen prototype runs on ARM Cortex-A7
and AMD G-series. To realize the hardware aspects of the Open
PCA Pump, these embedded prototypes drive the electromechanical
components of a decommissioned PCA pump.

7 RELATEDWORK
The Open PCA Pump requirements document builds upon Uni-
versity of Pennsylvania’s and FDA’s Generic Infusion Pump (GIP)
project [8]. The GIP project includes a much smaller set of require-
ments and loosely connected set of artifacts. These GIP artifacts
were utilized in follow-on work by researchers at UPenn / FDA
and elsewhere on the application of verification techniques that
tended to emphasize properties that could be checked by real-time
model checkers like UPPAAL [2]. Researchers at the University
of Minnesota adapted the GIP requirements to a PCA Pump and
produced an AADL architectural model that defined the boundaries
of key subsystem and specified properties that could be verified
via model-checking. Our work expands on the original GIP re-
quirements document in a number of dimensions, and provides a
collection of deeply integrated, consistent, and realistic artifacts as
well as both software-simulated and hardware-based realizations.

Masci and colleagues have multiple studies of how infusion
pump operator interfaces and associated device state changes can
be verified against user interface requirements in PVS [9, 23].

The second author of this paper was instrumental in obtain-
ing the release of a PACEMAKER System Specification (PSS) [26]
from Boston Scientific, for teaching embedded software, building
hardware prototypes, cyber-physical system modeling, and formal
specification and verification. Since its release over ten years ago,
the PSS has been used in over forty academic publications. The
Open PCA Pump artifacts are a much more expansive collection
of integrated artifacts, and we hope that the success of the PSS is
indication of the potential impact that the Open PCA Pump project
can have on the community.

8 CONCLUSIONS AND FUTUREWORK
The integrated artifacts provided by the Open PCA Pump were de-
veloped jointly by academic researchers, industry safety engineers,
and FDA personnel to enable a greater cross-fertilization of ideas be-
tween multiple communities. In current interactions with the FDA,
we using the artifacts to further explore organization and reviewing
approaches for assurance artifacts for interoperable systems [30].
In standards committees, we are using the artifacts to illustrate
architectural specification and risk management approaches. In
the ISOSCELES work, the artifacts are being used to illustrate how
the ISOSCELES platform can be applied. Current research efforts
are adding verified implementations of the pump, fault-injection
testing frameworks, and implementations of the pump on different
separation platforms.

REFERENCES
[1] Daniel Amyot. 2018. jUCMNav - Eclipse plugin for the User Requirements

Notation. http://jucmnav.softwareengineering.ca/foswiki/ProjetSEG/WebHome.
(2018).

[2] David Arney, Raoul Jetley, Paul Jones, Insup Lee, and Oleg Sokolsky. 2007. Formal
Methods Based Development of a PCA Infusion Pump Reference Model: Generic
Infusion Pump (GIP) Project. In Proceedings of 2007 Joint Workshop on High
Confidence Medical Devices, Software, and Systems and Medical Device Plug-and-
Play Interoperability.

[3] Todd Carpenter, John Hatcliff, and Eugene Y. Vasserman. 2017. A Reference Sepa-
ration Architecture for Mixed-Criticality Medical and IoT Devices. In Proceedings
of the 1st ACMWorkshop on the Internet of Safe Things (SafeThings’17). ACM, New
York, NY, USA, 14–19.

[4] Alistar Cockburn. 2001. Writing Effective Use Cases. Addison-Wesley, Boston,
MA.

[5] Joint Commission. 2005. Preventing Patient-Controlled Analgesia Overdose.
Joint Commission Perspectives on Patient Safety (October 2005), 11.

[6] FDA Infusion 2010. US FDA Infusion Pump Improvement Initiative. (April 2010).
[7] FDA Infusion Pump Guidance 2014. Total Product Life Cycle: Infusion Pump

- Guidance for Industry and FDA Staff. https://www.fda.gov/downloads/
medicaldevices/deviceregulationandguidance/guidancedocuments/ucm209337.
pdf. (2014).

[8] Generic Infusion Pump [n. d.]. Generic Infusion Pump Project Homepage. http:
//rtg.cis.upenn.edu/gip.php3. ([n. d.]).

[9] Michael D. Harrison, Paolo Masci, Jose Creissac Campos, and Paul Curzon. 2017.
Demonstrating that Medical Devices Satisfy User Related Safety Requirements. In
Software Engineering in Health Care, Michaela Huhn and Laurie Williams (Eds.).
Springer International Publishing, Cham, 113–128.

[10] John Hatcliff, Andrew King, Insup Lee, Anura Fernandez, Alaisdair McDonald,
and Eugene Vasserman. 2012. Rationale and Architecture Principles for Medical
Application Platforms. In Proceedings of the 2012 International Conference on
Cyberphysical Systems.

[11] John Hatcliff, Brian R. Larson, Jason Belt, Robby, and Yi Zhang. 2018. A Unified
Approach for Modeling, Developing, and Assuring Critical Systems. In Leveraging
Applications of Formal Methods, Verification and Validation. Modeling, Tiziana
Margaria and Bernhard Steffen (Eds.). Springer International Publishing, Cham,
225–245.

[12] J. Hatcliff, E. Y. Vasserman, T. Carpenter, and R. Whillock. 2018. Challenges
of distributed risk management for medical application platforms. In 2018 IEEE
Symposium on Product Compliance Engineering (ISPCE). 1–14.

[13] John Hatcliff, Alan Wassyng, Tim Kelly, Cyrille Comar, and Paul L. Jones.
2014. Certifiably safe software-dependent systems: Challenges and directions.
In Proceedings of the on Future of Software Engineering (ICSE FOSE). 182–200.
https://doi.org/10.1145/2593882.2593895

[14] Rodney W. Hicks, Vanja Sikirica, Winnie Nelson, Jeff R. Schein, and Diane D.
Cousins. 2008. Medication errors involving patient-controlled analgesia. Ameri-
can Journal of Health-System Pharmacy 65, 5 (March 2008), 429–440.

[15] SAE International. 2015. SAE AS5506/1, AADL Annex E: Error Model Annex. SAE
International, http://www.sae.org.

[16] Andrew King, Dave Arney, Insup Lee, Oleg Sokolsky, John Hatcliff, and Sam
Procter. 2010. Prototyping Closed Loop Physiologic Control with the Medical
Device Coordination Framework. In ICSE Companion.

[17] Brian Larson, Patrice Chalin, and John Hatcliff. 2013. BLESS: Formal Specification
and Verification of Behaviors for Embedded Systemswith Software. In Proceedings
of the 2013 NASA Formal Methods Conference (Lecture Notes in Computer Science),
Vol. 7871. Springer-Verlag, Berlin Heidelberg, 276–290.

[18] Brian Larson, John Hatcliff, Kim Fowler, and Julien Delange. 2013. Illustrating the
AADL Error Modeling Annex (V.2) Using a Simple Safety-critical Medical Device.
In Proceedings of the 2013 ACM SIGAda Annual Conference on High Integrity
Language Technology (HILT ’13). ACM, New York, NY, USA, 65–84.

[19] Brian R Larson. 2018. Behavior Language for Embedded Systems with Software
(BLESS) website. http://bless.santoslab.org. (2018).

[20] Brian R Larson, John Hatcliff, and Patrice Chalin. 2013. Open Source Patient-
Controlled Analgesic Pump Requirements Documentation. In Proceedings of
the 5th International Workshop on Software Engineering in Health Care. IEEE,
Piscataway, NJ, 28–34. https://doi.org/10.1109/SEHC.2013.6602474

[21] I. Lee, O. Sokolsky, S. Chen, J. Hatcliff, E. Jee, B. Kim, A. King, M. Mullen-Fortino, S.
Park, A. Roederer, and K. K. Venkatasubramanian. 2012. Challenges and Research
Directions in Medical Cyber-Physical Systems. Proc. IEEE 100, 1 (Jan 2012), 75–90.
https://doi.org/10.1109/JPROC.2011.2165270

[22] D. Lempia and S. Miller. 2009. Requirement Engineering Management Handbook.
Technical Report DOT/FAA/AR-08/32. US Federal Aviation Administration.

[23] Paolo Masci, Yi Zhang, Paul Jones, Paul Curzon, and Harold Thimbleby. 2014.
Formal Verification of Medical Device User Interfaces Using PVS. In Proceed-
ings of the 17th International Conference on Fundamental Approaches to Software
Engineering - Volume 8411. 200–214.

[24] Gdansk University of Technology. 2018. NOR-STA: Support for Achieving and
Assessing Conformance to NORms and STAndards. http://www.nor-sta.eu/en.
(2018).

[25] Object Modeling Group (OMG). 2017. OMG System Modeling Language (SysML)
v1.5. http://www.omg.org/spec/SysML/1.5/. (2017).

[26] Boston Scientific. 2007. PACEMAKER System Specification.
http://sqrl.mcmaster.ca/pacemaker.htm. (2007).

[27] Sireum [n. d.]. Sireum: A high-assurance software development platform. http:
//sireum.org. ([n. d.]).

[28] Kansas State University. 2018. Open PCA Pump Project.
http://openpcapump.santoslab.org. (2018).

[29] D.D. Walden, G.J. Roedler, K.J. Forsberg, R.D. Hamelin, and T.M. Shortell (Eds.).
2015. INCOSE Systems Engineering Handbook. Wiley, Hoboken, NJ.

[30] Yi Zhang, Brian Larson, and John Hatcliff. 2018. Assurance Case Considerations
for Interoperable Medical Systems. In Computer Safety, Reliability, and Security,
Barbara Gallina, Amund Skavhaug, Erwin Schoitsch, and Friedemann Bitsch
(Eds.). Springer International Publishing, Cham, 42–48.

h
https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm209337.pdf
https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm209337.pdf
https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm209337.pdf
http://rtg.cis.upenn.edu/gip.php3
http://rtg.cis.upenn.edu/gip.php3
https://doi.org/10.1145/2593882.2593895
h
h
https://doi.org/10.1109/SEHC.2013.6602474
https://doi.org/10.1109/JPROC.2011.2165270
h
h
h
http://sireum.org
http://sireum.org
h

	Abstract
	1 Introduction
	2 Open PCA Pump Project Goals
	3 Available Materials
	3.1 Development Artifacts
	3.2 Domain Background Materials
	3.3 Pedagogical Materials

	4 PCA Pump Background
	5 Open PCA Pump Development Artifacts
	5.1 Concept of Operations
	5.2 Requirements
	5.3 Architecture
	5.4 Formal Specifications and Behavior
	5.5 Risk Management

	6 ISOSCELES
	7 Related Work
	8 Conclusions and Future Work
	References

