Mitigating Network-Layer Security Attacks on
Authentication-Enhanced OpenlICE

Zhangtan Li
University of Chinese Academy of Sciences/TCA Lab,
Institute of Software, Chinese Academy of Sciences
lizhangtan@tca.iscas.ac.cn

ABSTRACT

Integrated Clinical Environment (ICE) is a standardized framework
for achieving medical device interoperability. It utilizes high-level
supervisory and medical apps and low-level communication middle-
ware to coordinate medical devices to accomplish a shared clinical
mission. With the potential to significantly improve healthcare
productivity and reduce medical errors, the interoperability of med-
ical devices also subjects ICE systems to unprecedented security
threats. In this paper, we present a set of security attacks, namely
interception, tampering, and replay attack, to the network level of
ICE systems, which we identify through a threat modeling analysis
on OpenlCE, the best-known instantiation of ICE system. For these
security attacks, we devise corresponding defense mechanisms on
top of OpenICE. Our experiments demonstrate that these defense
mechanisms can effectively protect OpenICE from the identified
attacks with acceptable computational overhead.

1 INTRODUCTION

Emerging interoperable medical systems indicate a promising fu-
ture for the healthcare domain. Many case studies[1, 6-9, 14] have
shown that enabling the interoperability of medical systems can
reduce medical errors and improve the productivity of medical care,
as compared to the traditional practices that rely upon disconnected,
standalone devices. One noticeable effort in this direction is the
ASTM F2761 standard [2], which defines a standardized framework,
called Integrated Clinical Environment (ICE), for integrating medi-
cal devices and medical applications (or apps) into an interoperable
system that intends to accomplish complex clinical procedures.
Within the ICE framework, devices and apps communicate with
each other clinical data and control commands through the same
network, which is typically coordinated by the system’s network
middleware. Since its publication, the ASTM F2761 standard has
been adopted by many stakeholders, such as Massachusetts General
Hospital, Draeger Medical Systems and Kansas State University, to
develop interoperable medical systems that follow the ICE frame-
work.

Meanwhile, the uniqueness of ICE (i.e., the interoperability) sub-
jects ICE systems to security risks that have never been encountered
by traditional, stand-alone devices before. Security attacks to ICE
systems can compromise the integrity and privacy of the data com-
municated among connected devices and apps, disrupt the expected
clinical procedures, and even expose patients and users to severe
risks.

Copyright held by the owner/author(s).
MCPS’18, April 2018, Porto, Portugal.

Liang Cheng, Yang Zhang

TCA Lab, Institute of Software

Chinese Academy of Sciences
{chengliang,zhangyang}@tca.iscas.ac.cn

The uniqueness of ICE systems also poses some challenges to
make ICE more secure:

The first security challenge is to ensure only trustworthy de-
vices and apps be connected to the system. Medical devices can
be dynamically connected to an ICE system and medical apps can
be dynamically installed, it is critical to ensure trustworthy de-
vices and apps are allowed to do so. This is especially true as
telemedicine/telesurgery is appearing at the horizon of healthcare,
which makes it difficult for hospitals to gain full control over med-
ical devices and apps as in the past. The dynamic integration of
devices and apps into the system also constantly changes the vul-
nerability surface of an ICE system at different stages of clinical
processes. This requires the security mechanism in the system to
be adaptive, in order to align with the changing environment and
rebalance security with the evolving clinical needs.

Secondly, medical devices connected to an ICE system often
come from different manufacturers through a collection of device
interfaces. As device interfaces endow manufacturers a great flexi-
bility in developing medical devices in their own methods, it also
creates difficulty for comprehensively analyzing the security of an
ICE system down to the device level. Therefore, system developers
have to design security mechanisms that are vigilant and resilient
to potential security exploitations in each single device connected
to the system, so that the rest of the system is protected upon such
exploitations.

In view of the aforementioned challenges, the security of ICE
systems should be assured at two levels: 1) the system level: se-
curity risks arising from the integration and coordination of ICE
entities should be mitigated by authentication, authorization, and
fine-grained access control. We have made some effort in this direc-
tion by enhancing ICE systems with authentication capabilities[3].
2) the network level: security should be established for the network
communication within ICE systems to protect the data transferred
over the network. Security vulnerabilities in the network middle-
ware adopted by ICE systems, which is referred to as the Network
Controller in the ASTM F2761 standard, could enable attacks, e.g.,
man-in-the-middle and replay attacks, to these systems. However,
the ASTM F2761 standard does not prescribe what security proper-
ties should be established in the Network Controller. In this paper,
we focus on understanding the security threats at the network level
of ICE systems, and propose defense solutions to mitigate such
threats.

In this paper, we perform, to the best of our knowledge, the first
security analysis of the Network Controller in ICE systems. The
contributions of our work can be summarized as follows:

e We perform a threat modeling analysis on the Network Con-
troller of OpenICE!, the best-known instantiation of ICE
systems. Our analysis identifies potential security attacks,
namely interception, tampering and replay attacks, which
can emerge at the network level of OpenICE (and any other
ICE systems following the publish-subscribe communication
paradigm).

e We devise three defense mechanisms to protect OpenICE
from the identified attack patterns.

e We develop the prototype of these security mechanisms on
top of OpenICE systems, and conduct a set of attack-defense
experiments to evaluate their effectiveness and computa-
tional overhead.

The paper is organized as follows. Section 2 gives a introduction
to the ICE architecture, OpenICE (an instantiation of ICE), the net-
work middleware used by OpenlCE and some security mechanisms
for ICE. Section 3 presents the threat modeling analysis and the
attack patterns for OpenlICE. Section 4 gives the corresponding de-
fense mechanisms. Section 5 presents results of the attack/defense
experiments and performance evaluation. Section 6 is discussion of
the work. Related work is discussed in Section 7. We conclude and
give directions for future work in Section 8.

2 BACKGROUND

ICE: Figure 1 reiterates the ICE architecture defined in the ASTM
2761 standard, which consists of the following components:

o medical devices that are connected to the system dynamically
in a plug-n-play manner;

e medical apps, which are software applications installed in
the system to support the completion of the expected clinical
procedures;

o the ICE Supervisor, which orchestrates medical apps and con-
nected devices during the clinical procedures. It also provides
the portal of interaction for clinicians to control and monitor
the system, and exchanges clinical data with external parties
such as electronic health record (EHR) systems;

o the Network Controller, which facilitates the communication
among the entities in the system. The Network Controller
is also known as the network middleware which is located
between the applications (e.g., the devices, Data Logger and
the Supervisor) and the transport layer in the Open Systems
Interconnection (OSI) model.

OpenICE and Data Distribution Service: Several instantia-
tions of the ICE architecture have been proposed by the academia
and industry, e.g., MDCF?, OpenICE and OpenSDC?, among which
the most prominent example is the open-source OpenICE system
developed by Goldman et al.[10]. Notably, OpenICE adopts the Data
Distribution Service (DDS) as its network middleware. DDS is an
Object Management Group (OMG) middleware standard that aims
to enable scalable, real-time, dependable, high-performance and in-
teroperable data exchanges using a publish-subscribe pattern. More
specifically, DDS creates a communication channel, also called topic,

!https://www.openice.info/
Zhttps://intranet.cs.ksu.edu/taxonomy/term/106
3http://opensdc.sourceforge.net

ICE system
ICE Apps

I
Device LData Supervisor |- —=—|- - EHR
ogger

I I I

Network Controller

T
I

The transport layer

Figure 1: ICE architecture. In which Device indicates the
ICE-compatible medical devices, EHR is short for Electronic
Health Record system. The transport layer indicates the
communication channel in the bottom level.

for each entity (i.e., the medical device or the Supervisor) that in-
tends to send data to the rest of the OpenICE system. The sending
entity keeps publishing data to that topic, while other interested
entities subscribe to that topic to receive the data published to it.

DDS has its own security module named DDS security* that
provides a set of security features, including authentication, autho-
rization, access control, data encryption and non-repudiation, to
secure the data communication in the system. It should be pointed
out: since the current version of OpenlICE is without DDS security,
the security attacks and corresponding defense mechanisms dis-
cussed in this paper are based on the precondition that OpenICE
does not integrate DDS Security. Moreover, since DDS does not
understand how data communication is integrated with intricate
clinical procedures, DDS security cannot effectively mitigate secu-
rity threats caused by the system-level design/integration flaws of
OpenlCE. More details will be discussed in the section 6.

ICE Authentication: The current version of ICE standard fo-
cuses on realizing the interoperability of medical devices for the
envisioned clinical scenarios, and gives little attention to potential
security threats and core security features pertinent to the ICE
architecture. For example, it does not provide any sort of authenti-
cation to verify the identities of devices to be connected. In view of
this situation, We designed an authentication framework[3] that
equips ICE with basic authentication capabilities and can be used
as a basis for further security enhancement.

The proposed authentication framework consists of three layers,
as illustrated in Figure 2: 1) the top level are entry points that in-
tercept requests for connection from medical devices and initiate
the subsequent authentication processes; 2) the middle level is a
management component that coordinates the authentication pro-
cesses by invoking APIs provided by the authentication functions
at the bottom level; and 3) the bottom level is a library of imple-
mentation of various authentication protocols that fulfill different
authentication needs.

Although designed for the generic ICE architecture, the authenti-
cation framework can be easily integrated to OpenlICE as illustrated
in Figure 3, where OpenICE components are colored in green and
components of the authentication framework are in blue. As shown

*http://www.omg.org/spec/DDS-SECURITY/1.0/

User App Device
| _ Authentication _ | | _ Authentication _ | | _ Authentication _ |
Entry Point 1 Entry Point 2 Entry Point 3

’ Authentication Management ‘

{ i {

|
| Identity Property }
|
|

Authentication Inquiry I

|
Identity |
|
|

| 1 ! '
i i i |
i i i I
| > | bl
-3 iD=
12 @1 19 @1
1§20 1520
182 . 182
128 S8
(-2 =
1T 9 29
2 S
| '
]]

Authentication Module

Figure 2: The authentication framework for ICE systems,
where dotted boxes are optional components[3].

in Figure 3, medical devices to be connected send requests for con-
nection and other messages to the system through their device
adapters. The top level of the authentication framework resides in
the ICE Supervisor, including the App Launcher and Login Com-
ponent that respectively initiate the authentication processes for
medical apps and human users. The second level of the authentica-
tion framework is implemented in the middle of the ICE Supervisor
and DDS, while the bottom level is integrated as part of DDS.

Medical A
B Applications
Skg/isor

N App Login
Device | Launcher component
Adapter e’ N
[ICE Security Mpdules s C I
! | AM_AUTH/) /AM_NEGO()
| [taieiaiaiing ~| 7o N T TTTT ~, '
' | . ‘ . Vo \ |
i + Security || Security | ' Access | — !
| i Logging E i Tagging E i ontrol E AiteEETem ;
' i H FEEN) '
e TTTTooo L) W p— | |
l N N E—
S— 1 1
Authentication DDS SPI OpenlCE Data Mode 1— > Logger
Protocols ‘
. AM_AUDIT()
DDS Middleware TA_TMPL() -

Figure 3: Integrating OpenICE with authentication

3 THREAT MODELING ANALYSIS

The authentication framework in our previous work is a basic
security enhancement for OpenlCE in the system level, and it can
not mitigate the threats brought by the unique design characteristics
and limitations of DDS when integrated into OpenICE, i.e., the
threats in the network level. Therefore, we do the threat modeling
for the network level of OpenICE.

3.1 Modeling Clinical Scenarios

We perform a threat modeling analysis over OpenICE to understand
the potential security threats that arise due to the limitations of DDS
and the design flaws of OpenICE. To make our analysis relevant,
we first define a generic clinical scenario for OpenICE, which is
generalized from the set of clinical scenarios listed in the ASTM
F2761 standard. It should be pointed out that our threat modeling
is based on the precondition that OpenICE does not integrate DDS
Security and the assumption that the adversary has physical access
to the network of OpenICE.

The generic scenario, as illustrated in Figure 4, consists of a
patient; a clinician who operates the system; medical devices con-
nected to the patient for delivering treatment or monitoring patient
conditions; the ICE Supervisor coordinating connected devices and
other medical apps; and the network middleware facilitating net-
work communication within the system.

' —
Qf;} > >
—

Supervisor
o Login
itztl Ay Component

Figure 4: A generic clinical scenario, where solid and dotted
lines represent local and DDS communications respectively.

In this generic scenario, clinical data and control signals are
communicated among connected devices, medical apps, and the ICE
Supervisor. Such data and control can also be sent out to the external
EHR system for logging. Most of the network communication in
the system, except for the communication with the external EHR
system, has to go through DDS using a collection of topics that
DDS establishes for publishers and subscribers. In order to maintain
their connection to the systems, every connected device is required
to continuously send messages to the HeartBeat topics. As the name
implies, the HeartBeat topic is used for transmitting signals which
indicate that the sender is alive in the network. Among all entities
in the system, the ICE Supervisor and the authentication module
are considered as the only trusted computing bases (TCB).

3.2 Identification of Attack Classes

Venkatasubramanian et al. enumerated five classes of security at-
tacks to an interoperable medical devices (IMD) environment, namely
destroy, disturb, reprogram, denial of service, and eavesdroping [17].
There is nothing fundamentally new with these attack patterns, but
they cover all components of the ICE architecture, as well as the
communication between the ICE Supervisor and the connected de-
vices. Therefore, we choose to apply these attack classes to OpenICE
in our analysis to explore possible attacks.

Table 1 reiterates the definition of these security attacks [13].
Among these attack classes, destroy attacks which physically de-
stroy some of the components in ICE are obviously not in our
discussion. Since we focus on the newtwork level, reprogramming
attacks which modify data or code in a medical device are also
excluded from our analysis. In addition, our analysis does not in-
clude denial of service attacks either which we consider should be
analyzed in realistic clinical settings.

3.3 Attack Patterns for OpenICE

Given the communication patterns in OpenICE (as illustrated in
Figure 4), we identify three types of attacks as instantiations of
the disturb and eavesdrop attack classes. In particular, we identify
interception attacks for the eavesdrop attack class, and tampering
and replay attacks in the disturb class. Each of these types of attacks
assumes a simple scenario, as illustrated in Figure 5, which includes
the ICE Supervisor, a genuine device A, and an adversary device B.
The primary target of these attacks is the communication between
device A and the ICE Supervisor, while the communication between
genuine devices is not in our discussion.

Device A

Publish 1. Interception 2. Tampering
N /
L]
Subscribe ™ 3.Replay
Supervisor ‘ Device B |

Figure 5: The attack scenario, where orange line represents
the communication channels (i.e., topics in DDS), green
lines represent normal publication/subscription communi-
cations, and red lines indicate communications to launch
the attacks.

3.3.1 Interception. The ICE Supervisor and A exchange data through
a topic, say t. Assume that B (unauthorized) is connected to the
same network and somehow acquires the identifier of . Then B can
subscribe to t and intercept any communication between the ICE
Supervisor and A using topic t, because DDS poses no restrictions
on to which topic a connected device can subscribe.

3.3.2 Tampering. Due to the lack of authentication, the adversary
device B can publish tampered data to a topic to which the ICE

Supervisor subscribes. The tampering can also tamper data used
by other devices or applications and the tampered data has the
potential to trigger unexpected operation in the subscribers and in
turn induce medical errors and incidents.

3.3.3 Replay Attack. Replay attack on a security protocol typically
manifests as an adversary resending messages that are legitimate in
other contexts with the goal of deceiving the receivers to think that
they have completed the protocol successfully. As for the attack
scenario in Figure 5, an adversary device B can launch a replay
attack to disguise itself as A. More specifically, any device connected
to OpenlCE needs to continuously publish messages, which include
the identifier of that device, into the HeartBeat topic, in order to
maintain its connection with the system. This requirement makes
it possible for B to intercept the identifier of A (using interception
attacks), and forge heartbeat messages and continuously publish
them to the HeartBeat topic after A is disconnected. In this way, B
can deceive the system to think that A is connected back.

Another condition is that A is still connected with the ICE Su-
pervisor, and B also intercepts the identifier of A to use the same ID
as its own device identifier during its initialization. In this case, the
adversary even does not need to forge the heartbeat messages for re-
play, and the ICE Supervisor cannot distinguish the genuine device
and the adversary. Thus, the adversary can bypass authentication,
and acquire unauthorized access to the system.

With replay attacks, an adversary can bypass our authentica-
tion framework for OpenICE, and imitates a legitimate device to
communicate with the rest of the system. As a result, the adversary
can further compromise the security of OpenICE, such as stealing
critical clinical data or broadcasting fake clinical data to interrupt
system operation. Replay attack can also be launched in some other
topics and deceive the subscribers to receive the old messages.

It should be pointed out that the attacks described in this section
are three kinds of classical attacks and they provide the basis for
more complicated attacks such as Man-in-the-Middle Attack. More
importantly, these attacks are also applicable to other instantiations
of ICE systems that adopt the Publish-Subscribe paradigm in their
communication mechanisms.

4 MITIGATING THE SECURITY ATTACKS

The three types of attacks identified in our analysis emerge primar-
ily due to two factors: 1) DDS does not offer means to limit the
subscribers to one topic; and 2) messages are communicated in the
system in plaintext, which allows the malicious devices to acquire
sensitive information, such as device identifiers, contained in these
messages. Mitigation measures can thus be designed to prevent the
security attacks by eliminating these two enabling factors.
However, it is challenging to design such mitigation measures
without the ability of directly modifying DDS. Eclectically, we pro-
pose defense mechanisms against these types of attacks on top of
DDS, so that there is no need to change the implementation of DDS.

4.1 Mitigating Interception Attacks

Interception attacks can be prevented by mandating the messages
be encrypted before publishing to the corresponding topics. In this
way, no sensitive information is disclosed to the intercepters. We

Table 1: General attack model for ICE[13]

Attack Pattern Description Susceptible Components
Destroy Physically destroy ICE components; e.g., cut an infusion pump All Architectural Components of ICE
tube.
Disturb Modify exchanged data to prevent correct operation of compo- All Architectural Components of ICE
nents; e.g., man-in-the-middle or replay attacks.
Reprogram Modify data or code in an ICE component to prevent its correct | All Architectural Components Except the Communication

operation; e.g., modify infusion pump software to deliver extra Network

medication.

Exploit bugs or interfaces that were not designed with security
in mind.

Denial of Service All Architectural Components of ICE

Eavesdrop Listen in on the deployed ICE environment to learn sensitive Communication Network

information.

implement a symmetrical encryption mechanism, illustrated in Fig-
ure 6, to secure the content of messages published in OpenICE
topics. Given a topic, the mechanism requires its legitimate pub-
lisher(s) and subscriber(s) to establish key agreement following
the X509 standard®: a device and the ICE Supervisor follow the
TLS® handshake protocol to authenticate each other, during which
the key agreement is reached (including the establishment of ses-
sion key and the key to compute Message Authentication Codes)
if the authentication succeeds. For simplicity, we use self-signed
certificate to accomplish the authentication, while in practice, the
certificate authority should be added. With the session key the
device encrypts the data before publishing it to the topic. The ICE
Supervisor maintains a database of the session keys established
for each active device, from which it retrieves the session key to
decrypt the data published from the corresponding device before
displaying the data on the user interface.

Device A

————— Mitigating the
Interception/Tampering
Publish

L]

- Subscribe

L Dec/MAC

Supervisor

Device B

Figure 6: The Defense scenario. The dotted boxes indi-
cate the Encryption/Decryption and Message Authentica-
tion Code modules.

4.2 Mitigating Tampering Attacks

The primary enabler of tampering attacks is that DDS does not au-
thenticate an entity before it publishes messages to a topic. Hence,

Shttps://en.wikipedia.org/wiki/X.509

SWe just refer to the classical TLS handshake protocol to implement the authentication
module, so it does not mean we integrate OpenICE with TLS. Moreover, we add defense
mechanisms on top of the network middleware, i.e. DDS, so we do not focus on the
communication in the bottom level, e.g., the transport layer.

subscribers of the topic have no means to confirm that the messages
come from the genuine publisher. Defending against tampering
attacks can thus be achieved by authenticating the true identity
of message publishers. We choose to utilize the Message Authen-
tication Code (MAC) mechanism to ensure the authenticity and
integrity of the published messages, because it not only is effective
but also requires the only minimum extension to DDS.

In particular, our solution enforces a device to negotiate one
encryption key with the ICE Supervisor during its authentication
process. Later on, when that device publishes a message to one of
its topics, it is required to calculate the MAC value for the message
using the negotiated key and the HmacSHA1 algorithm”. This MAC
value is appended to the message when it is published®. When
receiving this message, the ICE Supervisor re-calculates its MAC
value in the same way, and compares it with the one appended
to the message. If the two MAC values do not match with each
other, the message is considered as being compromised or from
a fake publisher, and thus discarded. Moreover, upon receiving
consecutive compromised messages from the same publisher, the
ICE Supervisor is revised to notify the user the occurrence of a
potential tampering attack.

4.3 Mitigating Replay Attacks

Replay attacks can happen because the ICE Supervisor only uses
the device identifier, which is in plaintext, included in the heart-
beat messages to identify their publishers. Thus, an adversary can
easily disguise itself as a genuine device by re-publishing the same
heartbeat messages from the genuine device.

Typical protection against replay attacks is to augment messages
with timestamps, so that they are only valid for a limited period
of time. But this type of protection may not be ideal for medical
systems like OpenICE. Especially, for heartbeat messages that the
connected devices have to constantly send to the ICE Supervisor to
maintain their connection to the system, adding timestamps may
augment more overhead. Moreover, as a distributed system, it is
not easy for OpenICE to maintain synchronized time.

We propose a simple solution to prevent replay attacks that
avoids the heavy computational overhead of timestamps. In our

"https://en.wikipedia.org/wiki/Hash-based_message_authentication_code

8DDS maintains a data structure for each topic established, which defines the format
of messages published to that topic. We extend such data structure with an additional
field to store the MAC value.

solution, the ICE Supervisor is extended to maintain a list of au-
thenticated devices that are currently connected to the system.
Whenever a device is disconnected (i.e., the device stops sending
the heartbeat messages), the ICE Supervisor removes it from the
list, so that it has to be re-authenticated when connecting back to
the system. This enables the ICE Supervisor to detect any replayed
heartbeat messages when the corresponding devices have been dis-
connected. Accordingly, for the replay attack on other topics, the
replayed messages can also be detected, since the corresponding
device has been removed from the list.

However, the solution talked above can not mitigate the replay
attack on the other condition(i.e., when the genuine device is still
connected with the ICE Supervisor). In this case, the adversary even
does not need to forge the heartbeat messages for replay attack.
The adversary just need to utilize the genuine device’s ID as its
own device identifier during its initialization and then disguises
itself as the genuine device to communicate with the ICE Super-
visor. Therefore, the keypoint of the mitigation is to improve the
authentication for the topic such as the HeartBeat topic and this is
beyond the discussion of this paper.

It should be pointed out that all these defenses are applicable
to any ICE systems that follow the Publish-Subscribe paradigm of
communication, except for the defense against replay attack that is
based on the implementation of OpenICE.

Infusion Pump
Initialization

Supervisor
Initialization

Authentication

Listening request
Request g req

Display panel

Authenticated? Show dﬁ'tﬂ from
devices

Fake pulse oximeter

Publishing Topics

Heartbeat

Interception . Tampering

InfustionStatus

Figure 7: The attack diagram mapped into the workflow of
OpenICE with authentication module. The solid blue lines
indicate the workflow of OpenICE, the orange rectangle de-
notes the fake pulse oximeter and the orange solid lines in-
dicate the attack from it.

5 EVALUATION

We have performed three sets of experiments to evaluate the secu-
rity attacks to OpenICE and our defense mechanisms against them.

The first set of experiments intended to confirm the practicality of
security attacks described in section 3; the second set evaluated the
effectiveness of the defense mechanisms; and the last set evaluated
the performance of these mechanisms.

All these experiments were performed using the same hardware
settings: a computer (with a 4-core Intel 3.3GHz i5 CPU, 6MB cache
and 12GB RAM) was used to run the OpenICE Supervisor (version
1.8) and other simulated (genuine) medical devices, and a laptop
(with a dual-core Intel 2.1GHz i7 CPU, 4MB cache and 8GB RAM)
ran simulated adversary medical devices. These two computers
were connected through a local area network, so that the ICE Su-
pervisor and simulated devices could communicate with others.

5.1 Attack Experiments

In the attack experiments, we created two simulated devices: the
genuine device simulates an infusion pump that delivers fluids,
medication or nutrients into patients; and the adversary device sim-
ulates a pulse oximeter that monitors the blood oxygen saturation
level of patients. For simplicity, we refer to the infusion pump as
the pump and the pulse oximeter as the fake device in the rest of
the paper. Specifically, we reused the code of the genuine infusion
pump and pulse oximeter in OpenICE to create these two simulated
devices. We also added some new modules into the fake device to
launch the attacks.

Therefore, the OpenICE system under experiment was organized
as illustrated in Figure 7, where solid blue lines represent the normal
workflow of the system and orange solid lines represent the attacks
initiated by the fake device.

To enable the fake device to launch attacks, we extended its
initialization function with an attack module for each type of attacks
described in section 3. Each attack module was implemented as
a thread in which the fake device utilized the DDS API to read
and write the target topic. These attack modules were executed
asynchronously, because the interception attack is the foundation
of the other two types of attacks.

In the experiments, we assume that the fake device possesses the
knowledge of the topic that it intends to attack. This is reasonable
because OpenlICE stores the information of all topics in a text file
in plaintext, which can be easily accessed to and compromised by
an adversary if not protected appropriately.

5.1.1 Interception Attack. With this attack, the fake device aimed
at intercepting the messages that the pump published to topic In-
fusionStatus reporting its operational status. In order to do so, the
fake device created a corresponding Subscriber in the interception
thread to declare its intent to receive messages published in Infu-
sionStatus. Once the pump published messages to this topic, the
interception thread can obtain the messages, i.e., launching the
interception attack.

Figure 8 demonstrates a message intercepted by the fake device,
which included the information on the device identifier of the pump,
and the name of the drug currently being delivered, and other
infusion parameters used by the pump.

5.1.2 Tampering Attack. With the device identifier of the pump
acquired through interception attacks, the Tampering Attack mod-
ule in the fake device then forged a message that only changed

i Problems @ Javados [G) Declaration 4 Search [Comsale 5% 5 Progress %5 Debuz () Hist

Main [Java Application] C:\Program Files\Java\jre7\bin\javaw.exe (201655108 175 _E4-10:50:05)
FakePulseox:Reveice encInfusionStatus!
data:[:
unique_device_identifier: zlGbUkr3jme67Z5s9k510QelVn4JriwiwgoQH
infusionfActive: true

drug name: Morphine
drug_mass_mcg: 20
solution_volume ml: 120
volume_to_be_infused ml: 100
infusion_duration seconds: 3600
infusion_fraction_complete: 0.0
hmac _code: null

Figure 8: Data published in the InfusionStatus topic and in-
tercepted by the fake device.

the Drug Name field of the intercepted message from Morphine to
Morphine Tampering, and published it to InfusionStatus. The ICE
Supervisor received this message from the topic and displayed it
on the front panel, as illustrated in Figure 9. This confirms that the
current version of OpenlICE is vulnerable to tempering attacks.

4 ICE Supervisor - =
MD PnP Device Info 23:18:02
Gettng Comecte fo it Safety

Manufacturer

Model Infusion Pump (Simulated)

Serial Humber
| Unique Device Identifier XINDt22nPxw 28vSRYMUVOQWuUWYIFyS5J12aL

Connected (connect requested)

I
|| Connection State

fl Active true
Drug Mass (mcg) 20 mcg
Solution Volume (mL) 120 mL
VTBI(mL) 100 mL
Duration (seconds) 3600 seconds
Percent complete 0.0%
hitp://www.openice.info
Development Version on 1.8.0_60 IQV2W8KANGIDTXtH7njDs65Xq 1yqD3sZBUIV

Figure 9: The tampered message displayed on the ICE Super-
visor front panel.

5.1.3 Replay Attack. In this experiment, the pump was first dis-
connected from the OpenICE system. The fake device then forged
heartbeat messages using the device identifier of the pump, and
published them to the HeartBeat topic. The result of this experiment
confirms that the ICE Supervisor continued to display the pump
(actually the fake device) on its front panel, since it is unable to
verify the true identity of the publisher of the received heartbeat
messages.

5.2 Defense Experiments

We performed three experiments to examine whether the defense
mechanisms presented in section 4 are effective in preventing the
attacks to OpenICE.

Defense against Tampering Attacks: As aforementioned, we
utilized the MAC mechanism as illustrated in Figure 10 as the green

boxes to defend against tempering attacks to OpenICE systems. In
the experiment, the pump was forced to calculate and append a
MAC value to every message it published to topic InfusionStatus.
Upon receiving messages from InfusionStatus, the ICE Supervisor
verified its authenticity and integrity by checking their MAC values.
The result of this experiment showed that the tampered message as
crafted in the tempering attack experiment was no longer displayed
on the front panel of the ICE Supervisor.

Infusion Pump
Initialization

Supervisor
Initialization

Authentication

istening ri
e Listening request

Display panel

Authenticated? Return result

Show data from
devices

Publishing Topics

Vo

Fake pulse oximeter

Interception | | | Replay
Heartbeat _l‘
[| Tampering

Figure 10: The Defense Diagram mapped into the workflow
of OpenlICE. The green rectangles indicate the security mod-
ules and the solid green lines indicate the data flow through
security modules.

Defense against Interception Attacks: In this experiment,
the defending mechanism required the pump to negotiate a key
with the ICE Supervisor during its authentication, and use this key
to encrypt every message it published to the system. For example,
the pump used the key to encrypt the messages published to topic
Enc_InfusionStatus, except for the device identifier information.
The device identifier was not encrypted because the ICE Supervisor
needs it in plaintext to retrieve the decryption key. The encryption
and decryption modules are illustrated in Figure 10 as the green
boxes.

Our experiment showed that the encryption-based defense can
effectively mitigate tampering attacks. Figure 11 shows a message
that was published in topic Enc_InfusionStatus, where all fields of
the message but the device identifier were encrypted. Thus, the
fake device cannot understand the content of this message without
knowing the encryption key for Enc_InfusionStatus.

[Froblens @ Javadoo (&, Declaration ~ Search [Comsole 7 S Progress %#Debug (g Hi

Main [Java Application] C:\Program Files\Java\jreT\bin\javaw.exe (20165108178 F44:3719)
FakePulseox:Reveice encInfusionStatus!
data: [:
uniqgue device identifier: 2DM2zTS51sHNxCJOtOTuDsfSzxpwwlUgExQRTEG
infusionActive: OFA3FB2CS530E4A3BD4CC34126527BC13
drug name: T7DIR6F3161CD2624RED262B2373DEDC
drug mass_meg: BES50114197CB64EESRCITC40FE44114
solution_volume ml: 6B7381085D5662RE400ADDRA5SB409035
volume to_be infused ml: E6B3CC6501T7CS5RA6T001TODE424612R10

infusion duration seconds: E721F348F6CTACTT7T7498D2FDCT5346EE
infusion fraction complete: COTFOD3FDBOGSAETOD48DES434762BEE
hmac code: Saed0c53c945£97cb8lfadi2dcebbb3e0c5ef378

Figure 11: Content of an intercepted message

Defense against replay attacks: Our defense mechanism forced
the ICE Supervisor to remove the record of a connected device when
it is disconnected. This defense was integrated to OpenICE during
the experiment as illustrated in Figure 10. The fake device was
first made to launch the interception attack. Then, the pump was
disconnected from the system. Using the pump’s device identifier
acquired from the interception attack, the fake device forged heart-
beat signals and sent them to the ICE Supervisor. The defense made
the ICE Supervisor aware of the disconnection of the pump, and
hence rejected fake heartbeat signals from the fake device. This is
confirmed by the fact that the pump was not listed on the front
panel of the ICE Supervisor when the fake device launched the
replay attack.

5.3 Performance

The last set of experiments we performed were to evaluate the com-
putational overhead of the presented defense mechanisms, which
compared the system performance of OpenlICE, in terms of the time
latency, CPU and memory usage, with and without the defense
mechanisms. What needs illustration is that the computational
overhead is based on our experiment environment which is differ-
ent from the clinical environment.

5.3.1 Latency Test. Table 2 summarizes the time latency of the
OpenlICE system, under the circumstances where the defense mech-
anism was installed or otherwise. The time latency of device booting
is defined as the duration from the time when a device starts its
initialization to the time when it is recognized and displayed on the
ICE Supervisor front panel. The time latency of displaying a device
is the time duration from when the ICE Supervisor first receives
its heartbeat messages (without defense) or its authentication re-
quest (with defense), to when the ICE Supervisor displays it on the
front panel. Notably, the time latency values listed in Table 2 are
calculated as the average of five rounds of experiments.

Table 2: The latency test

Latency Without Defense (ms) | With Defense (ms)
Device booting 592 2927
Topic encryption / 79
MAC calculation / 3
Device displaying close to 0 849

Table 2 suggests a significant increase in the latency during de-
vice booting (from 592ms to 2927ms) when the system was equipped
with the defense mechanisms. Most of this increase was caused by
the computation involved in device authentication and key negoti-
ation. However, we do not consider that such increase of latency
from device booting (in seconds) would pose significant risks to
clinical tasks.

5.3.2 CPU&Memory Usage. To estimate the CPU and memory us-
age imposed by the defense mechanisms, we simulated the OpenICE
system in two settings: one with only one infusion pump connected
and the other with 15 infusion pumps connected simultaneously,
given the available resources (i.e., the memory size of the experi-
ment computers restricts the number of infusion pumps connected
simultaneously up to 15). The experiment results are illustrated in
Figure 12.

CPU usage with one device connected Memory usage with one device connected

CPU usage with 15 devices connected Memory usage with 15 devices connected

Figure 12: CPU and Memory usage, where blue and red
curves denote the resource usage with the defense mecha-
nisms being turned off and on, respectively.

As shown in Figure 12, the distribution of computational re-
source usage over system operation demonstrates a similar pattern,
with the defense mechanisms were turned either on or off. How-
ever, turning on the security modules did cause a certain degree
of increase in CPU and memory usage or, in other words, certain
performance degradation in the system. In particular, with the de-
fense mechanisms, the system’s CPU usages increased by 19.9% (or
15.8%) with one device (or 15 devices) connected, even though the
peak CPU usage remained the same no matter the defense mecha-
nisms were turned on or off. The peak memory usage, on the other
hand, increased from 42 MB to 66 MB with one device connected,
and from 126 MB to 267 MB with 15 devices connected, when the
defense mechanisms were turned on. The average memory usage
increased by 43.7% and 71.4% in these two settings when the defense
mechanisms were enabled.

5.3.3 Cost of Time Stamp Calculation. We did the third experi-
ment to evaluate the overhead of appending timestamps to the
communicated messages, compared with our defense against the
replay attack. In this experiment, the authentication module was
enabled, and ten devices were connected to OpenICE simultane-
ously. Encrypted timestamps were appended to heartbeat messages

(using the keys established between the devices and the ICE Super-
visor) published by the connected devices, and the ICE Supervisor
decrypted the timestamps to evaluate the validity of the received
heartbeat messages.

The results of this experiment are illustrated in Figure 13, which
indicates that calculating timestamps and appending them to heart-
beat messages caused the average CPU usage to increase by 19.98%,
and the peak CPU usage raised to 60% (from the original 39%). In
addition, Figure 13 also sees an increase in the average memory
usage by 45.9% due to calculating timestamps. These results confirm
that using timestamps to ensure time validity of communicated
messages can cause significant computational overhead and in turn
system performance degradation in OpenICE. In contrast, as blue
curves show, our defense mechanism to prevent replay attacks only
imposed a slight burden on system performance.

Cpu usage Memory usage

amp — J—

Figure 13: CPU and Memory usage, where blue curves rep-
resent the usage with our defense presented in 4.3 against
replay attack and red curves represent that with timestamp
calculation.

From the results of the attack-defense experiment, we can con-
clude that: Firstly, the identified attacks are practical, due to the
limitation of OpenICE without DDS security. Secondly, the pre-
sented defense mechanisms are effective in preventing these at-
tacks. Thirdly, the computational cost of the defense mechanisms
can cause certain degradation in system performance. However,
whether such degradation can cause clinical risks, such as delay or
disruption to clinical procedures should be evaluated in real clinical
practices or by consulting with healthcare providers.

6 DISCUSSION

We have to emphasize that the security attacks and corresponding
defense mechanisms discussed in this paper are based on the pre-
condition that OpenICE does not integrate DDS Security. In fact, in
its latest release, DDS Security has provided certain security fea-
tures such as authentication, access control and cryptography. Thus,
DDS Security has the ability to mitigate interception and tampering
attacks, by providing access control over topics per device [13].
However, DDS Security cannot provide fine-grained access control
over the HeartBeat topic for connected devices. That is, in OpenICE
every device has the privileges to read from and write to the Heart-
Beat topic. If a genuine device is compromised, an adversary can
access to the HeartBeat topic and acquire its device identifier to ini-
tiate replay attacks. In comparison, our defenses are implemented
on top of DDS. They may not be as efficient as DDS security, but
they can also mitigate the interception and tampering attacks. In
addition, we present a simple solution which is much more effective

than the timestamp to mitigate the replay attack discussed above
which can not be mitigated by DDS security.

All the attacks and defenses discussed above are not only appli-
cable to OpenICE. Actually, these attacks and defenses are based
on the publish-subscribe paradigm used by DDS, thus they are ap-
plicable to any ICE systems using this communication paradigm,
such as the Medical Device Coordination Framework (MDCF).

7 RELATED WORK

The security of interoperable medical systems in general, and ICE
systems in particular, has been attracting increasing attentions
from both industry and academia. Most previous research in this
direction focused on establishing reasonable high-level security
requirements for ICE systems, such as[4, 5]. Vasserman et al.[15]
defined a set of fundamental security requirements for safe and
secure next-generation medical systems consisting of dynamically
composable units, tied together through a real-time safety-critical
middleware. They suggested to eliminate these security require-
ments from the system level. Venkatasubramanian et al.[16, 17]
enumerated five typical categories of possible security attacks to
the ICE platform, based on how the ICE platform may be attacked
and the consequence caused by such attacks.

Few security mechanisms have been proposed and implemented
on realistic ICE systems. In fact, the only security mechanism for
ICE systems aware by the authors was proposed by Salazar and
Vasserman [11, 12], which implemented a modularized prototype
for device authentication and communication encryption within
the MDCF context. It provides preliminary access control to ICE
systems with a break-the-glass feature. The defense mechanisms
presented in this paper distinguishes itself from that by Salazar
and Veasserman in the following aspects: 1) our mechanisms tar-
get specifically at OpenlCE, a realistic instantiation of the ICE
framework. The MDCF, on the other hand, intends to provide a
model-based design and simulation framework for ICE systems;
2) our defense mechanisms have been shown effective to prevent
security attacks that target at vulnerabilities at the network layer
in OpenlCE, as compared to their mechanism focuses primarily on
system-level security design of ICE systems.

Based on OpenlCE, Soroush et al.[13] developed two prototypes
of security mechanisms for OpenICE based on TLS and DDS Secu-
rity, respectively. They pointed out that DDS Security could provide
more resilience against insider attacks utilizing authenticated but
compromised medical devices. However, these mechanisms cannot
address security challenges caused by the unique design character-
istics of OpenICE. Our work discovers that DDS Security cannot
provide fine-grained access control over the HeartBeat topic, so that
an adversary can leverage compromised devices inside the system
to get some key information, and in turn launch some attacks such
as the replay attack.

8 CONCLUSIONS

Emerging interoperable medical systems indicates a promising fu-
ture for healthcare, and ICE is a prominent effort towards this vision.
However, security threats can jeopardize the safety of interoperable
medical systems and expose patients and users to unwanted risks. In
this paper, we have analyzed the security threats that can leverage

the vulnerabilities at the network layer in ICE systems (OpenICE
in particular) to compromise their security. A collection of security
mechanism have been proposed and evaluated to effectively miti-
gate these security threats. All the attacks based on these security
threats and the corresponding security mechanisms are practica-
ble in some other ICE systems which use the publish-subscribe
paradigm in their network layer.

It is also worthy of noting that DDS security can mitigate some
traditional security threats at the network level of OpenICE. But it
cannot address security threats due to the system-level design of
OpenlICE. Therefore, acceptable security can only be established in
interoperable medical devices in a systematic manner, by bringing
appropriate security design and comprehensive consideration to
system, communication, and device levels.

We next plan to improve the performance of our security mech-
anisms and evaluate the scalability of the security mechanisms in
real clinical scenarios.

ACKNOWLEDGMENTS

We are grateful for the insightful comments proposed by the anony-
mous reviewers. This research was supported in part by National
Natural Science Foundations of China (Grant No. 61471344) and
National Key R&D Program of China (Grant No. 2017YFB0802902).

REFERENCES

[1] David Arney, Sebastian Fischmeister, Julian M Goldman, Insup Lee, and Robert
Trausmuth. 2009. Plug-and-play for medical devices: Experiences from a case
study. Biomedical Instrumentation & Technology 43, 4 (2009), 313-317.

[2] ASTM International 2009. ASTM F2761-09(2013), Medical Devices and Medical
Systems - Essential safety requirements for equipment comprising the patient-centric
integrated clinical environment (ICE) - Part 1: General requirements and conceptual
model. ASTM International.

[3] Liang Cheng, Zhangtan Li, Yi Zhang, Yang Zhang, and Insup Lee. 2017. Protecting

interoperable clinical environment with authentication. ACM SIGBED Review 14,

2(2017), 34-43.

Denis Foo Kune, Krishna Venkatasubramanian, Eugene Vasserman, Insup Lee,

and Yongdae Kim. 2012. Toward a safe integrated clinical environment: a com-

munication security perspective. In Proceedings of the 2012 ACM workshop on

Medical communication systems. ACM, 7-12.

[5] John Hatcliff, Andrew King, Insup Lee, Alasdair Macdonald, Anura Fernando,

Michael Robkin, Eugene Vasserman, Sandy Weininger, and Julian M Goldman.

2012. Rationale and architecture principles for medical application platforms. In

Cyber-Physical Systems (ICCPS), 2012 IEEE/ACM Third International Conference

on. IEEE, 3-12.

Andrew King, Dave Arney, Insup Lee, Oleg Sokolsky, John Hatcliff, and Sam

Procter. 2010. Prototyping closed loop physiologic control with the medical

device coordination framework. In Proceedings of the 2010 ICSE Workshop on

Software Engineering in Health Care. ACM, 1-11.

[7] Andrew King, Sam Procter, Dan Andresen, John Hatcliff, Steve Warren, William
Spees, Raoul Jetley, Paul Jones, and Sandy Weininger. 2009. An open test bed for
medical device integration and coordination. In Software Engineering-Companion
Volume, 2009. ICSE-Companion 2009. 31st International Conference on. IEEE, 141-
151.

[8] Andrew L King, Sanjian Chen, and Insup Lee. 2014. The middleware assurance
substrate: Enabling strong real-time guarantees in open systems with openflow.
In Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC),
2014 IEEE 17th International Symposium on. IEEE, 133-140.

[9] Insup Lee, Oleg Sokolsky, Sanjian Chen, John Hatcliff, Eunkyoung Jee, BackGyu
Kim, Andrew King, Margaret Mullen-Fortino, Soojin Park, Alexander Roederer,
etal. 2012. Challenges and research directions in medical cyber—physical systems.
Proc. IEEE 100, 1 (2012), 75-90.

[10] Jeffrey Plourde, David Arney, and Julian M Goldman. 2014. Openice: An open,

interoperable platform for medical cyber-physical systems. In Cyber-Physical

Systems (ICCPS), 2014 ACM/IEEE International Conference on. IEEE, 221-221.

Carlos Salazar. 2014. A security architecture for medical application platforms.

Ph.D. Dissertation. Kansas State University.

Carlos Salazar and Eugene Y Vasserman. 2014. Retrofitting communication

security into a publish/subscribe middleware platform. In Software Engineering

[4

fla

=
&

[11]

[12]

[13

[14

[15

(17

]

in Health Care. Springer, 10-25.

Hamed Soroush, David Arney, and Julian Goldman. 2016. Toward a Safe and
Secure Medical Internet of Things. IIC Journal of Innovation 2, 1 (2016), 4-18.
Curtis R Taylor, Krishna Venkatasubramanian, and Craig A Shue. 2014. Un-
derstanding the security of interoperable medical devices using attack graphs.
In Proceedings of the 3rd international conference on High confidence networked
systems. ACM, 31-40.

Eugene Y Vasserman and John Hatcliff. 2013. Foundational Security Principles for
Medical Application Platforms. In International Workshop on Information Security
Applications. Springer, 213-217.

Eugene Y Vasserman, Krishna K Venkatasubramanian, Oleg Sokolsky, and Insup
Lee. 2012. Security and interoperable-medical-device systems, part 2: Failures,
consequences, and classification. IEEE security & privacy 10, 6 (2012), 70-73.
Krishna K Venkatasubramanian, Eugene Y Vasserman, Oleg Sokolsky, and Insup
Lee. 2012. Security and interoperable-medical-device systems, part 1. IEEE
security & privacy 10, 5 (2012), 61-63.

	Abstract
	1 Introduction
	2 Background
	3 Threat Modeling Analysis
	3.1 Modeling Clinical Scenarios
	3.2 Identification of Attack Classes
	3.3 Attack Patterns for OpenICE

	4 Mitigating the Security Attacks
	4.1 Mitigating Interception Attacks
	4.2 Mitigating Tampering Attacks
	4.3 Mitigating Replay Attacks

	5 Evaluation
	5.1 Attack Experiments
	5.2 Defense Experiments
	5.3 Performance

	6 Discussion
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

