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ABSTRACT
Many of medical devices come equipped with a communication
interface. Over the years, there has been interest in leveraging these
interfaces to add computers to the loop to aid in decision making
and automatic application of interventions. Such systems, which we
call Closed-Loop Assistants (CLAs), are intended to help clinicians
manage the cognitive load that can arise as the complexity of patient
management increases. We present an open-source framework for
examining CLA-patient interactions through software simulations
of the CLA with in-silico patients to enable early testing and valida-
tion of proposed physiology management strategies. We show how
this framework can be used to test different strategies across a small
patient population. Considering a patient population is important
because inter-patient variability is one of the critical factors that
can hamper the ability of a medical cyber-physical system like the
CLA to meet its goals. The ability to explore this variability early
in the design process therefore helps us in increasing robustness of
the system.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; • Applied computing → Life and medical
sciences; • Information systems→ Process control systems.

KEYWORDS
In-silico patients, closed-loop physiology management, testing and
validation

1 INTRODUCTION
Management of physiology in critical (intensive care unit) and peri-
operative (surgery-related) settings requires the closed-loop process
of monitoring patient state, deciding on appropriate interventions
(including inaction), and applying the appropriate intervention. In
many cases, multiple patient variables must be tracked and many
different actions must be taken. Both patient monitoring and appli-
cation of interventions usually require the use of various medical
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devices. Many of these devices come equipped with a communica-
tion interface. Over the years there has been interest in leveraging
these interfaces to add computers to the loop to aid in decision
making and automatic application of interventions. Such systems
are intended to help clinicians manage the cognitive load that can
arise as the complexity of patient management increases. We call
these systems Closed-Loop Assistants (CLAs) since they aid the
clinicians in their performance of the various closed-loop tasks (as
opposed to replacing the clinician entirely, which we believe to be
unrealistic). Figure 1 shows a conceptual picture of a CLA.

One compelling application area for CLAs is in telehealth, par-
ticularly in isolation or contaminated environments (e.g. when
treating infectious disease like Methicillin-resistant Staphylococ-
cus aureus (MRSA) and Ebola). This includes manual remote man-
agement of monitor alarms, reporting intervals, infusion rates or
ventilator settings (since CLA technology also enables remote con-
trol of devices). Additionally, the benefits of closed-loop control of
infusions could minimize the need to enter a hazardous location,
reducing risk to the clinician and risk that containment will not
be maintained. The remote control could be local, just outside the
containment environment, or by an external critical care consultant
at a remote site. In general care settings, this sort of technology can
also be used to convert telehealth from current surveillance/remote
patient monitoring, where even change of monitoring settings must
be done at the bedside, into remote patient care, where a CLA under
the supervision of a remote clinician can intervene rather than send

Figure 1: A conceptual picture of a CLA working with clini-
cians in an operating room.



an alert to an on-site clinician who will require time to get to the
bedside and orient to the patient’s status. This can have a positive
impact on patient safety.

Since the CLA is a medical cyber-physical system (MCPS), proper
verification and validation is critical to ensuring safe and robust op-
eration in the intended environment. The key behaviors to consider
here are: (1) the CLA-patient interactions; (2) the CLA-clinician
interaction; and (3) the CLA-plus-clinician-patient interaction to
determine overall system efficacy. Being able to consider these in-
teractions early in the design process allows various ideas to be
tested in low-risk (and cost-effective) fashion to provide insights
on how to improve designs.

Evaluation of systems with in-silico patients has been demon-
strated to be useful for design of other MCPS [14, 23]. Encouraged
by these developments, we are developing a framework for examin-
ing CLA-patient interactions through software simulations, where a
CLA interacts with in-silico patients, to enable early testing and vali-
dation of proposed physiologymanagement strategies. In this paper,
we present the concepts behind the framework and describe its cur-
rent incarnation. We show how this framework can be used to test
different strategies across a small patient population. Considering
a patient population is important because inter-patient variability
can hamper the ability of MCPS to meet its goals. The ability to
explore this variability early in the design process therefore helps
us in increasing robustness of the system. The CLA case represents
a more complex version of the problem than the previously-cited
efforts because of the larger scope of applicability and resulting
increase in variability in components.

This work is part of our larger goal of enabling system-in-the-
loop evaluations (“system” because the CLA is a hardware-software
system), where the CLA is instantiated as the intended hardware-
software system, interacting with real medical devices, and with
in-silico patients also capable of interacting with the real medical
devices. Most importantly, this work is an open-source project. We
believe that approaching the work in this manner would provide
the greatest impact and benefit to the MCPS and medical commu-
nity. Our repository can be found here: https://gitlab.bucknell.edu/
fmg005/clasim.

2 THE FRAMEWORK
The framework, depicted conceptually in Figure 2, consists of two
major pieces: a physiology platform that represents the patient
(in our case Pulse [13]), and the CLA components consisting of
models of medical devices (patient monitors and infusion pumps)
and models of the physiology management algorithms. It currently
models interactions as data/action flow between various compo-
nents with the ability to inject real-world issues like time delays
and data loss and inaccuracies in abstract fashion. Although Figure
2 shows a single physiology management algorithm, the framework
can support multiple such algorithms simultaneously interacting
with devices (and multiple independent CLAs interacting with the
same patient).

The modular design allows for the exploration of variation that
we are interested in. We can explore variation in any of the key
components. For example, we can explore a specific instance of
the CLA (devices plus algorithm) across many different in-silico

Figure 2: Conceptual picture of framework for evaluating
CLAs with in-silico patients.

Figure 3: Conceptual picture of design space exploration us-
ing in-silico patient models.

patients. Or, for a specific patient, we can explore the effect of differ-
ent versions of the CLA (by varying one or more of its components).
Taken together, we can explore the impact of various CLA designs
on clinical outcomes (which is what the CLA is supposed to help
with) across a representative patient population, as represented in
Figure 3), effectively running an in-silico trial in the early stages of
development to identify promising design choices. This ability to
explore the clinical impact of design choices has been advocated for
in previous work on evaluating the efficacy [2] and safety [3] of sys-
tems, as well as the vision for MCPS [11] (called “High-Confidence
Medical Devices Software and Systems” in the article). Below, we
provide information on the still evolving parts of the framework.

2.1 Pulse Physiology Platform
The Pulse Physiology platform supports the design, development,
and use of physiologic modeling. The Pulse architecture was de-
signed to reduce model development time and increase the usability
of the engine in third party application, including software sim-
ulations and hardware testing and augmentation, by creating a
modular, extensible ontology for simulating the human physiology.
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Figure 4: Overview of the Pulse platform

To accomplish these goals, the Pulse platform includes the Pulse
Physiology Engine, a Common Data Model (CDM), and a Software
Framework, as shown in Figure 4. This framework has been used
to power medical training simulations for a variety of applications
[6, 19].

2.1.1 Physiology Engine. The Pulse Physiology Engine is com-
prised of computation physiology models that represent the dif-
ferent systems of the body, the feedback mechanisms and interac-
tions between the systems, pharmacokinetics/pharmacodynamics
(PK/PD), and medical equipment, such as an anesthesia machine.

The different systems of the body have numerical models com-
prised of lumped-parameters models, which use circuit analogues
(e.g. resistors and capacitors) to estimate the behavior of a region
of interest/system of the body. Feedback mechanisms required to
model trauma and treatment, such as baroreflex responses, are mod-
eled using differential equations that use vital signs as the input to
calculate a response, which is then applied to the lumped-parameter
components to mimic feedback in the human body.

The PKmodel represents themigration of substances, specifically
drugs through the body, via diffusion and clearance focusing on the
plasma concentration over time. After the plasma concentration
is accurately calculated, the PD effects, or the effects of the drugs
on the vital signs and are implemented. This model is similar to
the feedback mechanisms, as the plasma concentration increases,
the effect on individual parameters, such as blood pressure, heart
rate, and respiratory rate are affected by modifying the lumped-
parameter model [8].

The mechanisms in Pulse that connect the various systems are
critical to modeling the effects of multiple interventions (e.g. combi-
nation of ventilation and drug infusions), as well as the side effects
of interventions (e.g. increased heart rate for an intervention that
only reduces blood pressure). (See https://physiology.kitware.com/
_system_methodology.html for more information on interaction

Figure 5: The various models in Pulse.

between various systems in Pulse to account for body feedback
mechanisms and multiple interventions).

The Pulse models currently executes with a fixed simulation
timestep of 20ms.

For added flexibility, patient variability is a feature of the Pulse
Physiology Engine with eight patients included in the open source
repository. These patients are defined using a basic set of vital sign
parameters that can be adjusted via the provided patient files, in-
cluding height, weight, heart rate, blood pressure, respiratory rate,
alveoli surface area, etc. These parameters are used to initialize the
computational physiology models and define a “healthy” patient.
After this stabilization occurs, the patient can be given chronic con-
ditions, such as chronic obstructive pulmonary disease and renal
stenosis. This process allows for a variety of patients of varying
health to be analyzed in conjunction with different disease, injury,
and treatment states. In addition to the provided patients, new
patients can easily be created using the provided format, parame-
ter definitions, and chronic conditions. More details about patient
specification are available on the Pulse website [13].

2.1.2 Command Data Model and Common Software Framework.
The Pulse architecture was specifically designed to reduce model
development time and increase the usability of the engine in simula-
tions by creating a modular, extensible software system for human
physiology. To accomplish these goals, the Pulse architecture in-
cludes a Common Data Model (CDM) and a Common Software
Framework.

The CDM is an implementation agnostic dictionary-like speci-
fication of the data and relationships associated with physiology
simulation software systems. The Common Software Framework
was designed to reduce development time by providing a place to
implement common reusable algorithms to ensure consistent fun-
damental functionality between programs. Implementation of these
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common algorithms provides reusable, validated, supported algo-
rithms that reduce model development time and provide consistent
results.

A single interface defines all methods, in terms of the CDM,
for both inputs and outputs, as well as controlling the physiology
engine. This interface allows software and hardware system devel-
opers to integrate Pulse into their hardware and software solutions.
It provides a standardized approach for providing instructions to
Pulse. Controls are provided to advance time, inject action mes-
sages into the engine, and output computed data values for use by
sensors and/or display.

2.1.3 Implementation and Validation. The development of the Pulse
Physiology Platform follows a high quality software process. This
includes providing an open source repository with public version
control, a build management system, and a verification and valida-
tion suite. The repository is available to the public with an Apache
2.0 license. The platform is built for cross-platform development, in-
cludingMac,Windows and Linux, which allows for easy integration
with third party hardware and software development.

Ensuring model accuracy and stability is key to the Pulse com-
munity. The test scenarios used to ensure model consistency are
included in the repository and can be executed after software mod-
ifications to ensure the results are correct. These scenarios are built
from the validation standards specified by the Pulse team. This stan-
dard states that model output is quantitatively validated using data
from the literature and the error is reported using a good (<10%),
fair (10-30%), poor (>30%) scale. The PK/PD model is also validated
for both the plasma concentration curves over time and the vital
sign effects. All validation sources and results are reported on the
Pulse website (see https://physiology.kitware.com/_cardiovascular_
methodology.html).

2.2 Closed-Loop Assistant Components
As mentioned previously, the CLA components consist of the medi-
cal devices and the algorithms (assumed to be on a separate com-
puter) that interact with them. Currently, devices consist of abstract
models of patient monitors and pumps. The device components are
software pieces that take advantage of Pulse’s standard interfaces
to directly observe and effect action on patient state. The algorithm
components are software components that interact with the device
components to indirectly observe and effect action on patient state.

2.2.1 Patient Monitors. Patient monitors take inputs from the pa-
tient model and hence interact directly with the Pulse physiology
engine. Patient monitors can query any of the available variables
from Pulse at a rate whose equivalent sample period is a multi-
ple of Pulse’s timestep of 20ms (i.e. 50/N Hz,N = {1, 2, ...}). The
patient monitor can output data to algorithms at a rate whose equiv-
alent period is an integer multiple of its input sample period (i.e.
rateOfSampleFromPulse/N Hz,N = {1, 2, ...}). Different variables
can have different sample and output rates so long as there is a
valid relationship between the rate at which a variable is sampled
from Pulse and its output rate.

The variables the patient monitor outputs could just be the val-
ues from Pulse passed on to the algorithms or other computed
values not inherently available from the Pulse model, especially if

the computed variable requires multiple sequential samples from
the variables directly available from Pulse. For example, although
Pulse provides the mean arterial pressure (MAP) directly, we could
model a monitor that computes this from the systolic and diastolic
blood pressure values from Pulse, or for value like stroke value
variation, we could compute this a sequence of multiple stroke
volume samples from Pulse.

We can model inaccuracies in values by adding deviations from
the true values before they are output to the management algo-
rithms. The current implementation does not support modeling
inaccuracies, but is easily extensible to support inaccuracies (which
should be in future revisions) and other behaviors (as we develop
more use cases).

2.2.2 Physiology Management Algorithms. Physiology manage-
ment algorithms take inputs from the patient monitors. The algo-
rithms can query any of the available variables from patient monitor
at a rate whose equivalent sample period is a multiple of monitors
output rate for that variable (i.e. OutputRateFromMonitor/N Hz,N =
{1, 2, ...}). Each time new data arrives, the algorithm can choose to
make a decision based on inputs so far, or wait till enough input
samples are available. Depending on the decision, the algorithm can
instruct pumps to take specific actions. The algorithm can make
decisions in-between data arrivals (for example, when decisionmak-
ing is triggered by a timeout condition) since it has the opportunity
to act in each time step of the simulation.

We currently do notmodel any issues of the algorithms executing
on a computational platform since the case studies we are working
with operate at coarse (on the order of minutes) time scales. As
we encounter cases with finer time scales (on the order of seconds
or less), we will include reasonable issues like computation time
causing delayed decision-making and interventions.

2.2.3 Pumps. A pump has substances it can infuse at certain rates.
Pumps receive commands to start, adjust, or stop infusions. In
general, pumps have a delay parameter that models computation
time and time for mechanical components to adjust to a command
from the algorithm. This delay can be set to zero to model an
ideal scenario without physical effects. Inaccuracies can also be
modeled by adjusting the rates before the infusion is applied or
even during the application of infusion between adjustments. The
current implementation of pumps (and associated configuration
parameters) supports only delays, but is easily-extensible to support
inaccuracies and other behaviors.

2.2.4 Network. We envision CLAs to be composed using medical
application platforms that follow architectures like the Integrated
Clinical Environment (ICE) [5]. Hence it is possible that network
effects like delays and data losses can occur. We currently do not
have an implementation of a network so we assume ideal commu-
nication. In future revisions, we intend to implement a network
model through which the various CLA components communicate
with each other.

2.3 Execution Components and Semantics
Because execution of the whole framework is tied to the execution
of Pulse, the framework executes according to a synchronous reac-
tive model of computation [9], where the whole system advances in
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discrete timesteps each representing 20ms of wall clock time. At the
framework level, there are no zero-delay feedback loops (although
these may exist within Pulse itself).

The framework has a simulation engine component where sce-
nario events can be controlled (i.e. actions that happen to the patient
independent of the CLA). In this engine, we can decide how the
simulation is to be executed. Our current execution cycle proceeds
as follows after initialization of all other components:

(1) Check for scenario events (including stop conditions)
(2) Set up and apply any scenario events to patient
(3) Execute one time step of Pulse
(4) Execute patient monitors
(5) Execute algorithms
(6) Execute pumps
Each CLA component has an update function that runs in each

time step and determines whether the component reacts to inputs at
that point in time or not. We provide a configuration file structure
that allows a user to specify properties of devices like input and
output rates and accuracies, as well as simulation properties like
stop conditions. The rate information from this configuration file is
used to determine when devices take in inputs, react to them, and
produce outputs. This approach can be used to explore timing and
accuracy properties of CLA components without recompiling code
(we discuss how simulations are developed below).

2.4 Simulation Development
Currently, developing a simulation in our framework requires writ-
ing C++ code and putting information in a configuration file. We
provide methods for CLA components (patient monitors, pumps,
and algorithms) which handle loading information from the con-
figuration files, basic error checking (whether input and output
rates align), and mechanisms for communication between compo-
nents (monitor-to-algorithm and algorithm-to-pump—we do not
support algorithm-to-algorithm communication yet, but intend to
have this soon). Currently, the code for the case study simulations
for this paper are provided as a demo that a user can work with
as a starting point for their simulation. It covers the basic CLA
setup and interactions of between CLA components and between
the CLA and a patient. In future revisions, we will provide more
templates/examples that users can start with and more support
code for developing simulations.

Although Pulse supports Windows, Mac, and Linux, our frame-
work is currently being developed on a Linux platform, mostly
because the CLA we hope to connect it to for system-in-the-loop
simulations relies on Linux features. However, because the soft-
ware simulation framework is mostly C++ code, we do not see any
impediment to using this framework on the other platforms that
Pulse already supports.

3 CASE STUDY AND RESULTS
To illustrate the capabilities of the framework and the kinds of
explorations we hope to enable for others, we ran a case study
simulation based on hypotension management in the ICU based on
a conversation with Dr. John McIlwaine, DO, Medical Director for
the Center for Telehealth and eICU at the Geisinger Health System
about their specific procedures for hypotension management. Most

of what we describe here is specific to Geisinger, but is in line with
general practice at other institutions. The case study is intended
more to be illustrative, so we have simplified many things about
the way this is actually done in practice.

3.1 Clinical Scenario and General Strategy for
Intervention

A common case of patients in the ICU, especially those who have
just come out of surgery, is hypotension (low blood pressure), usu-
ally categorized as a mean arterial blood pressure (MAP) below
65mmHg. Maintaining a good MAP is critical to proper perfusion
(oxygen delivery to organs). One of the strategies used to manage
hypotension is to infuse both fluid (usually saline) and a vasopres-
sor drug (which constricts the blood vessels) like norepinephrine
(usually when the patient already has a lower heart rate in ad-
dition to hypotension since norepinephrine also increases heart
rate). Typically, in addition to this intervention, the clinicians try
to determine and address any underlying cause of the hypotension.

Our case study is focused on the intervention using norepinephrine
infusion. The general approach to the infusion protocol is shown
in Figure 6 in quasi-hybrid system form. The main goal of hypoten-
sion management is to get the MAP back into an acceptable range
(usually above 65mmHg but below around 85mmHg) and maintain
MAP in this range.

There are three major phases to the protocol. The first is the
initial reaction to the hypotension where the patient is hit with the
maximum allowed dose of the drug and fluid infusion is also started
(not shown in Figure 6 because fluid infusion, at least in this case
study, remains at a constant rate). After the MAP has increased
initially to a threshold (INC in Figure 6) usually around 100mmHg.

The second phase begins where the dose is reduced (to some
percentage of the max dose) to prevent issues like hypertension
or other side effects from having a high does of the drug. If the
MAP continues to rise, the dose is reduced until the drop is seen.
If the MAP begins to drop in response to the reduce dose, then
the third phase begins where the dose is adjusted to maintain the
MAP in the target range (MAP_MIN and MAP_MAX in Figure 6,
usually 65mmHg and 85mmHg respectively). The does is increased
when the MAP falls below range and and is reduced when the
MAP goes above range. This phase continues until it is determined
that infusion of norepinephrine is no longer required. In some
cases, this can go on for 24 hours or more. The checks for MAP
between actions usually happens at roughly 10 minute intervals,
though when the patient is below range, the MAP is checked more
frequently about every 5 minutes.

3.2 Simulation Setup
We used the framework to examine two slightly different strategies
for the infusion protocol across a small patient population. This
allows us to illustrate some variability both in the the CLA and in
the patients it must interact with.

For each patient, we mimicked a hypotensive patient coming
out surgery by starting them off with a lower baseline MAP and
hemorrhaging the patient till the MAP dropped to 70mmHg, at
which point we started the protocol. We ran the whole scenario for
60 minutes of simulation time for each patient.



Figure 6: The norepinephrine infusion protocol.

To get the two different strategies we parameterized the infusion
protocol described in the previous section (illustrated in Figure
6), using the constants in that model as the parameters. The only
variable in we changed between both algorithms was the percent-
age reduction (and associated increase) in dose. The full infusion
protocol parameters for both strategies are given below.

The patient monitor is modeled as one that produces MAP di-
rectly. For simplicity, we pull this value directly from Pulse rather
can calculate it from the systolic and diastolic pressures, which

Table 1: Simulation Parameters

is what a real device would do. We also assume it is accurate and
do not introduce any error. The patient monitor ‘computes’ MAP
1.2 times per minute and can output this value 0.6 time per min-
utes. Both versions of the algorithm ask for this value 0.6 times per
minute, even though the current value is used either very 10 or 5
minutes. The pumps (for saline and norepinephrine) are modeled
without any inaccuracies but with a delay of 15 seconds.

3.3 Results
Figure 7 shows the result of running the algorithm on of our patients
(Hassan). It illustrates the different kinds of information we can
glean from the simulation. First, we see the ‘view of the world’ from
the perspective of each entity in the simulation. The patient data
shown are the ‘ground truth’ physiologic values generated by Pulse.
The patient monitor values are the vales that the monitor reports as
what it observed after interacting with the patient to obtain them.
These could be different from the ground truth values for various
reasons. Presenting the results this way foregrounds the fact that in
a real scenario the monitor goes through a sensing process where
physical signals are converted to digital values, and in many cases
with additional digital processing performed to decide on the final
value the monitor will report as the observed value.

The algorithm then sees a further sampled version of what the
monitor observes. This shows that although a monitor can observe
values at higher time resolutions, it may only report values to other
systems at lower time resolutions so the algorithm’s view of the
patient may not necessarily be the same as the monitor’s view of
the patient. As mentioned previously the monitor samples MAP
values at rate of 1.2/min, and the algorithm sees values at 0.6/min.



Figure 7: Results from CLA running algorithm 1 interacting
with a single patient.

Based on the values the algorithm receives, it can send commands
to the pump to adjust infusion rates. The pump has a delay from
when it gets command till when the new infusion rate starts (not
discernible on the figure because it is 15s in this simulation).

In Figure 7 we have highlighted the target MAP range in the
patient data plot. We have also highlighted the period before the
CLA starts interacting with the patient in all the plots. This allows
us to see different parts of the scenario more clearly. Though not
shown, one could also highlight what phase of the protocol the
algorithm is in order to check that the algorithm is in the right
phase given the past and current events.

For the case shown in Figure 7, the algorithm is able to get
Hassan out of the hypotensive state in the first few minutes and
then into the target range within about 25 minutes from the start
of its operation. We can also verify that the algorithm is indeed
following the logic in Figure 6 according to the parameters in Table
1 by looking at the MAP data and the algorithm’s reactions.

Figure 8 shows the results of running the two different algorithms
on three patients (two males, named Hassan and Gus, and one
female named Diana). We used three out of the available patients in
Pulse because of a limitation with its homeostatic feedback and PD
model that only allows these three patients to respond to the initial
drop in MAP (to simulate coming out of surgery) and to infusion
of norepinephrine the way we expect.

Nevertheless, the results are meant to be illustrative and even
with these three patients we see some variation in outcomes. We
have only shown the ground truth patient data and the CLA’s
reaction to the data since we are interested in how the algorithms
perform overall. (Note that the patient data also represents the
patient’s reaction to the CLA’s actions). For each case, we can dig
deeper like in Figure 7 to see how the specific behavior of the
various entities may be contributing to the outcomes we observe.

Both algorithms have the same initial effect on patients because
they both administer norepinephrine at the maximum dose when
they start. Diana seems to react much quicker to the action of the

drug. Algorithm 1 gets two of the patients (Hassan and Gus) into
the target range within the simulation time since it reduces the
dose each by a higher amount than algorithm 2 each time reduction
is needed. Algorithm 2 struggles to get any of the patients into the
target range. Though algorithm 1 also struggles to get Diana into the
target range even after reducing the dose, it starts to lower Diana’s
MAP after the initial increase closer to the end of the simulation.

These results illustrate some the insights we hope users of the
framework can gain about their system. We see the general dif-
ference between the algorithms (one is generally faster at getting
patients into the target range than the other) and the common issues
across the algorithms (there is one patient both struggle with).

4 RELATEDWORK
4.1 Multi-Purpose Physiology Engines
Computational physiology models, often termed physiology en-
gines, are available both commercially and as open-source toolboxes
for integrationwith external software and hardware [1, 7, 10]. These
engines vary in their usability by cost, service and support availabil-
ity, and model and validation documentation. Many of the commer-
cial physiology engines are expensive and provide limited support
for those hoping to integrate the models into their proprietary prod-
ucts. The BioGears engine [1] is an open source physiology engine
developed as a Department of Defense program. However, it has
some licensing concerns with commercial, proprietary applications
and a lack of current development and support that makes it diffi-
cult to integrate with external applications. The Pulse Physiology
Engine is a fork of the BioGears engine that has been actively devel-
oped by experts in open source software development and support.
Pulse extended BioGears to create an open source repository with
a permissive Apache 2.0 license that is multi-platform (Windows,
Mac, and Linux).

4.2 Frameworks for Evaluating Closed-Loop
MCPS

Two of the well-known frameworks for evaluation of closed-loop
MCPS are the simulation platform for the artificial pancreas [17]
and the that for pacemakers [24]. Both of these frameworks consist
of in-silico patient models as well as models of the MCPS. In the
artificial pancreas case, for theMCPS there aremodels of continuous
glucose monitors (including their inaccuracies and delays), models
of the management algorithms and simple pump models. The in-
silico patient population contains 300 patients (100 each of adults,
adolescents, and children), and that population and the results from
simulations with them are currently accepted by the U.S. Food and
Drug Administration (FDA) as an alternative to animal trials, which
speeds up the concept-to-human-trial time, and reduces the cost of
evaluating new concepts.

The pacemaker work, though it does not yet enjoy the same
status as the artificial pancreas work with regards to use in the
regulatory process still provides an approach that is worth build-
ing on. In particular, unlike the artificial pancreas work, the pace-
maker work provides system-in-loop simulation capabilities with
in-silico patients running on hardware that can interact with real
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Figure 8: Results from in-silico trial of both algorithms on a small patient population.



implantable cardiac devices [12]. It also has complementary formal-
methods-based tools for design evaluation. These are critical to the
design process for MCPS [15].

The work presented here for CLAs builds on these efforts, ex-
tending these ideas to MCPS for physiology management in peri-
operative and critical care. Though simulation-based approaches
have been explored in these contexts (e.g. work on safety of patient-
controlled analgesia [16] and application of the artificial pancreas
framework to glucose management in critical care patients [18]),
we are not aware of a general purpose framework that allows con-
sideration of many different scenarios and variables.

5 CONCLUSION AND FUTUREWORK
Leveraging connectivity capabilities of medical devices to enhance
approaches to patient care, especially though the use of closed-loop
technologies, is gaining interest within the medical community.
For example, the most recent annual meeting of the Society for
Technology in Anesthesia, a mix group of medical professionals
and medical technologist, had a whole session dedicated to auto-
mated drug delivery and closed loop systems [21]. With the work
to make open versions of CLA technologies available to the com-
munity [22], including our own efforts [4], many will soon be able
to experiment with these ideas and develop systems for particular
contexts. The ability to evaluate ideas early in the design process in
cost-effective ways is critical to realizing these technologies. The
work presented in this paper provides an approach that can help
with this. In particular, because both the patient physiology models
and the CLAmodels are available to the designers and their medical
domain experts, both can collaborate to understand how different
physiology factors affect efficacy of design, or conversely how a
particular design may interact with a particular physiology.

We are continuing to improve the Pulse physiology engine, par-
ticularly for this context where patient physiology has been altered
by prolonged period of trauma or by going through surgery, and for
cases of continuous infusion as an intervention over long periods
of time. We are also working on a system-in-the-loop simulation
extension to this work. As mentioned previously, we have devel-
oped our own CLA experimentation platform. We also have access
to computer-controllable hardware that can simulate the physical
signals that patient monitors observe from patients. We are cur-
rently working on getting Pulse to drive the hardware and receive
actions from the infusion pump in real-time. With this in place, we
can begin to experiment with CLA in real time to gain insights into
some of the issues that arise in more realistic contexts.

Taking inspiration from the pacemaker work, we also interested
in developing a complementary formal-methods-based framework
for design and evaluation of CLAs. The Pulse model is essentially
a discrete time hybrid system (though a large and complex one).
The CLA models can also be viewed this way. With some simplifi-
cations, we could develop formal specifications for the goals of the
CLA (using ideas from [3] to relate these to patient outcomes) and
formal verify candidate CLA designs. Additionally, we could use
these specifications to generate candidate designs using controller
synthesis techniques (e.g. [20]). In both cases, we could then run
higher-fidelity in-silico trials (software only or system-in-the-loop)
to further evaluate the candidate designs. This complementary

formal-methods-based framework enable faster design-space explo-
rations by helping prune the design space and reducing the number
of high fidelity simulations that need to be performed.
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