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ABSTRACT
This paper reports on our experience in developing training material
for a hospital, in the form of an interactive simulation of a medi-
cal device routinely used in the hospital. The subject device is a
commercial contrast media injector used in Computed Tomography
(CT) scans. The specification of the device was reverse engineered
using in combination the user manual, direct interaction with the real
device, and the results of a field study we conducted that focused
on how expert users routinely operate the device. The interactive
simulation greatly helped to identify critical workflows that could
induce accidental use errors that lead to dangerous situations such as
failure to correctly detect air-in-line before starting the injection. The
interactive simulation proved also useful to stimulate a constructive
discussion within a multidisciplinary team of engineers and clini-
cians, about possible design improvements to the device that could
prevent the identified critical workflows.

KEYWORDS
Contrast media injectors; Interactive simulation; Training material
for clinicians.

1 INTRODUCTION
Contrast media injectors are medical devices routinely used in diag-
nostic imaging exams such as computed tomography (CT), magnetic
resonance imaging (MRI) and angiography (XA), to inject intra-
venously a fluid, called contrast media, necessary to enhance the
visibility of normal body structures as well as lesions.

Iodinated media can be nephrotoxic, being a known cause of
possible acute renal failure in hospitalised patients [12]. To minimize
the risk of adverse health problems, it is therefore important to set
up the injector so that it delivers the minimal amount of contrast
media necessary for the diagnostic task. This is especially important
for elderly patients (they are more vulnerable to contrast media), and
for patients undergoing multiple diagnostic imaging scans in a short
period of time. Modern injectors typically provide a watch-dose
function that helps clinicians validate the volume of contrast media
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entered in the device, based on the patient’s physical parameters,
pathology, and organ or tissue to be analyzed with the diagnostic
imaging exam.

Use error with infusion devices, as well as with other medical
devices, is a known source of incidents in healthcare [1, 9]. Whilst
use error is defined as an act of omission or commission performed
by the user that causes a device to respond unexpectedly [4], it is
important to highlight that incident investigations usually reveal that
use errors are due to latent design flaws in the device, rather than
careless behavior or lack of training of clinicians (see [14] for a more
in-depth discussion of use errors with medical devices). An example
design flaw that can induce use errors is the data entry system of
a device silently discarding decimal point key presses for certain
range of values [5]. These types of flaws create traps for the users,
that can be hard to avoid even for experienced users.

Advanced analysis tools can be used to facilitate early detection
of latent software issues. Verification tools based on formal methods
technologies, for example, can be used by manufacturers within the
development process to analyze the source code of their products
(e.g., see the analysis presented in [7]). Similar tools can also be
used by healthcare providers, to improve procurement decisions
and to develop training material (e.g., interactive simulations of a
device) suitable to raise awareness about latent design flaws in user
interface software. In this paper, we focus on the healthcare provider
perspective.

Contribution. We describe how we used a prototyping and analysis
toolkit to support the development of an interactive simulation of
a contrast media injector used in a large academic hospital. The
simulation was created to support training of clinicians, and helped to
identify and raise awareness among clinicians of critical workflows
that could induce accidental use errors that have safety implications.

2 RELATED WORK
Work on formal modelling and simulation of human-machine in-
teraction with medical systems has gained momentum in these last
few years, with various research groups focusing on the topic. For
example, in [11], a library of patient and medical device models
are developed to support the validation of medical cyber-physical



Figure 1: The injector system: workstation (on the left) and in-
jector device (on the right).

systems. In [10], control theory is used as a basis to develop a simu-
lation of a human operator interacting with a device providing both
continuous control (e.g., joysticks) and discrete controls (e.g., but-
tons). Their simulation builds on the infrastructure of the PVSio-web
toolkit we have used in the our work for creating the interactive proto-
type. However, these and other similar tools are designed to support
the work of engineers. Their target is therefore different from our
work, which aims to support multi-disciplinary analysis of human-
centred medical systems, as well as create training simulations for
clinicians.

3 THE CONTRAST MEDIA INJECTOR
The subject device of this work is a dual-syringe injector that per-
forms injection of contrast and saline into the bloodstream of patients,
commonly used in CT. Figure 1 shows the complete injection system
that includes a workstation and an injector. Clinicians need to use
both devices to carry out an injection.

The workstation allows clinicians to set up and manage personal-
ized injection protocols for different patients, based on parameters
such as patient weight, past scan procedures, current scan settings,
diagnostic tasks, etc. The workstation seamlessly communicates
with the injector, allowing clinicians to monitor progress of the in-
jection directly from the workstation screen. The two syringes of the
injector are displayed using color-coded pictures on the workstation

screen (green for contrast, and blue for saline). Interaction with the
workstation is carried out through a touchscreen display.

The injector has a front panel with a number of buttons and
displays that allows clinicians to set up specific amounts of contrast
media and saline. The body of the device includes an injector head
(where syringes are inserted), plungers for controlling the volume
of liquid in the syringes (plungers are automatically advanced and
retracted when syringes are inserted and removed), and tubes/needles
(used to connect syringes and the patient).

The front panel of the injector uses a number of displays and
LEDs to provide feedback to the clinician about the state of the
device. Two seven-segments displays labelled VolumeA and VolumeB
report, depending on the device mode, either the volume of liquid
in the syringe, or the position of the plunger. Each display has three
significant digits, and can render only integer numbers. One LED
light placed next to a lock symbol indicates whether the injection
protocol has been set and locked from the workstation. Two large
LED lights indicate whether an injection is running.

Various buttons on the front panel of the injector allow clinicians
to operate the device. An autoload button, can be used to move the
plungers and load the volume of saline and contrast configured by
the clinician on the workstation. Two buttons, plus (+) and minus(-
), allow clinicians to increase/decrease the target volume of saline
and contrast to be loaded in the syringes. Two buttons FillA and
FillB activate the autoload sequence for the syringes. A Manual load
button enables manual adjustment of the plunger position using the
chevron keys available on the front panel of the injector. The speed
at which the volume is increased/decreased depends on where the
chevron keys are pressed – pressing next to the tip of the chevron
key leads to quicker changes. A Prime button can be used to remove
air-in-line. A Check-Air button is for checking air-in-line. An Arm
button is used to make the system ready for an injection. An Abort
button terminates an injection procedure and disarms the injection. A
Start/Hold button allows to start the injection (when the injection is
not started), and to pause the injection (this function is active when
an injection is running).

4 THE INTERACTIVE SIMULATION
We developed an interactive simulation of the complete injection
system using the PVSio-web [6] prototyping. A screenshot of the
simulation is in Figure 2. A live version of the simulation is available
online at http://www.pvsioweb.org/demos/stellantV21.

Developing the PVSio-web simulation involved three main steps:
(Step 1.) Build an executable specification of the behavior of

the system in the PVS language. The specification of the injector
was obtained by reverse engineering the real system. We used a
combination of information from the user manual, observation of the
device behavior through direct interaction with the real device, and
the results of a field study we conducted to understand how expert
users operate the device.

(Step 2.) Take a picture of the user interface of the real system
that could be used as a basis to create the visual appearance of the
interactive simulation.

1Google Chrome ver 62.x or newer version of the web browser is required to correctly
execute the live demo.

http://www.pvsioweb.org/demos/stellantV2


Figure 2: Interactive simulation of the injector system.

(Step 3.) Use the PVSio-web library to create interactive wid-
gets over the picture of the system. The library is implemented in
JavaScript. Input widgets translate user actions over buttons into
expressions of the executable PVS model to be evaluated to compute
the system response. Output widgets mirror state attributes of the
PVS model and resemble the look & feel of the real system in the
corresponding state. For example, in the screenshot shown in Fig-
ure 2, output widgets are used to represent a system state where the
syringes are plugged into the injector and spiked to a bag with saline
and contrast liquids, and the injector has completed the process
of loading the saline and contrast liquids in the syringes (the two
seven-segments displays on the front panel of the injector indicate
the volume of liquid loaded in the two syringes).

4.1 Executable specification
The executable PVS specification of the injection system was devel-
oped using the modelling approach described in [2]. It involves two
main steps:
• Specify the system state as a PVS record type with relevant

state attributes;
• Specify the behavior of the system as a set of transition func-

tions that range over system states.
System state. The PVS record type for the injector system includes
57 state attributes: 38 attributes for the injector state; 14 for the
workstation state; and 5 for the state of the syringes.

In the following, some aspects of the developed PVS model are
illustrated. This illustration is not meant to be detailed or pedantic,
as our aim is only to give the reader an understanding of what the
PVS specification looks like. A detailed description of executable
PVS specifications of medical devices can be found, e.g., in [3, 7].

A snapshot of the system state is in Listing 1. The syntax to
specify a PVS record type is [# a1: t1, ..., aN: tN #],
where a1 ... aN are attribute identifiers, and t1 ... tN are
attribute types. PVS provides an expressive specification language,
which allowed us to select the most suitable attribute type from a
wide range of pre-defined types, including basic types (bool, integer,
reals, etc.), enumerations, arrays, sets, lists. Sub-types and user
defined data-types can also be created.

state: TYPE = [# mode: Mode,
vol_saline: Volume,
vol_contrast: Volume,
lock_LED: LED,
... #]

Listing 1: System state represented as a PVS record type

In the developed specification, we extensively used PVS sub-
types as the PVS system automatically generates proof obligations
for them — this is useful for checking well-formedness of the speci-
fication, including aspects such as correct use of types, coverage of
conditions, and disjointness of conditions. An example sub-type is
Rate, which is defined as a non-negative real number smaller than
200 (see Listing 2).

Rate: TYPE = { x: nonneg_real | x < 200 }

Listing 2: PVS sub-type for modelling infusion rate values

Transition functions. The developed PVS specification includes
33 transition functions: 26 for modelling the behavior of the injector,
and 7 for modelling the workstation. The main focus of the simula-
tion was the injector: this is the reason behind the small number of
transition functions used for modelling the workstation. The size of
the PVS specification is approx. 800 lines.

An example transition function created in the developed specifi-
cation is click_btn_manual (see Listing 3), which models the
effect of pressing the Manual load button available on the front panel
of the injector to enable manual adjustment of the plungers position
using the chevron keys of the injector. Other transition functions in
the developed specification have a similar structure.

1 click_btn_manual(st: state): state =
2 st WITH [
3 mode := MANUAL,
4 vol_saline := plunger_saline(st),
5 vol_contrast := plunger_contrast(st),
6 vol_saline_confirmed := FALSE,
7 vol_contrast_confirmed := FALSE,
8 btn_manual_timeout := BTN_MANUAL_TIMEOUT
9 ]

Listing 3: Example transition function in PVS

The function has one argument st of type state, which represents
the current system state. The function returns the next system state,
which is constructed by modifying the value of relevant state at-
tributes in the current state. The PVS language provides a syntax to
write an override expression that can be used for this purpose (WITH
[ a1 := new_a1, ... aN := new_aN ]). For this specific
function, the override expression indicates that:
• The new device mode is MANUAL (see line 3 in Listing 3);
• Volumes of saline and contrast shown in the displays of the

injector is calculated based on the position of the current
position of the plungers (see lines 4-5 in Listing 3);
• Flags indicating whether the volumes have been confirmed

are reset – these flags are used by a safety mechanism of the
injector, which checks that clinicians have explicitly acknowl-
edged the entered volumes before starting the injection (see
lines 6-7 in Listing 3);
• A countdown timer (btn_manual_timeout) is set to a

value given by the constant BTN_MANUAL_TIMEOUT – this
timer is used to check inactivity of the user during manual



mode; it is part of a safety mechanism of the injector that
guards against mis-configuration of the injector due to acci-
dental button presses (see line 8 in Listing 3)

4.2 Interactive widgets
The interactive simulation includes the following PVSio-web wid-
gets: 33 buttons, 9 displays, 5 LEDs, and 2 syringes.

Each button widget is seamlessly linked to a transition function
in the PVS model: this is done through the APIs of the PVSio-
web widget, which include a parameter for specifying the name of
the transition function to be evaluated when a given user action is
performed on the widget. Listing 4 shows an example use of the
PVSio-web APIs for creating a widget for the Manual load button:
• Button is the widget constructor. The new operator is used

to create a new object of type Button. The created widget is
stored in a field btn_manual of a variable sys.
• The first argument of the constructor is a string defining the

widget identifier. The PVSio-web toolkit uses this string as
a basis to derive the name of the transition function in the
PVS model to be linked to the widget – the full name of the
transition function is constructed by concatenating the user
action that activates the widget with the widget identifier. For
example, when the user clicks on the button, the transition
function that will be evaluated is click_btn_manual.
• The second argument is a structure defining the coordinates

and size of the widget. This is necessary to create an inter-
active overlay area of the correct size for the image used as
a basis for the visual appearance of the prototype, and to
position the interactive area in the correct place (i.e., over the
Manual load button in this case).
• The third argument provides information about the callback

function to be invoked for refreshing the visual appearance of
the prototype when the evaluation of the transition function
associated with the button generates a new system state.

var sys = {};
sys.btn_manual = new Button("btn_manual", {

top:792, left:210, width:38, height:38
}, {
callback: render

});

Listing 4: Example button widget

Each display and LED widget is seamlessly associated with a
state attribute defined in the PVS specification. The creation of these
widgets follows a pattern that is similar to that we have illustrated
for button widgets. For example, Listing 5 shows how to create an
LED widget:
• LED is the widget constructor;
• The first argument is the widget identifier;
• The second argument defines position and size of the widget;
• The third argument specifies the LED color.

sys.lock_LED = new LED("lock_LED", {
top:916, left:221, width:13, height:13

}, {
color: "green"

});

Listing 5: Example display widget

The visual aspect of all widgets is periodically refreshed every
time the PVS specification is evaluated. The evaluation of the speci-
fication occurs either when the user interacts with an input widget
(e.g., presses a button), or periodically (if the device has internal
timers that are ticking). A JavaScript function render contains the
code for refreshing the widgets.

In its basic form, the render function simply parses the PVS
state and invokes the render method of the widgets (see Listing 6).
This function can be extended with custom JavaScript code neces-
sary for mimicking specific aspects of the system that cannot be
reproduced using just the widget. For example, in the developed sim-
ulation, we used custom code for rotating the injector upside down
(this reflects the actual use of the injector, which clinicians need
to rotate upside-down before starting the injection), and to create a
simulation control panel that could be used to perform actions such
as plugging the syringes into the injector head, spiking the syringes
with the saline and contrast bags, and connecting the tubes to the
syringes.

function render(err, event) {
var res = stateParser.parse(event.data);
if (res) {
sys.btn_manual.render(res);
sys.lock_LED.render(res);
...

}
}

Listing 6: Render function

5 USING INTERACTIVE SIMULATION AS
TRAINING MATERIAL

The development of the interactive simulation of the injection system
was key to enable active engagement and constructive discussion in
our multidisciplinary team of engineers and clinicians. This allowed
the entire team to look closely and in a systematic manner into var-
ious design aspects of the system. This greatly helped engineers
understand how clinicians use the system, and greatly helped the en-
tire team to discuss and demonstrate various corner cases that could
potentially have safety consequences in specific contexts. Under
this perspective, the interactive simulator proved useful as training
material for the system. Some of the identified corner cases are now
discussed.
Risk of incorrect injection settings. The Volume displays avail-
able on the front panel of the injector normally report a value corre-
sponding to the volume of liquid loaded in the syringes. However,
in certain operating modes for the injector, the display values have a
different meaning:
• When the syringes are not plugged into the injector head, the

display values indicate the maximum value of volume that
can be loaded in the syringes;
• When the syringes are connected but empty, the display values

indicate the current position of the syringe plungers;
• When button AutoFill available on the front panel of the in-

jector is pressed, the display values indicate the target volume
of liquid that will be loaded in the syringes, according to the
injection protocol defined on the workstation. This value is
reset to 0 as soon as buttons FillA or FillB available on the
front panel of the injector are pressed.



Information on the front panel of the injector is not always sufficient
to discriminate these different cases.

Risk of undetected air-in-line. For patient safety, it is important
to check that air bubbles are purged from syringes and tubing before
the injection. For this reason, the arming phase of the injector is
disabled if the CheckAir button available on the front panel of the
injector has not been pressed.

However, this button is only a placeholder, i.e., a functionality
provided by the device to remind the clinician to verify the absence
of air (the injector does not have any sensor for detecting air-in-
line). In other words, pushing the CheckAir button does not trigger
any actual check from the device – the clinician needs to look into
syringes and tubes and make sure there are no air bubbles. If air
bubbles are present, the clinician can use the Prime button to remove
the air. This was not clear from the manual.

Risk of misprogramming the injector. The injector provides two
main modalities for filling syringes, and two modalities for priming:
automatic and manual. In manual mode, clinicians use the chevron
keys on the front panel of the injector to load the volume prescribed
by the protocol and prime the syringes. In automatic mode, a single
button press on FillA and FillB buttons on the front panel of the
injector allows clinicians to load liquid in each syringe, and then a
single button press on the Prime button primes the syringes. These
two modalities can be interleaved, e.g., one can perform automatic
fill of a syringe, and then manually prime the syringe. It is important
to note that the volume of liquid loaded using automatic mode is
larger than the volume prescribed by the protocol: +1 mL for the
contrast, and +5 mL for the saline. The reason for this is that the
automatic prime function pushes exactly 1 mL of contrast and 5
mL of saline out of the syringes. If clinicians interleave the two
modalities and accidentally omit to check the volume on the injector
display, there is a risk of injecting a volume of saline and contrast
that is slightly different than the intended values.

Risk of misreading values. Another issue concerns the phase in
which the injector needs to be connected to the patient to start the in-
jection. In this phase, the injector needs to be rotated of 180 degrees.
The rotation moves air up in the syringes – this is a safety precaution
for preventing air being injected in the veins of the patient. However,
the rotation causes the displays provided on the front panel of the
injector to be upside-down. This is particularly unfortunate, because
the device uses seven-segments displays and certain numbers can
be accidentally mis-read when the display is upside-down (e.g., 51
can be misread as 12, see also [13] for a more detailed discussion of
problems with using seven-segments displays in medical devices).

6 CONCLUSION
We presented our work on the development of an interactive simula-
tion of a medical device in a hospital. The simulation facilitated the
multidisciplinary work necessary to obtain results that have strong
impact and immediate utility to different stakeholders. Engineers
have the knowledge on the technology, in our case on modelling
and rapid prototyping of user interfaces. Clinicians played a funda-
mental role in the identification of critical scenarios, as well as in
the description of how the medical device is routinely used in the
real-world. A possible use of the simulation tool is to enhance the

proficiency of the clinical users of the injector, helping them to avoid
possible traps, thus increasing patient safety.

As further work, we intend to use formal methods technologies
to verify the developed formal model against use-related safety
requirements such as the movement of plungers always disables
the check-air flag. This is made possible by the theorem prover
available in the PVS framework. Finally, we intend to explore the
possibility of automatic code generation from the formal model,
using a source code generator we are developing for the PVSio-web
environment [8].
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