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ABSTRACT

This paper presents our preliminary results on development of a

Cognitive assistant system for Emergency Medical Services (Cogni-

tiveEMS) that aims to improve situational awareness and safety of

first responders. CognitiveEMS integrates a suite of smart wearable

sensors, devices, and analytics for real-time collection and anal-

ysis of in-situ data from incident scene and delivering dynamic

data-driven insights to responders on the most effective response

actions to take. We present the overall architecture of CognitiveEMS

pipeline for processing information collected from the responder,

which includes stages for converting speech to text, extracting

medical and EMS protocol specific concepts, and modeling and

execution of an EMS protocol. The performance of the pipeline is

evaluated in both noise-free and noisy incident environments. The

experiments are conducted using two types of publicly-available

real EMS data: short radio calls and post-incident patient care re-

ports. Three different noise profiles are considered for simulating

the noisy environments: cafeteria, people talking, and emergency

sirens. Noise was artificially added at 3 intensity levels of low,

medium, and high to pre-recorded audio data. The results show

that the i) state-of-the-art speech recognition tools such as Google

Speech API are quite robust to low and medium noise intensities;

ii) in the presence of high noise levels, the overall recall rate in

medical concept annotation is reduced; and iii) the effect of noise

often propagates to the final decision making stage and results in

generating misleading feedback to responders.
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1 INTRODUCTION

In an accident scene, emergency medical responders and firefight-

ers initially assess and control the situation and assist victims by

providing basic medical care before transferring them to hospital.

In such situations, even a few minutes of delay in response time,

or tiny errors in the information gathered from the accident scene

can largely affect the rescue outcomes. So, first responders need to

process substantial amount of information with different levels of
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importance and confidence and quickly prioritize available infor-

mation for situation assessment and response. They also need to

consider circumstances and history of the incident, communicate

with the command center, other responders and the victims and

then take actions based on this information and the knowledge of

established emergency response protocols. Collecting, gathering,

filtering, interpreting and processing such data at the incident scene

or control center requires lots of human cognitive efforts.

In this paper, we present CognitiveEMS, a cognitive assistant

for emergency medical services (EMS), that will improve first re-

sponders’ situational awareness and safety in the incident scene.

CognitiveEMS leverages responder-worn devices and smart sen-

sors to monitor their activities and communications at the incident

scene as shown in Figure 1. This data is then aggregated with static

data sources, such as, emergency response protocol guidelines to

generate real-time insights that can assist the first responders with

making effective decisions and taking safe response actions.

Figure 1: The system architecture of CognitiveEMS

The overall architecture of the system is described in [18] and

also shown in Figure 1. In this paper, we present the preliminary

implementation and performance evaluation of different modules

of the pipeline using real data and in presence of noise, namely, (i)

speech to text conversion, (ii) context specific concept extraction,

and (iii) modeling and executing protocol guidelines. The main

contributions of this paper are as follows.



• Evaluating the performance of the Google Cloud Speech API,

the state-of-art tool for speech recognition using EMS ra-

dio call data under three different noise profiles common in

emergency situations (i.e., noise from conversation of people,

cafeteria, and emergency sirens) with three different intensi-

ties (i.e., low, medium, and high). The results indicate that

among the three different noise types considered, the conver-

sation noise with high intensity degrades the performance

of speech recognition to the highest extent. However, the

effects of noise with low and medium intensities are similar

for all three types of noise considered.

• Adapting two state-of-the-art medical concept annotation

tools, namely, MetaMap [4] and CLAMP [20] to the EMS

domain and comparing their performance in extracting EMS

related concepts from real EMS incident reports and radio

calls.

• Evaluating the performance of the above medical concept an-

notation tools in processing noisy radio call data. Specifically,

how the accuracy of concept annotation stage is affected by

the noisy data fed from the speech recognition stage. The

evaluation results indicate that these tools achieve high pre-

cision in identifying relevant concepts due to very low false

positive rate. However, their recall varies from 0.25 to 1 based

on the target concept list and the type and intensity of noise

considered.

• Developing the first version of a rule engine that utilizes a

Prolog based logic programming language to model one of

the most commonly used EMS protocol guidelines, called the

Primary Survey Protocol [6], and to automatically generate

insights on the actions to be taken by the first responder.

2 RELATED WORK

2.1 Cognitive assistant systems

Cognitive assistant systems have been applied to health applica-

tions [9]. Specifically, in [9] a Google glass based assistive system

is developed to perform context-aware real-time scene interpreta-

tion by identifying objects, faces, and activities for people suffering

from cognitive decline. In the context of emergency situations, the

form factor and interface of cognitive assistant systems and their

availability and ability to respond in real-time are of particular im-

portance. So, we consider wearable microphones instead of Google

glass.

In the context of emergency medical services, existing systems

try to reduce the responders’ cognitive load by providing new in-

terfaces for electronic incident scene reporting [8, 12]. ImageTrend

[12] provides virtual data entry interfaces for EMS responders. But

a significant part of scene reporting is still composed of narratives

written in free-form text, describing the observations and actions

performed by the first responders at the incident scene. In [8], au-

thors develop a mobile entry solution to aid data collection by

dynamic customization of data fields. But these systems still rely on

touch screens and messaging interfaces that are hard to manipulate

in the midst of an incident. Hence CognitiveEMS aims at automat-

ically extracting data from the responders’ speech to reduce the

cognitive burden of the first responders.

2.2 EMS and medical decision support

Meneguzzi et al. present ANTICO [16], an emergency agent ar-

chitecture for emergency response managers that integrates plan

recognition, current and future user information needs, and work-

load estimation and offers dynamic data visualization on weather

and traffic. They use an XML based language to specify the domain

description in terms of potential user activities. They model poten-

tial workflow of a user (i.e., an emergency response manager) using

Hidden Markov Model where each state represents a potential ac-

tivity of the user. They evaluate the system using a simulation of

a chemical attack. Although both ANTICO and CognitiveEMS are

emergency response assistant, they target different user groups

involved in emergency response management and thus tackles

different sets of challenges. ANTICO focuses on providing infor-

mation aggregation and visualization support through a graphical

user interface to the emergency response manager who commu-

nicates with the first responders at the scene. On the other hand,

CognitiveEMS aims at providing real time decision support through

wearable interfaces directly to the first responders present in an

emergency scene.

In [14], a Pressure Injury Clinical Decision Support System (PI-

CDSS) with an expert knowledge base is developed to help nurses

decide on the best wound products in wound healing. PI-CDSS

framework applies decision-making theory, knowledge representa-

tion and process modeling to develop an expert system for wound

assessment and treatment.

Shang et al. develop a framework of clinical decision support

system (CDSS) for chronic diseases based on ontology and service-

oriented architecture (SOA) [19]. Ontologies are used for knowledge

base construction on multiple clinical practice guidelines. Further, a

CDSS web service is developed to provide clinical decision support

via ontology reasoning based on a knowledge base constructed

from clinical practice guidelines of Type 2 diabetes mellitus and

hypertension.

There are also a number of mobile applications developed for

smart devices to help with the decision making process of first

responders. They provide information in an organized manner and

provide search options to find critical information based on key-

words. Informed’s Emergency & Critical Care Guide is one such

commercial application that is developed for iOS devices [5]. It

allows the user to search for medication information; calculate

dosage or other necessary measurements for intervention; tabulate

scores for pediatric trauma, Glasgow Coma, Apgar, and the NIH

stroke scale; and access information about pediatric normal vital

signs and protocols, including, resuscitation and airway manage-

ment. Another mobile EMS application is TJEMS [7]. It contains

regional EMS protocol guidelines and suggested interventions for

first responders.

2.3 Noise profiling using speech APIs

There are existing works to evaluate performance of speech recog-

nition systems in noisy environments. For example, in [10] the

authors create an approach and a database to evaluate the perfor-

mance of speech recognition systems in noisy environments. They

consider eight different real-world noise profiles, namely, noise



from suburban train, crowd of people, car, exhibition hall, restau-

rant, street, airport, and train station. However, the speech data

used in this study consists of male and female American English

speakers reading isolated digits and sequences of up to seven digits

rather than natural text containing partial or complete sentences.

There are also existing works on comparison of different off-the-

shelf speech recognition APIs. Authors in [13] compare commercial

speech recognition systems, Google Cloud Speech API and the

Microsoft Speech API, with open-source systems such as CMU

Sphinx4 [21]. Audio containing phonetically rich sentences from

various sources are collected and tested with these speech recog-

nition tools. Measurements of the word error rate show that the

Google Cloud Speech API is superior. Another research [17] ana-

lyzes several automatic speech recognizers (ASRs) in terms of their

suitability for use in different dialogue systems. They consider Pock-

etSphinx [11], Apple Dictation, Google Cloud Speech API, AT&T

Watson, and Otosense-Kaldi. Datasets from 6 domains of dialogue

systems differing in genre, type of users, and number of users are

tested. They find that speech recognizers perform differently in

different domains. Overall, cloud-based recognizers (i.e., Google

and AT&T) outperform the other recognizers for four out of the six

datasets. For the other two datasets, local customizable recognizers

(i.e., PocketSphinx and Otosense-Kaldi) perform most accurately

when used with custom language models.

3 SOLUTION OVERVIEW

The overall architecture of CognitiveEMS is presented in [18] and

also shown in Figure 1. In this paper we present the analytics

pipeline of the system as depicted in Figure 2.

Figure 2: Basic analytics pipeline of CognitiveEMS

3.1 Analytics Pipeline

As shown in Figure 2, the basic analytics pipeline of our proposed

system, CognitiveEMS, consists of (i) speech to text conversion, (ii)

pre-processing text data originated from different sources (e.g., out-

put from speech recognition stage, incident report, electronic health

record data, etc.), (iii) named entity recognition to identify people,

place, organization, and temporal expressions, (iv) heterogeneous

concept extraction in the context of EMS including, EMS protocol

specific concepts and additional critical concepts, (v) protocol mod-

eling and execution, and (vi) inferring the outcome and assessing

the scene to track the status of the scene after the interventions

are performed by the first responders. Overall, goal of the pipeline

is to extract useful information from real time data collected from

different sources (both on-scene and outside) and provide feedback

to the first responders in order to increase their situational aware-

ness, decision making capacity and safety. Results on comparing

different off-the-shelf speech recognition tools and named entity

recognition (NER) tools are presented in [18]. There four off-the-

shelf state-of-art speech recognition tools namely, Google Cloud

Speech API, Microsoft speech API, PocketSphinx, and IBM BlueMix

API, are compared in both noisy and noise-free environment. The

performance of these tools is measured in terms of word error rate

and computation time using transcripts that are not specific to EMS

scenes. The evaluation demonstrates that the Google Speech API

outperforms the other APIs in terms of both performance metrics

for both noisy and noise-free data. We also compare three state-

of-art NER tools in extracting named entities (i.e., people, place,

organization) and temporal expressions from EMS specific textual

data in [18]. The tools are Stanford coreNLP, Apache openNLP, and

Illinois tagger. The results indicate that the Stanford coreNLP NER

tool outperforms the other tools in terms of both precision and

recall for all of the four types of entities considered.

In this paper, we further evaluate the Google Speech API using

real EMS radio call data and in presence of varying levels of noise

and noise types. We also adapt two medical concept extraction tools

to EMS domain and compare their performance on EMS concept

extraction on both noisy and noise-free EMS data. Finally, a rule

engine is developed to model the primary survey protocol [6]. The

protocol modeling is performed using both noisy and noise-free

data. Thus we extend thework in [18] in this paper by (i) performing

noise profiling under three different noise types and three noise

levels, (ii) implementing additional two modules of CognitiveEMS,

and (iii) evaluating their performances under nine different noise

profiles.

3.2 Speech-to-text conversion

Speech data is collected using the wearable devices worn by the

first responders. This data can include incident scene description,

patient’s status description, radio calls, conversation between re-

sponders and others present on the scene, etc. This data is converted

to text to extract critical information. As mentioned above, previous

research shows that out of available commercial and open-source

speech recognition technologies, the Google Cloud Speech API

provides the best results [13, 18]. Hence, in this paper, the speech to

text conversion is performed using the Google Cloud Speech API.

3.3 Concept extraction

After speech to text conversion, medical and EMS relevant concepts

are extracted from the converted text as well as other text data, e.g.,

patient’s electronic health record (EHR), EMS report, etc. In this

paper, concepts are extracted based on a preliminary EMS ontology

and two EMS protocols, primary and secondary surveys [6] using

two state-of-the-art medical NLP tools, namely, MetaMap [4] and

CLAMP [20]. This section presents a brief description of these tools.

3.3.1 MetaMap. MetaMap is a highly configurable tool for map-

ping biomedical text to the concepts in the unified medical language



system (UMLS) Metathesaurus [4]. MetaMap uses a knowledge-

intensive approach based on natural language processing and com-

putational linguistic techniques. The input text to MetaMap under-

goes lexical, syntactic, and semantic analysis consecutively. The

lexical analysis consists of tokenization, sentence identification,

and acronym or abbreviation identification. The syntactic analy-

sis includes part-of-speech tagging, lexicon matching from input

to SPECIALIST lexicon, and shallow parsing to identify phrases

and their lexical heads. Finally, MetaMap performs semantic analy-

sis, including, but not limited to, variant generation of identified

phrases and words, candidate identification, mapping and word

sense disambiguation. MetaMap classifies concepts into semantic

types that can be further utilized to extract information of specific

types, e.g., medication or disease name. There are 133 semantic

types categorized in 14 semantic groups. An alternate way to filter

concepts is using concept unique identifiers (CUI) of known or

target concepts. In this paper, we used CUIs to filter concepts.

3.3.2 CLAMP. Clinical Language Annotation, Modeling, and Pro-

cessing (CLAMP) is another customizable natural language process-

ing pipeline for processing clinical text data [20]. It is trained on

electronic health record (EHR) data and provides an interface to

extract three semantic classes of clinical terms from text, namely,

problem, test, and treatment. The problem class includes patient his-

tory, injury, symptoms, and diagnoses. The test class encapsulates

concepts indicating diagnostic medical procedure (e.g., 12 lead EKG)

and vitals (e.g., blood pressure). The treatment class covers concepts

related to treatment, such as, medication name, medical procedures.

CLAMP also identifies some temporal concepts, such as, duration

and interval. CLAMP formulates the problem of concept extraction

as a classification problem, e.g., classifying phrases or words in

a text into one of the three classes mentioned above. It offers a

variety of classification approaches for concept extraction: (i) ma-

chine learning based classifier including support vector machines

and conditional random fields, (ii) rule based classifier and (iii) a

combination of both (i) and (ii).
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Figure 3: EMS Protocol 1: Primary Survey [6]

3.4 Protocol Modeling and Execution

3.4.1 EMS Protocols. Primary and secondary surveys are two of

the most commonly used protocols for initial patient assessment

in emergency situations. The primary survey is an initial, rapid

assessment of the patient to identify and treat those conditions that

present an immediate threat to life [6]. Once the primary survey

has been finished, first responders can proceed to secondary survey.

Generally, the overall purpose of secondary survey is to examine

the problems that do not threaten the patient’s life immediately but

might become severe, even life-threatening, if they are not treated

properly. The secondary survey contains two phases: information-

gathering phase and examination phase. In the information-gathering

phase, rescuers try to determine the nature of a patient’s issue by

asking questions and observing the environments where the pa-

tient is found. In the examination phase, physical assessments are

performed to determine the patient’s vital signs and detect injuries

or signs of illness. The decision flowcharts based on the primary

and secondary survey protocols are shown in Figure 3 and Figure

4, respectively.

3.4.2 Rule Engine. The rule engine is a software system that ex-

ecutes one or more rules in real-time. A rule system enables the

policies and operational decisions to be defined, tested and exe-

cuted. Such rule engines can be implemented by logic programming

languages (e.g., Prolog), which are sets of sentences in logical form

to express facts and rules about the target problem domain. In this

work, we translate the EMS protocol guidelines into rules in logic

programming language and then generate a custom rule engine

to realize a real-time executable model for cognitive interface and

decision making. In this paper, we applied pydatalog [1], a logic

programming language library performing Datalog, implemented

in Python, to develop the first version of a rule engine that only

models the primary survey of the EMS protocol guidelines. The

concepts required for the primary survey can be extracted and their

negation conditions can be detected by concept annotation tools

such as MetaMap. These extracted concepts can then be directly

used as the inputs to the executable model of primary survey. The

default input considers that there is no hazardous situation and

the patient does not have any of the symptoms that are observed

according to the primary survey protocol. For every concept ex-

tracted by MetaMap, we first identify whether it is required as an

input to the primary survey. Then we apply the detected negation

condition of the concept as an input to the rule engine. Finally, a

treatment suggestion is generated based on the relevant concepts

fed to the rule engine.

4 EVALUATION

This section presents the evaluation of the following stages of

CognitiveEMS pipeline: speech to text conversion under noisy en-

vironment, context-aware concept extraction, and EMS protocol

modeling and execution.

4.1 Speech to text conversion under noise

In this experiment, we assess the performance of the Google Cloud

Speech API under different noise profiles that are likely to appear

in an emergency situation.
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Figure 4: EMS Protocol 2: Secondary Survey [6]

Dataset: The experiment is conducted using 4 short radio calls.

A radio call contains audio data where a paramedic reports on the

condition of a patient in an emergency incident. The radio calls

considered in this experiment cover the following EMS situations:

shortness of breath, multiple injuries with bleeding, myocardial

infarction, and motor vehicle accident. The audio files are short,

containing about 162 words and spanning about 1.5 minutes on

average.

Noise profile: For this experiment, three types of real-world

noise profiles are chosen: cafeteria, people talking, and emergency

sirens. For each noise profile, three noise levels are artificially added:

low, medium, and high noise.

Noise is added to the clean audio files in LabVIEW [3]. Wave

files for both the clean recording and noise tracks are imported

and added sample by sample. In this approach, the sampling rate

has to be the same for both tracks. To create a noisy recording in

a controlled manner, the noise track is given a pre-gain to make

its magnitude roughly equal to the magnitude of the clean record-

ing. Then, the tracks are given a weight and are added to create

the output. To keep the clean recording’s magnitude constant, the

weight for it is chosen to always be 1. The weights for the noise

tracks are 0.1, 0.4, and 1 for low, medium, and high noise levels,

respectively. These values are not linearly-spaced but do cover a

relatively wide range of signal-to-noise ratios. This method allows

adding noise in a controlled manner, as it keeps the noise and clean

audio waveforms constant and only varies the noise type and the

noise level.

Performance metric: The performance is measured using two

metrics: word error rate (WER) and accuracy.

• WER is a commonly used metric for determining the per-

formance of a speech recognition system. It works on the

word level rather than the phoneme level, counting the per-

centage of errors in the words in the recognized text against

the reference text. WER is calculated using the following

formula:

WER =
(I + D + S )

N

Here, I , D, S , and N indicate the number of inserted words,

the number of deleted words, the number of substituted

words, and the total number of words in the reference, re-

spectively.

• Accuracy is calculated as:

Accuracy =
(N − D − S )

N

Accuracy is a less preferred metric than the WER in most

situations, since it does not take into account the number of

incorrectly inserted words.

4.1.1 Effect of Noise on WER. Figure 5 depicts how WER varies

across different noise profiles and noise levels. As expected, WER

increases as more noise is added to the data. It can be seen that

people talking has the most adverse effect on the recognition results.

On average, the increase in WER from medium to high noise is

larger than the increase in WER from low to medium noise. This

can be partially explained by the fact that the noise levels are not

increased linearly. However, the fact that WER increases more

sharply for people talking at high noise than the other noise profiles

suggests that noise that contains speech affectsWERmore adversely

at louder levels.

4.1.2 Effect of Noise on Accuracy. The effect of noise on accuracy

is consistent with its effect on WER as shown in Figure 6. Here

the average WER and accuracy is shown across all radio calls for

different noise profiles. In this case, when high levels of noise are

added, the accuracy sharply declines. As expected, the effects are

again most adverse for the case of people talking and least adverse

for emergency sirens.

4.2 EMS concept extraction

One of the fundamental stages of the pipeline is extracting medical

and EMS relevant concepts from the text data. The text data can

originate from heterogeneous sources, such as patient care reports,

patient’s history, electronic health records, radio calls, etc. Also, the

text data can either appear in raw text format or as output from

the speech recognition stage.

In this experiment, we compare two state-of-the-art medical

concept extraction tools in extracting context specific terms from

EMS related text. The two contexts that are considered are: EMS

protocol specific concepts and an ontology of medical concepts that

do not appear on the prior list. We also consider the effect of noise

on the accuracy of concept extraction. In addition, we consider how

the performances of these tools vary across different data sources.

The datasets and settings used in this experiment are described

below.

Data:We use two different datasets in this experiment, includ-

ing: (i) text converted by the Google Speech API from the EMS radio

call recorded by the first responder, and (ii) post-incident patient

care reports written by the responder(s). We use the post-incident

reports as a surrogate of the overall incident description and work-

flow of the first responders, as any other data containing these

information aren’t available for the real scenarios considered in

this paper. These two types of data vary in terms of source, format,

and content as described below.



(a) Cafeteria noise profile (b) People talking noise profile (c) Siren noise profile

Figure 5: For all noise profiles, WER increases with the increase of noise level. The decline in performance is most significant

for the people talking noise. The amount of change in WER varies across different radio call data files.

(a) Average accuracy under different noise profiles (b) Average WER under different noise profiles

Figure 6: Effect of noise on speech to text conversion: the X axis represents the variation of the noise levels and the noise

types and the Y axis represents accuracy (Figure a) andWER (Figure b). On average, when noise level is increased the accuracy

decreases and the word error rate (WER) increases. The change in performance is more drastic for the people talking noise

followed by the cafeteria noise.

Noise Level Noise Type
Average Recall Average number of TP

MetaMap CLAMP MetaMap CLAMP

No Noise
Original transcript 0.83 1 1.5 2

Google API on

original transcript
0.71 0.93 1.25 1.5

Low Noise

Cafeteria 0.71 0.88 1.25 1.75

People 0.71 0.88 1.25 1.75

Sirens 0.71 0.88 1.25 1.75

Medium Noise

Cafeteria 0.71 0.88 1.25 1.75

People 0.71 0.88 1.25 1.75

Sirens 0.71 0.88 1.25 1.75

High Noise

Cafeteria 0.71 0.88 1.25 1.75

People 0.38 0.54 0.75 1.25

Sirens 0.71 0.63 1.25 1.5

Table 1: Comparing the performances ofMetaMap andCLAMP in terms of average recall for the exact protocol specific concept

list. CLAMP outperforms MetaMap for most of the noise profiles. For both tools the recall drops when the outputs of speech

recognition stage are fed to the tools. For noisy input data, the performances of each of the tools are adversely affected only

for the high level of the noise of people talking.



• The radio calls are made by the first responders during ser-

vice time while transferring the patient to hospital to give

a concise summary of the incident. On the other hand, the

patient care reports are recorded by the responders post

incident and after returning from service.

• The radio call data is comparatively much shorter than the

patient care report data. The radio call data contains the sum-

mary of the work flow of the responder(s) in a chronological

order. It usually contains the symptoms of the patients, rel-

evant vitals for potential diagnosis, and sudden change of

status of the patient. The patient care report includes more

comprehensive details on the incident, including chief com-

plaint, other complaints, patient’s demographic information,

history (i.e., past disease, diagnosis, medication, allergy), all

recorded vitals, procedures performed on scene and their

outcomes, progression of vitals or status over time, etc. Also,

it contains context specific abbreviations, e.g., level of con-

sciousness and awareness of people, place, time may expressed

as "CAO times 3" or "CAO X 3".

• The radio call data is usually collected in free-form audio

format and need to be converted to text for further pro-

cessing. Based on the API used to converting the audio, the

generated text may not include any punctuation or sentence

identifiers. As this is derived from speech data, the text is

often grammatically inaccurate and consists of partial sen-

tences or only phrases. On the other hand, the patient care

reports are usually written in semi-structured format often

consisting of complete sentences and grammatically accu-

rate text. Hence, unlike the patient care reports, the radio

call data cannot be easily analyzed by dependency parsing

or extracting relationships between different concepts.

In this experiment, four real radio calls and five patient care

reports from publicly-available sources are used. The radio call data

are the same as the ones described in Section 4.1. We use noise free

and noisy versions of the radio calls to measure the performances

of CLAMP and MetaMap in extracting the relevant concepts from

text. Then we compare the performances of CLAMP and MetaMap

in extracting concepts from raw, unaltered text.

Ground truth annotation: The text data are manually anno-

tated by two annotators to identify the following three types of

concepts:

• Protocol specific exact concepts: Each text data file is

annotated to identify whether it contains the exact concepts

from the two EMS protocols: primary survey and secondary

survey (described in Section 3.4.1). In total, we identified 19

concepts for these protocols: conscious, breath, pulse, bleed,

skin color, skin temperature, skin moisture, blood pressure,

temperature, heart disease, circulation problem, stroke, COPD,

asthma, diabetes, last visit, medication, wound, position.

• Protocol specific extended concepts: Each text data is an-

notated to detect whether it contains any of the concepts

from an extended list of protocol specific concepts. The origi-

nal list of concepts is extended in two ways: (i) by adding the

"preferred name" of the most relevant concept unique iden-

tifiers (CUIs) for each concept in the original list (extracted

manually from the UMLS Metathesaurus API [2]), and (ii) by

manually identifying phrases or words in the dataset of EMS

radio calls and patient care reports that are semantically sim-

ilar to the original protocol specific concepts. For example,

using CUIs, we are able to add terms such as blood, bleeding

for the original protocol specific concept bleed. We also add

medical specific abbreviations, e.g., BP for blood pressure and

oriented times 3 for consciousness. Number of concepts in the

extended lists for the radio call and patient care report data

are 248 and 233, respectively.

• Additional critical EMS concepts: Finally, each text data

file is also annotated for the additional EMS concepts that

are not covered in the above two lists but may be critical

for decision making or for executing other EMS protocols.

This set includes the concepts indicating (i) physiological

vital signs, (ii) chief complaints, (iii) clinical or emergency

procedures, (iv) accident type, (v) pains, (vi) medications, and

(vii) symptoms. Empirically, this list is found to be specific

to our dataset. Although this list is curated manually in this

work, in future we plan to further expand and populate it

using word embedding models that are trained on larger

domain-specific corpora.

Number of additional concepts added in the extended lists

for the radio call and patient care report data are 27 and 49,

respectively.

4.2.1 Comparing performance of MetaMap and CLAMP in noisy

data. In this experiment, the text data from the four radio calls

are used to measure the performances of MetaMap and CLAMP

in medical and EMS concept extraction under noise. Specifically,

for each of the 4 radio calls, the input consists of (i) the original

transcript of the radio call, (ii) the output from the Google cloud

API without any noise (clean data), and (iii) the nine noisy text

outputs from Google cloud API (i.e., three noise profiles with three

different noise levels). Thus, in this experiment we evaluate the

performance of MetaMap and CLAMP in concept extraction on 44

(4 times 11) different text scripts.

The results of this experiment are presented in Tables 2, 1, and 3

for exact, extended protocol specific concepts, and for additional

critical concepts, respectively. The number of false positives for both

MetaMap and CLAMP are found to be low or zero in these cases,

even when the data is very noisy. This is because bothMetaMap and

CLAMP are trained on domain specific concepts and they classify

terms as medical concept with high confidence. Hence, precision

is measured to be 1 for almost all cases. So, we consider the recall

and number of true positives.

For exact protocol specific concept list (referring to Table 1),

CLAMP is found to perform better than MetaMap in terms of both

true positive rate and recall. There is difference in performance from

the original transcript to the noise-free output from the Google API.

The effect of noise is minimal. Specifically, there is no difference in

the effect of low and medium noise. The recall drops only for high

level of people talking noise.

For extended protocol specific concept list (referring to Table 2),

MetaMap outperforms CLAMP in all cases by at least 7% in terms of

recall. Like the previous case, there is no difference in performance

from the original transcript to the noise-free output from Google

API. In this case, the effect of noise is more prominent than the



Noise Level Noise Type
Average Recall Average number of TP

MetaMap CLAMP MetaMap CLAMP

No noise
Original transcript 0.68 0.63 5.25 5.25

Google API on

original transcript
0.62 0.49 4.75 4.5

Low Noise

Cafeteria 0.59 0.53 4.5 4.75

People 0.62 0.53 4.75 4.75

Sirens 0.62 0.53 4.75 4.75

Medium Noise

Cafeteria 0.59 0.53 4.5 4.75

People 0.59 0.43 4.5 3.75

Sirens 0.64 0.51 5 4.5

High Noise

Cafeteria 0.54 0.47 4 4.25

People 0.44 0.25 3.5 2.25

Sirens 0.59 0.49 4.5 4.5

Table 2: Comparing the performances of MetaMap and CLAMP under noise in terms of average recall and number of true

positives for the extended protocol specific concept list. Overall, MetaMap performs better than CLAMP in case of both noisy

and noise-free data. The effects of low and medium levels of noise are similar for all three types of noise. The effects of high

level of noise is significant, specially, in case of the noise of people talking.

Noise Level Noise Type
Average Recall

MetaMap CLAMP

No Noise
Original Transcript 0.59 0.47

Google API on

original transcript
0.55 0.42

Low Noise

Cafeteria 0.55 0.55

People 0.55 0.55

Sirens 0.57 0.55

Medium Noise

Cafeteria 0.57 0.55

People 0.55 0.5

Sirens 0.57 0.55

High Noise

Cafeteria 0.48 0.58

People 0.36 0.33

Sirens 0.54 0.41

Table 3: Comparing the performances of MetaMap and

CLAMP in terms of average recall for the additional criti-

cal EMS concept list.MetaMap outperformsCLAMP for both

noisy and noise-free data.

previous case. This is because, the exact concept list consists of

only 19 concepts whereas the extended concept list consists of

248 concepts. For example, for the people talking noise profile, the

performance under the low level of noise is about 30% better than

the performance under the high level of noise. For cafeteria noise,

the performance under the low level of noise is about 8% better

than the performance under the high level of noise. The level of

siren noise does not affect the performance of concept extraction.

Finally, as shown in Table 3, for additional critical EMS concept

list MetaMap outperforms CLAMP in most of the cases. Interest-

ingly, in this case the recall is higher for the noisy output than the

original scripts for CLAMP under low and medium noise. This is

because, as the Google API output is not punctuated, so it does not

have any sentence structure. We found that although some concepts

are not identified in the original punctuated file by CLAMP, they

concept

Type

Tool

Name

Avg. number

of TP

Avg. number

of FN

Avg.

Recall

Exact
CLAMP 13.8 12.6 0.524

MetaMap 0.8 0.2 0.043

Extended
CLAMP 16.2 13.6 0.547

MetaMap 12.6 7 0.696

Additional
CLAMP 25.2 4.6 0.88

MetaMap 13.2 10.8 0.527

Table 4: Comparing the performances of CLAMP and

MetaMap on noise-free patient care report data: CLAMP on

average extracts a larger number of true positives (TP) in for

all three concept lists. The precision is 1 in all the cases as

the tools result in no false positives. So, we consider three

other measures. The performances of these tools vary based

on the concept list, e.g., while MetaMap performs better for

the extended concept list, CLAMPoutperformsMetaMap for

the other two concept lists.

are found in the punctuation-free text generated by the Google

API. Similar to the two above-mentioned cases, the effect of people

talking noise is higher than the effects of cafeteria and sirens noise.

Overall, the performances of the concept extraction tools are

similar for the original transcripts and the noise-free output form

the Google API for different concept lists. Among different types

of noise considered in this experiment, the people talking noise

affects the performance of concept extraction the most. The effects

of siren noise is negligible. Among different levels of noise, the

high levels of noise affect concept extraction the most. The effects

of low and medium levels of noises are similar for different noise

profiles. The performances of MetaMap and CLAMP vary based

on the concept list and textual data type. This demands further

exploration by adding domain adaptive, robust concept extraction

models that are trained on larger heterogeneous EMS datasets to

improve the overall concept extraction accuracy.



4.2.2 Comparing performance of MetaMap and CLAMP in raw text

data. In this experiment, we compare the performance of MetaMap

and CLAMP using 5 noise-free public patient care reports. The

results are presented in Table 4. In this experiment, both MetaMap

and CLAMP result in zero false positives and thus the precision

is 1 in all cases. So, we compare them in terms of recall and the

number of true positives and false negatives. CLAMP outperforms

MetaMap in terms of recall for extracting concepts from both exact

protocol specific concept list and additional critical concept list. In

case of extended protocol specific concept list, MetaMap performs

better. This is because: (i) for exact protocol specific concept list and

additional critical concept list, MetaMap is sometimes not triggered

by the key phrases present in the text. This is evident by the lower

number of true positives for MetaMap in case of considering these

two concept lists; (ii) On the other hand, the extended protocol

specific concept list contains much larger number of concepts than

the other two lists. These concepts are identified by MetaMap more

frequently as MetaMap identifies 133 semantic types of concepts,

while CLAMP identifies only three types of concepts. This is demon-

strated by the lower number of false negatives for MetaMap in case

of considering the extended protocol specific concept list.

Figure 7: Recall rate of the primary survey protocol rule en-

gine applied on both noise-free and noisy outputs of the ra-

dio call data from the speech recognition stage. On average,

higher levels of noise cause more decline in the recall rate

and accuracy of detecting correct status and thus can lead to

erroneous action suggestions.

4.3 EMS Protocol Modeling

In this experiment, we apply the Primary survey protocol rule

engine (described in Section 3.4.2) on the noisy output from the

concept annotation stage to generate a final action suggestion for

the first responders based on the concepts extracted from the ra-

dio call data. As a patient’s condition changes over time, in this

experiment the suggestions are generated based on the final stable

condition of the patient as reported in the radio call. The results

are presented in Figure 7 in terms of the recall of the correct ac-

tions suggested by the rule engine based on the primary survey

protocol versus the level of noise present in the data. It is evident

that higher levels of noise affect the correctness of the rule engine

more adversely. Similar to the concept extraction phase, the recall

of this stage is the same for both low and medium noise levels

but drops sharply for high level of noise. This is because with the

noisy data, the accuracy of MetaMap for concept extraction de-

clines. Specifically, three cases of error are identified empirically.

Firstly, concepts required by protocols are failed to be extracted,

e.g., the concept bleed is not detected in some noisy files, thus the

action suggested by the rule engine is to perform secondary survey

instead of control bleeding (referring to Figure 3). Secondly, extra

concepts are mistakenly identified by MetaMap. Finally, negation

is not detected correctly by MetaMap. These errors get propagated

from the concept annotation (NLP) stage to the protocol execution

stage, resulting in incorrect identification of patient’s condition and

generating incorrect or misleading suggestions to the responders.

The recall rate of correct outputs are, respectively, 0.75, 0.67, 0.67,

and 0.42, for noise free, low-noise, medium-noise, and high-noise

data, respectively.

5 DISCUSSION AND FUTUREWORK

This section describes some of the major challenges identified

through the experiments conducted in this paper and the potential

future work to address those challenges.

Despite being the state-of-the art speech recognition technol-

ogy, the Google API has a number of limitations as follows. (i) The

textual output of the API does not contain any punctuation marks.

While humans can infer sense from conversations using pauses and

verbal ques and distinguish sentences and flow of meaning from

each other without explicitly using punctuation marks, the Google

API fails to identify the implicit punctuations. Although, this does

not impact calculating WER and accuracy, it makes it harder to

perform natural language processing on the returned transcript. Be-

cause, the traditional NLP tools require proper punctuation marks

to capture sentence structures [15]. (ii) The Google Speech API is

also inconsistent in interpreting numbers. For example, it inter-

preted what was clearly dictated as "52, five-two, year-old male" as

"5052 year-old male". Errors like this affect both the accuracy and

WER. These erroneous speech recognition results can make it hard

to derive meaningful data out of the returned transcripts, might

lead to error in decision making, and result in safety violations. In

future, we would like to explore techniques to resolve these issues

and enhance the resilience of different stages of the pipeline to er-

rors. Also, this paper used the asynchronous setting of the Google

Speech API for conducting the experiments. As a more realistic

approach we plan to use the real-time streaming feature of the API

and evaluate its performance in terms of execution time.

The concept lists used in this work are extended using MetaMap

and manual observation. To make the process more comprehensive,

we plan to develop word embedding models trained on EMS and

clinical corpora to expand our EMS ontology and extract more

relevant contextual concepts from text. Also, the results indicate

that the performance of existing medical NLP tools vary based on

different types of data and contents of the calls and reports. We will

extend the functionality of these tools by integrating them with

domain specific information extraction algorithms. In addition, we

will extend this analysis using larger and more diverse datasets for

all stages of the pipeline.

6 CONCLUSION

In an emergency medical situation the first responders need to

collect, aggregate, filter, and interpret information from different

static and real time sources within a short interval. This demands

significant amount of human cognitive effort that is better spent



on critical decision making and effective response. In this paper,

we present CognitiveEMS that aims at improving first responders’

situational awareness and safety in the incident scene and reduce

their cognitive overload. We present preliminary implementation

and performance evaluation of three modules in the processing

pipeline of CognitiveEMS using multiple real datasets: (i) speech

recognition under nine different noise profiles, (ii) medical and EMS

concept extraction, and (iii) EMS protocol guidelines modeling and

execution. The experimental results indicate the robustness of the

state-of-the-art speech recognition tool, Google Speech API, under

low and medium noise levels. We find that in the presence of high

levels of noise the overall recall in medical concept annotation is

reduced. Finally, the effect of noise often propagates to the final de-

cision making stage and results in generating misleading feedback

to the responders.
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