
Energy-Aware Device Drivers for Embedded Operating Systems
Markus Buschhoff

TU-Dortmund University
Computer Science XII

Dortmund
markus.buschhoff@tu-dortmund.de

Robert Falkenberg
TU-Dortmund University

Communication Networks Institute
Dortmund

robert.falkenberg@tu-dortmund.de

Olaf Spinczyk
TU-Dortmund University
Computer Science XII

Dortmund
olaf.spinczyk@tu-dortmund.de

ABSTRACT
Energy harvesting solutions with rechargeable batteries are a fre-
quent choice to tackle the problems of supplying continuous power
to deeply embedded devices like wireless sensor nodes. However, if
the utilization of a node is not thoroughly planned, the battery may
be drained too early and a continuous operation of such a device
may become impossible. Here, an energy-management solution is
required to control the flow of energy. As a foundation for energy
management in software, we introduce a concept that allows to
model energy consumption of hardware and to synthesize energy
aware device drivers from these models. Our drivers are able to
account the energy consumption of each driver function call at an
accuracy of more than 90%. We provide a detailed overhead and
accuracy evaluation of a driver implementation and hence prove
the feasibility of our concept.

CCS CONCEPTS
• Computer systems organization → Embedded software; •
Software and its engineering→ Powermanagement; •Hard-
ware→ Energy metering;
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embedded systems, energy, synthesis, modeling, awareness, oper-
ating system, driver, profiling, periphery
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1 INTRODUCTION
The reduction of energy consumption is one of the most important
challenges to face in the fields of wireless sensor networks, ubiq-
uitous computing and other deeply embedded system scenarios.
This is due to the fact that the lifetime of these systems is often
coupled to the lifetime of their batteries. To solve this problem,
there is a high demand for battery-free systems that harvest en-
ergy from their environment. Yet, this is not easy to achieve, since
energy-harvesting has severe constraints: Usually, there is only lit-
tle energy available in the environment of a system, and prevailing
harvesting systems, like solar cells, still have low efficiency. Thus,
to enable harvesting for embedded devices, the whole system has
to be optimized to limit the maximum energy consumption and to
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plan energy consumption over time. To facilitate this, a system has
to be aware of the energy income and consumption.
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Figure 1: The classic implementation (left) showing the
break in the informationflowbetween the hardware and the
software layer, while our driver (right) keeps the device’s au-
tomata model in sync with the software layer and thus can
deduce the device’s energy consumption.

To achieve this, our approach uses automaton-based energy
models for the hardware and creates driver scaffolds to be filled
with the actual code required to drive the hardware. Our drivers
create a bridge over the semantic gap between hardware state
machine models and driver state as shown in Figure 1.

The approaches shown in this paper were developed for smallest-
scale embedded systems like sensor network nodes running on 8 or
16 bit micro controllers. They are not intended to scale for larger
systems with complex periphery (like GPUs), multiple CPU cores
and user-controllable multitasking operating systems.

The following shows a list of our contributions in this paper:
• a methodology to map hardware state machine models to
driver functionalities

• the integration of a CPU energy model
• the integration of energy accounting into drivers
• an evaluation of code, memory and energy overheads

The rest of this paper is structured as follows:
To understand the concepts of energy-awareness in operating

systems, we start with a comprehensive look at related research.
Then, we briefly explain the basics of creating hardware energy
models for peripheral devices and the CPU.
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After describing our concept of hardware energy models, we
address the implementation of hardware drivers from these models
that enable energy accounting.

In the last chapter we evaluate the accuracy and overhead of our
driver implementations on a typical sensor node platform. We show
that our driver concept is feasible for small embedded systems and
still shows an accuracy of more than 90%. Additionally, we analyze
the energetic overhead imposed by the energy accounting.

2 RELATEDWORK
There are several works about driver synthesis that show simi-
larities to our approach, like [6] and [15], which all have in com-
mon that they are based on automata models or similar transition
systems. This leads to the assumption that device drivers can be
described well using such formalisms. In contrast to our contribu-
tion, the synthesis approaches in the literature focus on the formal
description of the device’s functionality to optimize resource con-
sumptions or to prove correctness. In our approach, we focus on
the non-functional properties of a device.

Mérillon et al. developed Devil [10], a language to describe the
interface of peripheral components. Devil operates on the level
of registers and ports, and was implemented to support creating
device drivers with a focus on how a device is accessed. We see our
approach as complementary, because our model describes what a
device does. The combination of both approaches could be beneficial
and is subject of future work.

In the field of resource modeling and simulation, Steinke et al.
describe a highly detailed model for the simulation of the energy
consumption of processors that even considers changes in electrical
charge on all bus connections [12]. Other publications focus on
the logical view of a component: Wang and Yang use an automata-
based approach to form an energy model for a sensor node to drive
simulations [14]. Similar to our approach, the functional level of
the device is represented as an automaton, and the energy con-
sumption is annotated at the states and transitions. Weder uses a
similar modeling approach to drive an OMNeT++ simulation with
the original firmware for a sensor node [16]. The abstraction from
actual hardware is driven further by Tan et al. [13], with the goal
to estimate the energy consumption of distinct system services.
The authors create an empirical model by measuring the energy
consumption of distinct services in a fixed system configuration.
A more generic approach is shown by Seceleanu et al. [11]: They
do not restrict their model on energy, but model other resources
like memory, IO ports and buses, as well. Here, as in our approach,
priced timed automata (PTA) models are used for the simulation
and analysis of resource consumptions. All these approaches show
models that are fundamental to our work, but cannot be calculated
efficiently at run-time on a sensor node due to their high level of
detail.

Combined approaches that implement models into the runtime
system are typically achieved by reducing complex offline models
for online usage. Kellner et al. propose an optimization of nodes
running TinyDB by load balancing [9]. This is done by simulating a
model synchronously to the actual functionality of the system, thus
reducing a complex model for a distinct application. Our approach
aims at reusable models incorporated into an operating system.

Buschhoff et al. reduce energy models by offline simulation of
context scenarios [4]. The simulations are automata driven and
implemented in OMNeT++. The results of the simulations are the
averaged energy consumptions for usage scenarios. An application
can become energy aware by deducing the current scenario from
context parameters and choosing the respective value from the
energy table. This assumes that usage scenarios can be identified at
design time and can be recognized at run-time, which is not always
the case.

TinyOS1 is a popular operating system for sensor networks.
TinyOS uses drivers that support power management by keep-
ing track of the on-/off state of peripheral devices. Kellner and
Bellosa describe an approach to add energy accounting to TinyOS
[8], which is very focused on the special infrastructure of this oper-
ating system. They did not evaluate any costs, constraints, or the
achieved accuracy.

Zeng et al. show an energy management concept for the ECOSys-
tem operating system [18] based on a virtual energy unit called
Currentcy. The amount of available Currentcy is calculated from a
battery model and given to the application at the beginning of an
“energy epoch”. We consider this approach complementary to ours,
since Zeng et al. focus on energy management and do not have an
integrated energy modeling and awareness concept. The idea of
our drivers is to fill this gap.

On larger platforms, e.g. Android, plenty of approaches address
energy issues. Here, the automatic generation of device and applica-
tion energy models is a central topic. To address the huge number
of different devices and applications in the field, machine learning
algorithms are often used to generate models. Since there are a
plenty of publications in this area, we refer to Appscope [17], and
PowerBooter [19] as popular representatives. Datta et al. show a
more complete view on current features and trends in Android
power management [7]. Our approach addresses similar, yet differ-
ent problems: In contrast to Android, the devices and applications
used here are usually well defined at the compile time of the system,
but the target platform usually has insufficient resources to utilize
machine learning algorithms.

3 HARDWARE ENERGY MODEL
In the following we describe the used modeling approach and the
synthesis of a driver scaffold from a given model.

The foundation of our driver concept is a set of energy models for
peripheral devices and the CPU.We use an extension to priced timed
automata (PTA) to describe our hardware as state machines. PTAs
extend the typical finite state machine definitions by a cost model
(prices) and timers that enable time-based transitions between the
states of the automaton [1, 2].

Our PTAs are basically functional models of a peripheral device.
That means, they show all necessary states and transitions for the
supported features of the device. This set of states may also be
extended by additional non-functional states, which model internal
energy consumptions of the device that are not fully visible in pure
functional models.

Figure 2 shows a simplified PTA model of a Texas Instruments
CC1200 radio transceiver. The costs, in terms of energy and power,

1http://www.tinyos.net
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Figure 2: Simplified PTA model of the CC1200 tranceiver.

are annotated at the transitions and the states of the model. While
the transitions consume a fixed amount of energy, and thus are an-
notated by energy values in Joule orWatt-seconds, a state consumes
energy over time. So automata states are annotated by their power
consumption in Watts, in contrast to the energy consumptions of
transitions.

The shown model consists of the states Idle, which is the initial
state after power-on, and a send state (Tx) that is active during
transfers. These states have an energy consumption which is de-
pendent on the time spent in each respective state.

There also may be transitions issued by the hardware at the end
of an operation. This may happen after a given amount of time,
or is signaled either by an interrupt request (IRQ) to the CPU or
by a testable flag (busy waiting). PTAs already have a notation for
time-triggered transitions. But, also transitions that signal IRQs or
busy flags have to be annotated accordingly.

This simple demonstration model consisting of two states and
two transitions shows the basic behavior of a typical embedded
device driver. In a future extension, this modeling concept may
include a cost model for parameters that get passed to a transition,
enabling a more accurate modeling. However, this is out of the
scope of this paper.

3.1 Driver scaffold
For a given model, a driver scaffold can be generated by trans-
forming every transition (and its parameters) to a function call. By
manually filling the functions with the respective code to drive
the hardware into the target state, all functional aspects of the
hardware can be used.

Transitions that are annotatedwith the IRQ tag have to be created
as an interrupt service routine (ISR). For busy-waiting, a busy-loop
has to be created in the program code to request busy information
from the device. This has to be done manually, as the energy model
cannot handle the various ways of obtaining busy information
from actual hardware. The busy loop forms the end of the inbound
transition to an operation’s state. When the device is not busy
anymore, the outbound transition function must be called, which
is necessary to perform tasks like energy accounting. In a similar
fashion, timed behavior can be implemented: Instead of the busy
loop, a delay or timer mechanism has to be issued. After the delay,
the outbound transition must be called to signal the end of an
operation and to do the accounting.

The generated code scaffold contains code to do the housekeep-
ing and accounting: By using a time-stamp, the time spent in the

recent PTA state is determined and the time-stamp for the next
state gets prepared. The amount of energy spent is determined by
the product of the recent state’s duration and power consumption,
plus the energy consumption of the transition.

3.2 Modeling CPU Energy Consumption
Accurate energy models for a CPU are hardly available due to the
complexity of these devices. However, for small scale (8 and 16
bit low power, single-core microcontrollers), we will show that
reasonable results can be achieved by modeling the active and sleep
modes as a state machine with averaged power consumption.

This method has some advantages: It is simple, can be calculated
online and is compatible to the modeling scheme shown above. In
fact, creating a driver scaffold for a CPU driver allows us to structure
code for the transitions between sleep modes.

In our scenario, the CPU is put to a deep sleep mode when the
scheduler of the used operating system is idle. Any interrupt wakes
the CPU, hence we added a call to the wake-up transition of the
CPU driver at the start of every ISR. This enabled us to establish
our energy-accounting mechanisms for the CPU by using the same
concept that we used for peripheral drivers.

4 EVALUATION
In this chapter we show an evaluation for utilizing our driver con-
cept within the KratOS2 operating system [3] for different periph-
eral devices. In the first part we present the costs of the imple-
mentation in terms of code size, memory consumption, CPU time
and energy. Here, we point out that our approach is feasible for
even smallest-size systems. Next, we evaluate the accuracy of our
approach by comparing the values of the implemented energy ac-
counting with values measured during the same runs. We can show
that by the use of accurate, yet simple models for real-world pe-
riphery, our approach exhibits a constant relative accuracy of over
90

4.1 Memory Costs of the Energy Model
Starting point and ground-truth of this evaluation is an existing
driver implementation, that offers functions to change the device
state according to the device’s functional automaton. The first en-
hancement to this driver is to add static model data as a foundation
for energy calculations.

The amount of additional text segment memory that each PTA
driver needs for storing its constant power and energy consumption
values in our implementation can be calculated by

Mtext
dr iver = (S +T ) · 4B (1)

Here, S represents the number states, and T represents the number
of transitions of the corresponding automaton. We decided to store
energy and power values as a 32 bit unsigned integer constant,
representing the value in units of nJ or nW, respectively.

4.2 Costs of the Energy Accounting
The implementation of energy accounting on top of our drivers
is more complex and has more overhead, because it implements
a completely new functionality. We analyzed the static memory
2KratOS, acronym for KratOS is a Resource Aware and Tailored Operating System
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overhead in the text segment and the overhead on the BSS segment,
where global variables are stored.

Basically, we update the driver’s energy count at the beginning
of a transition. Here, the following operations are required:

• read current time (ticks)
• substract stored timestamp from current time
• store current time as new timestamp
• multiply recent state’s cost factor with time difference
• add result to energy consumed
• add transition’s energy cost to energy consumed.

We can see, that one time-stamp and one energy variable (64
bit each) is required per driver. Additionally, an integer (32 bit) is
needed to save the current state.

To gain a more practical impression of the costs, we analyzed
the memory segments of compiled C++ drivers with and without
accounting on an MSP430 architecture. Here, we used the CPU
driver and a display driver (Sharp-96 LCD) to evaluate the overheads
as shown Table 1 for the text and BSS segments.

Configuration text BSS sum
No accounting 0 B 0 B 0 B
Display accounting 624 B 18 B 642 B
CPU accounting 588 B 18 B 606 B
Both 1160 B 36 B 1196 B

Table 1: Memory segment growth for different energy ac-
counting configurations.

From these values, we estimated the text segment overhead of
the accounting implementation as follows:

Mtext
acct = n · 470B + 22B ·

n∑
i=1

Ei (2)

Whereas n is the number of drivers and Ei is the number of
transitions of a distinct driver. Of course, these numbers can only
give an impression, since the actual costs for each operation varies
for different architectures, optimization levels and implementation
details.

The overhead of the accounting is mainly a result of arithmetic
operations issued on large data words (32 and 64 bit words) that are
necessary to represent time and energy values with a reasonable
accuracy.

4.3 Accuracy
As a measure for the achieved accuracy, we have chosen to model
an MSP430FR5969 CPU on the respective TI-Launchpad, as well as
a Sharp-96 “Booster-Pack” display and a TI CC1200EMK-868-930
transceiver as periphery.

To gain energy values for our models, the components were
driven into the distinct states while transitions were signaled to
the measurement equipment (MIMOSA [5]) by using a GPIO3 pin.
By that, we were able to map the measured energy values to the
states and transitions of the model.
3General Purpose Input/Output

The display driver can be considered as fully functional: All nec-
essary functions like initialization, clearing the screen and writing
pixel data to distinct display positions were implemented. The CPU
driver was implemented as explained in Section 3.2, and has an
active (high-power) CPU state and a low-power mode, which is
activated when the scheduler becomes idle. The system clock was
set to 16Mhz. The CC1200 module was modeled, as described in
Section 3, with an Idle and a Tx state, reducing its functionality to
a minimum.

Now, applications were implemented to utilize the drivers: For
the Sharp-96 display, we print text lines and scroll the display if
necessary. The used dot-matrix display has no internal character
set, and all font mapping must be done in software. This requires a
considerable amount of CPU time.

For the CC1200 driver, we created an application that sends
different packages with changing idle pauses in a loop.

The energy consumption of the experiments was continuously
observed by external energy measurements. In parallel, accounted
energy values were continuously output at designated, energy neu-
tral code locations via UART. During UART transfers, the system
timers were frozen to keep the accounting consistent.

In the following, we present two experiments:
(1) We used the print function to repeatedly write three text

lines to the display, causing a lot of transfers by the afore-
mentioned scroll functionality. Each write cycle is followed
by an idle phase that lets the display hold the image. The
idle phase was continuously scaled from 1ms to 1 s by each
iteration, to simulate a set of different usage profiles. The
whole experiment took 30min. For this experiment, Figure 3
and Figure 4 show the results for display and CPU, while
Figure 5 depicts the accuracy.

(2) Clusters of data packages were sent using the CC1200, each
cluster starting from packages with 8 bytes payload and in-
creasing to 48 bytes, then decreasing back to 8 bytes. Every
cluster uses a different idle time between each package, start-
ing from 1ms to 29ms. Every cluster is sent three times in
sequence. The energy consumption of the CC1200 is plotted
in Figure 6, the relative accuracy in Figure 7. We left out
the CPU energy consumption, as the results were similar to
those in the former experiment. The whole experiment took
140 s.

Table 2 shows the minimum and maximum relative error and
accuracy for the components in both experiments, considering
the relative error calculated as Equation 3 and the accuracy as
1 − εtotal (n).

εtotal (t) =
���� p(t)m(t) − 1

���� (3)

4.4 Time and Energy Overhead of the
Accounting

To measure the timing overhead imposed by the accounting, we
used the internal timers of the CPU and the external energy mea-
surement equipment by signaling events using a GPIO line. Both
methods showed an additional CPU utilization of 58 µs on a 16MHz
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Figure 3: Experiment 1: Display energy consumption at re-
peated heavy dutywrite cycles alternated by increasing hold
times.
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Figure 4: CPU energy consumption for experiment 1.

0 5 10 15 20 25 30
0.8

1

1.2

Time t/min

Re
la
tiv

e
Ac

cu
ra
cy

(P
ow

er
)

CPU Display

Figure 5: Model accuracy for experiment 1.
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Figure 6: CC1200 energy consumption for experiment 2

error accuracy
Component min max min max
CPU 0.01% 5.9% 94.1% 99.99%
Display 2.9% 9.8% 90.2% 92.1%
CPU+Display 0.1% 5.6% 94.4% 99.9%
CC1200 0.00% 2.8% 97.2% 100.0%

Table 2: Minimum and maximum cumulative error and ac-
curacy during both experiments.
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Figure 7: Model accuracy for experiment 2

driven MSP430-FR5969, or 928 CPU cycles, which consumed an
average of 138 nJ of energy.

Using the CC1200 application from the previous section, we
made 14268 transition within the radio driver to transmit 7134
packages. By that, the overhead of the accounting implementation
sums up to 1.9mJ. This is 0.04% of the overall energy consumption
of 4.07 J during that time. In this situation, we can consider the
driver as beneficial, assuming that the information gathered by the
accounting leads to intelligent run-time decisions on a higher level
power-management system.

For the Sharp-96 display, 10 million driver calls were issued to
redraw pixel rows on the screen over a 30 minute run. This sums the
energy consumption of the accounting to about 1400mJ. This was
approximately 46% of the system’s energy consumption of 3059mJ.
Power management cannot benefit here in general due to the al-
most constant energy consumption of the display. Additionally, the
display’s energy consumption is well below that of the CPU, so
that every additional line of code imposes high impacts. Anyhow,
the overhead still can be greatly reduced by bundling driver calls,
so that the whole display is updated at once instead of issuing one
call per pixel line.

Here we see a clear benefit of energy profiling drivers. When
used during the development process, they can quickly deliver valid
and accurate energy values for the whole device and for every com-
ponent. This allows for quick code optimization. After optimization
of the code, the energy accounting module can be removed for
overhead sensitive drivers.
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transitions driver
overhead

overall
consumption %

CC1200 14268 1.9mJ 4070mJ 0.04
Display ≈ 106 1400mJ 3059mJ 45.77

Table 3: Energy consumptions and overheads of both
experiments

5 CONCLUSION
In this paper we presented the implementation of energy-aware
drivers for peripheral devices and CPUs in deeply embedded sys-
tem environments. The drivers are based on approaches to model
the functional and non-functional properties of these devices as
extended priced timed automata. We presented an implementa-
tion of our concept on a ultra low-power embedded system. The
implementation is modular and can be configured to include an
accounting mechanism that tracks the energy consumption of a
selected set of devices. This enables algorithms on top of the drivers
to make energy-based decisions at runtime.

To prove our concept and point out costs and benefits, we made a
practical evaluation on an MSP430 utilizing the CPU, a display and
a radio transceiver. We show that the implementation of the driver
has a small memory overhead, which was 4 bytes of static/constant
memory per state and transition of the underlying model. The
implementation of an energy accounting mechanism based on our
driver model has an overhead of about 22 bytes of code memory
per transition, plus 470 bytes per driver, plus 18 bytes for variables.

To show the accuracy of our approach, the accounted energy
consumption within the drivers was compared to actual measure-
ments taken at the same time. We show that the maximum error
in 30 minutes of heavy display access is 5.9% for the CPU, 9.8% for
the display and 5.6% in sum. The error of the energy accounting
for the radio transceiver is less than 2.9%.

Finally, we discussed the energy overhead of the accounting.
Here, we pointed out that profiling has an energy overhead of 0.04%
for sending data over a typical sensor node transceiver. In contrast,
the display experiment had an energy overhead of 46% compared to
the overall energy consumption of the system, because the display
itself has a mostly constant energy consumption which is far below
that of the CPU.

Our concept and its proof implementation clearly show that
the implementation of automata based, energy-aware drivers is
feasible at low costs. However, there are devices that do not benefit
from software driven power management solutions, e.g. if their
energy consumption is constant. Especially, when the energy used
by a device is less than that of the CPU, the overhead of energy
management code can become malicious.
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