
ILP-based Scheduling for Malleable Fork-Join Tasks

Kana Shimada
Ritsumeikan University

Japan
kana.shimada@tomiyama-lab.org

Ittetsu Taniguchi
Osaka University

Japan
i-tanigu@ist.osaka-u.ac.jp

Hiroyuki Tomiyama
Ritsumeikan University

Japan
ht@fc.ritsumei.ac.jp

ABSTRACT

This paper studies scheduling of malleable fork-join tasks. In
our scheduling problem, each task can be partitioned into multi-
ple sub-tasks, and the sub-tasks are scheduled independently.
The optimal number of sub-tasks is determined during schedul-
ing simultaneously. This paper formulates the scheduling prob-
lem as an integer linear programming problem.

KEYWORDS

Task scheduling, integer linear programming, multicore

1 INTRODUCTION

Multicore computing attracts an increasing attention because
of its better power/performance efficiency than single-core com-
puting. In multicore computing, task scheduling, which assigns
tasks to cores and decides the execution order of the tasks on
each core, has a significant impact on the system performance.
Therefore, multicore task scheduling has been extensively stud-
ied in several decades.

A classic task scheduling problem assumes that each task is
executed on a single core. Prior algorithms for the problem try to
execute as many tasks as possible in parallel on multiple cores,
in order to minimize the overall schedule length (a.k.a.
makespan). In general, task scheduling is an NP-hard problem,
and it is difficult to find an exact solution in a practical time [1]-
[3]. Therefore, many heuristic and meta-heuristic approaches to
task scheduling have been proposed, for example, in [4]-[8].
Some researchers have extended the scheduling problem in such
a way that a task may use multiple cores [9]. Recent works on
this direction include [10]-[15]. Liu et al. proposed heuristic al-
gorithms to minimize the scheduling length of a given task-
graph [10]. They allow individual tasks to use multiple cores, but
the number of cores assigned to each task is assumed to be fixed.
Unlike Liu’s work, the work in [11] proposes a computational
model called malleable, which means that the number of cores
assigned to each task is determined at the same time as schedul-
ing. They develop polynomial time algorithms for multiproces-
sor scheduling problem of malleable tasks. Scheduling for malle-
able tasks is also studied in [12], [13] and [14]. Yang and Ha’s
work in [12] allows tasks to run on multiple cores. Their work in
[12] also assumes that tasks are malleable. They propose a multi-
task mapping/scheduling technique for scalable MPSoC. The so-
lution is based on integer linear programming (ILP). They aim at

minimization of hardware cost, while satisfying the deadline
constraints of the tasks. In [13], Chen and Chu develop an ap-
proximation algorithm for malleable task scheduling. In [14], a
malleable task scheduling technique based on ILP was proposed.
Each task is executed on multiple cores and many tasks are exe-
cuted on multiple cores in parallel. They aim at minimization of
schedule length. The previous works on malleable task schedul-
ing in [12]-[14] allow a task to run on multiple cores at a syn-
chronous manner, where the task starts and finishes the execu-
tion on the multiple cores at the same time. In [15], Kim et al.
develop a real-time scheduling algorithm for malleable fork-join
tasks. In the scheduling of malleable fork-join tasks, a task is
partitioned into multiple sub-tasks (or threads), and the sub-
tasks are scheduled independently. The number of sub-tasks is
determined during the scheduling process simultaneously. They
assume that the tasks are independent, and try to meet deadline
constraints of the tasks. This paper studies scheduling of mallea-
ble fork-join tasks. Unlike the work in [15], this work assumes a
set of dependent tasks, and tries to minimize a makespan. To the
best of our knowledge, this is the first paper which studies
scheduling of dependent, malleable fork-join tasks.

In this paper, we extend the malleable task model proposed in
[14] towards a malleable fork-join task model. Given a set of de-
pendent malleable tasks and a set of homogeneous cores, this
work splits the tasks into sub-tasks, assigns the cores to the sub-
tasks, and schedules the sub-tasks in such a way that the overall
schedule length is minimized. Our task scheduling technique is
based on ILP.

This paper is organized as follows. Section 2 reviews a related
work on which this work is built. Section 3 presents an ILP for-
mulation of our task scheduling problem, and Section 4 evaluates
our scheduling technique. Finally, Section 5 concludes this paper.

2 SCHEDULING FOR MALLEABLE SYN-

CHRONOUS TASKS

This work is based on the work in [14] where a Malleable
Synchronous (MS) task scheduling technique is proposed. This
section reviews the MS scheduling presented in [14].

2.1 Scheduling Example

An example for MS scheduling is shown in Figures 1 and 2. A
set of tasks is represented as a directed acyclic graph (DAG) as
shown in Figure 1. Each task has the execution times, which de-
pends on the number of cores assigned to the task. For example
in Figure 1, the execution time of task 1 is 45 when it is assigned
a single core. If two cores are assigned to task 1, its execution EWiLi’17, 2018, Seoul, South Korea,

Copyright held by Owners/Authors.

time is 25. MS scheduling decides the number of cores for each
task during scheduling. Figure 2 shows an optimal MS schedul-
ing for the task graph in Figure 1, and the overall schedule
length is 45.

2.2 Problem Formulation

The MS scheduling technique presented in [14] is based on In-
teger Linear Programming (ILP), and scheduling solutions are
obtained with a commercial ILP solver.

Let 𝑐𝑜𝑟𝑒𝑠𝑖,𝑘 be a 0-1 variable, which becomes 1 if task 𝑖 is as-
signed 𝑘 cores, and otherwise 0. The number of cores assigned
to task 𝑖 is expressed as follows.

∀𝑖, ∑ 𝑐𝑜𝑟𝑒𝑠𝑖,𝑘𝑘 = 1 (1)

Let 𝑚𝑎𝑝𝑖,𝑗 denote a 0-1 decision variable. 𝑚𝑎𝑝𝑖,𝑗 becomes 1 if
task 𝑖 is mapped to core 𝑗, and otherwise 0. 𝑚𝑎𝑝𝑖,𝑗 represents the
mapping of task 𝑖. Note that 𝑐𝑜𝑟𝑒𝑠𝑖,𝑘 depends on 𝑚𝑎𝑝𝑖,𝑗 and is
determined as follows.

∀𝑖, ∑ 𝑚𝑎𝑝𝑖,𝑗𝑗 = ∑ 𝑐𝑜𝑟𝑒𝑠𝑖,𝑘 ∙ 𝑘𝑘 (2)

Let 𝑇𝑖𝑚𝑒𝑖,𝑘 denote the execution time of task 𝑖 on 𝑘 cores. We
assume that 𝑇𝑖𝑚𝑒𝑖,𝑘 is given. In other words, 𝑇𝑖𝑚𝑒𝑖,𝑘 needs to be
obtained dynamic profiling or static analysis techniques before
task scheduling. Then, 𝑡𝑖𝑚𝑒𝑖, the execution time of task 𝑖, is giv-
en by the following equation.

∀𝑖, 𝑡𝑖𝑚𝑒𝑖 = ∑ (𝑐𝑜𝑟𝑒𝑠𝑖,𝑘 ∙ 𝑇𝑖𝑚𝑒𝑖,𝑘)𝑘 (3)

Let 𝑠𝑡𝑎𝑟𝑡𝑖 and 𝑓𝑖𝑛𝑖𝑠ℎ𝑖 denote the start time and finish time of
task i, respectively. Note that 𝑠𝑡𝑎𝑟𝑡𝑖 is a decision variable and

𝑓𝑖𝑛𝑖𝑠ℎ𝑖 is a dependent variable defined by the following equa-
tion.

∀𝑖, 𝑓𝑖𝑛𝑖𝑠ℎ𝑖 = 𝑠𝑡𝑎𝑟𝑡𝑖 + 𝑡𝑖𝑚𝑒𝑖 (4)

If two tasks, 𝑖1 and 𝑖2, are mapped to the same core, the exe-
cution of the two tasks cannot be overlapped in time. This re-
source constraint is formulated by the following formula.

∀𝑖1, 𝑖2, 𝑗,

 𝑚𝑎𝑝𝑖1,𝑗 + 𝑚𝑎𝑝𝑖2,𝑗 < 2
∨ 𝑓𝑖𝑛𝑖𝑠ℎ𝑖1 ≤ 𝑠𝑡𝑎𝑟𝑡𝑖2

∨ 𝑓𝑖𝑛𝑖𝑠ℎ𝑖2 ≤ 𝑠𝑡𝑎𝑟𝑡𝑖1

(5)

This work assumes a set of dependent tasks, and the tasks
may have a precedence dependency. Let 𝐹𝑙𝑜𝑤𝑖1,𝑖2 denote a prec-
edence dependency between task 𝑖1 and 𝑖2. 𝐹𝑙𝑜𝑤𝑖1,𝑖2 is 1 when
task 𝑖1 must be finished before task 𝑖2 starts. Otherwise,
𝐹𝑙𝑜𝑤𝑖1,𝑖2 is 0. We assume that 𝐹𝑙𝑜𝑤𝑖1,𝑖2 is given. Then, the prec-
edence constraint is expressed as follows.

∀𝑖1, 𝑖2, 𝐹𝑙𝑜𝑤𝑖1,𝑖2 → 𝑓𝑖𝑛𝑖𝑠ℎ𝑖1 ≤ 𝑠𝑡𝑎𝑟𝑡𝑖2 (6)

This work aims at minimization of the overall schedule length.
Therefore, the objective function of our scheduling problem to
be minimized is given as follows.

 max
𝑖

{𝑓𝑖𝑛𝑖𝑠ℎ𝑖} (7)

The scheduling problem for malleable synchronous tasks is
now formally defined: Given a set of tasks, a set of cores, 𝑇𝑖𝑚𝑒𝑖,𝑘
and 𝐹𝑙𝑜𝑤𝑖1,𝑖2, find 𝑚𝑎𝑝𝑖,𝑗 and 𝑠𝑡𝑎𝑟𝑡𝑖 which minimize the objec-
tive function (7) subject to the six constraints (1)-(6).

3 SCHEDULING FOR MALLEABLE FORK-

JOIN TASKS

In this section, we propose a scheduling technique for Mallea-
ble Fork-Join (MFJ) tasks. In MFJ scheduling, tasks are split into
sub-tasks and they are scheduled independently. It is possible to
schedule them on different cores in parallel or on same cores
sequentially. Given a set of tasks and a set of homogeneous cores,
this work decides (a) the number of sub-tasks for each task, (b)
mapping of the sub-tasks onto the cores, and (c) the start time of
each sub-task.

3.1 Scheduling Example

Figure 3: MFJ scheduling

Core 1

Core 2

Core 3

Core 4

t=0 15

T1

T1

T1

T2

T2

T3 T3

T3

T3

T4

T4

T4

T4

T5

T5

T5

25 36 43

Figure 1: Task graph

Figure 2: MS scheduling

S

1 2

4 5

E

3

Task # cores to use

1 2 3 4

1

2

3

4

5

45 25 15 13

15 10 7 4

20 19 17 10

40 22 20 11

19 13 7 5

Task

Flow dependency

Core 1

Core 2

Core 3

Core 4

t=0 13

T1

T2

T3

T4

T4

T5

33 45

T1

T1

T1

T2

T2 T4

T5

T5

T5

Figure 3 shows an example for MFJ scheduling for the task-
graph in Figure 1. Similar to MS scheduling in Figure 2, MFJ
scheduling determines the number of cores for each task during
scheduling. However, unlike MS scheduling where a task is syn-
chronously executed on multiple cores, MFJ scheduling splits a
task into sub-tasks and allow them to start asynchronously at
different times. For example, in Figure 2, task 2 is split into two
sub-tasks. One of the sub-task is executed on core 0 at time 0,
while another sub-task is executed on core 3 at time 15. Then,
the overall length of the MFJ schedule is 43 time units, which is
shorter than the MS scheduling result in Figure 2.

It should be noted that MFJ scheduling and MS scheduling are
targeted at different task models. It does not mean that MFJ
scheduling outperforms MS scheduling. However, it is not a
good idea to apply MS scheduling algorithms to MFJ tasks.

3.2 Problem Formulation

Our MFJ scheduling technique is based on ILP.
Let us assume that a set of tasks and a set of cores are given.

This work decides (a) the number of sub-tasks for each task, (b)
mapping of the sub-tasks onto the cores, and (c) the start time of
each sub-task.

Let 𝑠𝑝𝑙𝑖𝑡𝑖,𝑘 denote a 0-1 decision variable. 𝑠𝑝𝑙𝑖𝑡𝑖,𝑘 becomes 1 if
task 𝑖 is split into 𝑘 sub-tasks (in other words, if task 𝑖 is execut-
ed on 𝑘 cores), otherwise 0. The following constraint must hold,
where 𝑘 is within the range of 1 to the number of cores.

∀𝑖, ∑ 𝑠𝑝𝑙𝑖𝑡𝑖,𝑘𝑘 = 1 (8)

Let 𝑇𝑖𝑚𝑒𝑖,𝑘,𝑗 denote the execution time of j-th sub-task of task
i when task i is assigned k cores. 𝑇𝑖𝑚𝑒𝑖,𝑘,𝑗 is 0 for 𝑗 > 𝑘. We as-
sume that 𝑇𝑖𝑚𝑒𝑖,𝑘,𝑗 is given, and how to obtain 𝑇𝑖𝑚𝑒𝑖,𝑘,𝑗 values
is out of scope of this paper.

Figure 4 shows an example of MFJ scheduling on four cores.
The table on the left top of Figure 4 shows 𝑇𝑖𝑚𝑒1,𝑘,𝑗 values for
task 1. In this example, task 1 is split into two sub-tasks. In other
words, task 1 is assigned two cores. In this case, 𝑠𝑝𝑙𝑖𝑡1,2 becomes
1. Although there are two sub-tasks for task 1, we assume that
there exist two virtual sub-tasks whose execution time is zero, as
shown in Figure 4. This trick simplifies our ILP formulation.

 Using 𝑠𝑝𝑙𝑖𝑡𝑖,𝑘 and 𝑇𝑖𝑚𝑒𝑖,𝑘,𝑗, the execution time of 𝑗-th sub-

task in task 𝑖 is defined as follows.

∀𝑖, 𝑗, 𝑡𝑖𝑚𝑒𝑖𝑗 = ∑ (𝑇𝑖𝑚𝑒𝑖,𝑘,𝑗 ∙ 𝑠𝑝𝑙𝑖𝑡𝑖,𝑘)𝑘 (9)

Unlike the previous work in [14], sub-tasks are scheduled in-
dependently. Let 𝑠𝑡𝑎𝑟𝑡𝑖,𝑗 and 𝑓𝑖𝑛𝑖𝑠ℎ𝑖,𝑗 denote the start time and

the finish time of 𝑗-th sub-task in task 𝑖, respectively. Note that
𝑠𝑡𝑎𝑟𝑡𝑖,𝑗 is a decision variable and 𝑓𝑖𝑛𝑖𝑠ℎ𝑖,𝑗 is a dependent varia-
ble defined by the following equation.

∀𝑖, 𝑗, 𝑓𝑖𝑛𝑖𝑠ℎ𝑖,𝑗 = 𝑠𝑡𝑎𝑟𝑡𝑖,𝑗 + 𝑡𝑖𝑚𝑒𝑖,𝑗 (10)

Next, let 𝑐𝑜𝑟𝑒𝑖,𝑗 be the identification number of the core

which is assigned 𝑗-th sub-task in task i. If two sub-tasks, sub-
task 𝑗1 in task 𝑖1 and sub-task 𝑗2 in task 𝑖2, are mapped to the
same core, the execution of the two sub-tasks cannot be over-
lapped in time. This resource constraint is formulated by the fol-
lowing formula.

∀𝑖1, 𝑖2, 𝑗1, 𝑗2 (𝑖1 ≠ 𝑖2 ∨ 𝑗1 ≠ 𝑗2),

 𝑐𝑜𝑟𝑒𝑖1,𝑗1 ≠ 𝑐𝑜𝑟𝑒𝑖2,𝑗2
∨ 𝑓𝑖𝑛𝑖𝑠ℎ𝑖1,𝑗1 ≤ 𝑠𝑡𝑎𝑟𝑡𝑖2,𝑗2

∨ 𝑓𝑖𝑛𝑖𝑠ℎ𝑖2,𝑗2 ≤ 𝑠𝑡𝑎𝑟𝑡𝑖1,𝑗1

(11)

This work assumes a set of dependent tasks, where the tasks
may have a flow dependency among them. Let 𝑠𝑡𝑎𝑟𝑡_𝑚𝑖𝑛𝑖 and
 𝑓𝑖𝑛𝑖𝑠ℎ_𝑚𝑎𝑥𝑖 denote the start time and the finish time of task 𝑖,
respectively. They are defined as follows.

∀𝑖, 𝑠𝑡𝑎𝑟𝑡_𝑚𝑖𝑛𝑖 = 𝑚𝑖𝑛𝑗{𝑠𝑡𝑎𝑟𝑡𝑖,𝑗} (12)

∀𝑖, 𝑓𝑖𝑛𝑖𝑠ℎ_𝑚𝑎𝑥𝑖 = 𝑚𝑎𝑥𝑗{𝑓𝑖𝑛𝑖𝑠ℎ𝑖,𝑗} (13)

Let 𝐹𝑙𝑜𝑤𝑖1,𝑖2 denote a flow dependency from task 𝑖1 to task
𝑖2. 𝐹𝑙𝑜𝑤𝑖1,𝑖2 is 1 when task 𝑖1 must be finished before task 𝑖2
starts. Otherwise, 𝐹𝑙𝑜𝑤𝑖1,𝑖2 is 0. We assume that 𝐹𝑙𝑜𝑤𝑖1,𝑖2 is
given. Then, the precedence constraint is expressed as follows.

∀𝑖1, 𝑖2, 𝐹𝑙𝑜𝑤𝑖1,𝑖2 → 𝑓𝑖𝑛𝑖𝑠ℎ_𝑚𝑎𝑥𝑖1 ≤ 𝑠𝑡𝑎𝑟𝑡_𝑚𝑖𝑛𝑖2 (14)

This work aims at minimization of the overall schedule
length. Therefore, the objective function of our scheduling prob-
lem to be minimized is given as follows.

 max
𝑖

{𝑓𝑖𝑛𝑖𝑠ℎ_𝑚𝑎𝑥𝑖} (15)

Our scheduling problem for malleable fork-join tasks is now
formally defined: Given a set of tasks, a set of cores, 𝑇𝑖𝑚𝑒𝑖,𝑘,𝑗
and 𝐹𝑙𝑜𝑤𝑖1,𝑖2, find 𝑠𝑝𝑙𝑖𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑖,𝑗 and 𝑠𝑡𝑎𝑟𝑡𝑖,𝑗 which minimize
the objective function (15) subject to the seven constraints (8)-
(14).

Although formulas (11)-(15) are not in a linear form, they can
be easily linearized by simple transformation techniques. Actual-

Figure 4: Splitting a task into sub-tasks

S

1 2

4 5

E

3

Execution

time

40 0 0 0

20 20 0 0

14 14 14 0

10 10 10 10

0

20

20

0

40

0

Core 1

Core 2

Core 3

Core 4

20

20 …

…

…

…

ly, many ILP solvers are able to translate such non-linear formu-
las into linear ones automatically.

4 EXPERIMENTS

4.1 Experimental Setup

In order to test the effectiveness of this work, we conducted a
set of experiments. We generated fifteen task-graphs using Task
Graph For Free (TGFF) [16]. Each task-graph contains up to 30
tasks. TGFF assumes that each task is executed on a single core,
and 𝑇𝑖𝑚𝑒𝑖,𝑘,𝑗 is given only for 𝑘 = 1 . Therefore, we set

𝑇𝑖𝑚𝑒𝑖,𝑘,𝑗 = ⌈ 𝑇𝑖𝑚𝑒𝑖,1,𝑗 × (0.1 + 0.9/𝑘) ⌉ for 𝑘 > 1 in our exper-
iments, where each sub-task is assumed to have 10% overhead
which cannot be parallelized. For each task-graph, we varied the
number of cores from two to eight.

We have compared four scheduling methods including the one
presented in this paper as follows.
 Single: ILP-based scheduling when each task is assigned a

single core.

 Max: Each task is assigned all cores, and tasks are scheduled

sequentially. The schedule length is ∑ ∑ 𝑇𝑖𝑚𝑒𝑖,𝑁,𝑗𝑗𝑖 where N

is the number of cores in the target system.

 MS: ILP-based malleable synchronous task scheduling pre-

sented in [14].

 MFJ: ILP-based malleable fork-join task scheduling presented

in this paper.

Among the four scheduling methods, Single, MS and MFJ are
based on ILP. In order to solve the ILP problems for the three
methods, we used IBM ILOG CPLEX 12.7 [17] on dual Intel Xeon
E5-2650 processors with 128GB memory. Since ILP is very time-
consuming, optimal solutions cannot be found in a practical time
for large task-graphs. In our experiments, CPU runtime of
CPLEX is limited up to 60 hours, and the best solutions found at
that time were used for evaluation. Since we ran CPLEX on 32-
threading host computer (dual processors, 8 cores / 16 threads
per processor), CPU time of 60 hours is approximately 2 hours in
real time.

4.2 Experimental Results

The scheduling results for fifteen task-graphs and their aver-
age are shown in Figures 5, 6 and 7. In each figure, the four
scheduling methods are compared, and the schedule lengths are
normalized to the MS method [14]. Figures 5, 6 and 7 show
scheduling results on two, four and eight cores, respectively.

The ILP solver for the Single method found optimal solutions
for forty four task graphs out of forty five (fifteen graphs in each
of the three figures) within the time limit. The ILP solver for the
MS and MFJ methods found optimal solutions for the thirty six
task graphs and seven task graphs, respectively.

The schedule length of the Single method was the longest
among the four methods in any case. This is because the Single
method assigns a single core to each task even when no other
task is executable due to flow dependencies. This significantly
degrades the CPU utilization.

Figure 5: Scheduling results on 2 cores

1
.2

8
8

1
.3

3
8

1
.6

1
0

1
.4

1
9

1
.4

5
2

1
.4

3
0

1
.3

9
3

1
.3

0
6

1
.3

5
7

1
.1

1
9

1
.1

1
3

1
.1

0
7

1
.3

0
3

1
.2

3
9

1
.1

9
4

 1
.3

1
1

1
.0

6
5

1
.0

4
0

1
.0

1
6

1
.0

4
3

1
.0

1
0

1
.0

2
0

1
.0

1
1

1
.0

3
2

1
.0

3
4

1
.0

9
7

1
.0

8
4

1
.0

8
9

1
.0

6
6

1
.0

6
1

1
.0

7
4

1
.0

5
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
4

1
.0

0
0

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1.800

tgff00

(6 tasks)

tgff01

(7 tasks)

tgff02

(7 tasks)

tgff03

(7 tasks)

tgff04

(11 tasks)

tgff05

(11 tasks)

tgff06

(12 tasks)

tgff07

(14 tasks)

tgff08

(17 tasks)

tgff09

(20 tasks)

tgff10

(22 tasks)

tgff11

(24 tasks)

tgff12

(27 tasks)

tgff13

(28 tasks)

tgff14

(30 tasks)

average

N
o

m
al

iz
ed

 S
ch

ed
u
le

 L
en

g
th

Single Max MS MFJ

The CPU utilization of the Max method is 100% since tasks are
assigned all cores in the target multicore system and are
executed sequentially. The Max method outperforms the Simple
method, but is not as good as the MS and MFJ methods. This is
because of the performance overhead of parallelization. We as-
sume that each sub-task has 10% overhead. As the number of

sub-tasks increases, the overall performance overhead also in-
creases. If a task graph has a rich amount of inter-task parallel-
ism, tasks should be scheduled onto multiple cores without split-
ting into sub-tasks in order to minimize the overhead. Since the
Max method always splits tasks into the maximum number of
sub-tasks, it suffers from the overhead of parallelization.

Figure 6: Scheduling results on 4 cores

Figure 7: Scheduling results on 8 cores

2
.2

3
9

2
.3

0
4

2
.7

6
4

2
.4

4
4

2
.5

1
4

2
.4

9
3

2
.3

9
4

2
.2

6
0

2
.3

7
2

1
.8

2
0

 2
.0

1
3

1
.6

5
9

2
.1

4
7

2
.1

5
4

1
.9

6
3

2
.2

3
6

1
.1

0
2

1
.0

7
0

1
.0

4
7

1
.0

7
4

1
.0

4
6

1
.0

7
1

1
.0

3
9

1
.0

6
8

1
.0

8
3

1
.1

9
5

1
.1

8
2

1
.1

6
9

1
.1

4
2

1
.1

3
0

1
.1

3
5

1
.1

0
4

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
6

1
.0

2
2

1
.0

0
0

1
.0

0
0

1
.0

0
5

1
.0

0
2

0.000

0.500

1.000

1.500

2.000

2.500

3.000

tgff00

(6 tasks)

tgff01

(7 tasks)

tgff02

(7 tasks)

tgff03

(7 tasks)

tgff04

(11 tasks)

tgff05

(11 tasks)

tgff06

(12 tasks)

tgff07

(14 tasks)

tgff08

(17 tasks)

tgff09

(20 tasks)

tgff10

(22 tasks)

tgff11

(24 tasks)

tgff12

(27 tasks)

tgff13

(28 tasks)

tgff14

(30 tasks)

average

N
o

m
al

iz
ed

 S
ch

ed
u
le

 L
en

g
th

Single Max MS MFJ
3.

51
8

3.
78

6

4.
30

9

3.
88

2

4.
00

0

4.
01

1

3.
88

8

3.
75

0

3.
75

6

3.
05

6

3.
33

3

2.
82

4

3.
38

5

3.
54

5

3.
20

5
 3.

61
6

1
.1

61

1.
15

7

1.
0

7
4

1
.1

47

1.
10

0

1
.1

38

1.
1

2
8

1.
17

4

1.
14

9

1.
3

33

1
.3

01

1
.3

24

1.
2

3
1

1
.2

41

1.
2

3
1

1
.1

93

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

0
.9

64

1.
00

0

1.
00

0

1.
00

0

0
.9

82

1.
00

0

1.
00

0

1.
00

0

0.
99

4

0.
9

9
4

1.
00

0

1.
00

0

1
.0

13

1.
01

2

1.
0

1
9

0
.9

98

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

tgff00

(6 tasks)

tgff01

(7 tasks)

tgff02

(7 tasks)

tgff03

(7 tasks)

tgff04

(11 tasks)

tgff05

(11 tasks)

tgff06

(12 tasks)

tgff07

(14 tasks)

tgff08

(17 tasks)

tgff09

(20 tasks)

tgff10

(22 tasks)

tgff11

(24 tasks)

tgff12

(27 tasks)

tgff13

(28 tasks)

tgff14

(30 tasks)

average

N
o

m
al

iz
ed

 S
ch

ed
u
le

 L
en

g
th

Single Max MS MFJ

The Single method takes advantage of inter-task parallelism,
but ignores intra-task parallelism. On the other hand, the Max
method takes advantage of intra-task parallelism, but ignores
inter-task parallelism. The MS method and MFJ method take ad-
vantage of both inter-task parallelism and intra-task parallelism
in order to minimize the schedule length.

Let us compare the MS and MFJ methods. In Figure 5 where
tasks are scheduled on two cores, the MS method and the MFJ
method yield the same quality of results for all task graphs ex-
cept tgff14. Theoretically, the solution space of MFJ completely
covers that of MS. Thus, the optimal solution of MFJ should be
better than (or at least equal to) the optimal solution of MS.
However, due to the wider solution space, the ILP solver was not
able to find the good solutions for the MFJ method within a lim-
ited time. On the other hand, the ILP solver quickly found good
solutions for the MS method. The scheduling results on four
cores (Figure 6) are similar to results on two cores (Figure 5). The
MS method outperforms the MFJ method for three task graphs
out of fifteen, and the two methods are comparable for the other
task graphs. The results in Figure 7 are somewhat different from
the ones in Figures 5 and 6. For four task graphs (i.e., tgff00,
tgff04, tgff08 and tgff09), the MFJ method yields better schedules
than the MS method. These task graphs are relatively small, and
the ILP solver successfully found good schedules within a limited
time. However, for the three larger task graphs (i.e., tgff12, tgff13
and tgff14), the MS method outperformed MFJ.

Our experimental results demonstrate both strength and
weakness of our MFJ task scheduling method. On a strong side,
the MFJ scheduling is effective when the target system has a
large number of cores. On a weak side, the ILP-based MFJ sched-
uling is not scalable and is hardly applied to large task graphs.
Fast heuristic algorithms for MFJ scheduling are necessary.

5 CONCLUSIONS

This paper addressed a scheduling problem for malleable fork-
join tasks on multiple cores. We presented a solution technique
for the scheduling problem based on integer linear programming
formulation. Our scheduling technique decides the number of
sub-tasks, allocation of the sub-tasks onto cores and the execu-
tion order of the sub-tasks. The experimental results show both
strength and weakness of our technique, compared with prior
techniques. Our technique found better schedule results than
prior techniques when the system has a large number of cores,
while our technique failed to find good results for large task
graphs in a practical time. In future, we plan to develop fast heu-
ristic algorithms for the scheduling problem.

ACKNOWLEDGMENTS

This work is in part supported by JSPS KAKENHI 15H02680.

REFERENCES
[1] H. Kasahara, S. Narita, “Practical multiprocessor scheduling algo-

rithms for efficient parallel processing,” IEEE Transactions on Com-
puters, vol. C-33, pp. 1023-1029, 1984.

[2] S. Fujita, “A branch-and-bound algorithm for solving the multipro-
cessor scheduling problem with improved lower bounding tech-

niques,” IEEE Transaction on Computers, vol. 60, pp. 1006-1016, 2010.
[3] A.Z.S. Shahul, O. Sinnen, “Optimal scheduling of task graphs on

parallel systems,” International Conference on Parallel and Distribut-
ed Computing, Applications and Technologies, 2008.

[4] Y.K. Kwok, I. Ahmad, “Static scheduling algorithms for allocating
directed task graphs to multiprocessors,” ACM Computing Surveys,
vol. 31, pp. 406-471, 1999.

[5] J.J. Hwang, Y.C. Chow, F.D. Anger, C.Y. Lee, “Scheduling prece-
dence graph in systems with interprocessor communication times,”
SIAM Journal of Computing, vol. 18, pp. 244-257, 1989.

[6] G.C. Sih, E.A. Lee, “Compile time scheduling heuristic for intercon-
nection constrained heterogeneous processor architecture,” IEEE
Transactions on Parallel and Distributed Systems, vol. 4, pp. 175-187,
1993.

[7] T. Hagras, J. Janecek, “A high performance, low complexity algo-
rithm for compile-time job scheduling in homogeneous computing
environment,” International Conference on Parallel Processing Work-
shops, 2003.

[8] A. Palmer and O. Sinnen, “Scheduling algorithm based on force di-
rected clustering,” International Conference Parallel and Distributed
Computing, Applications and Technologies, pp. 311-318, 2008.

[9] M. Drozdowski, “Scheduling multiprocessor tasks: An overview,”
European Journal of Operational Research, vol. 94, 1996.

[10] Y. Liu, L. Meng, I. Taniguchi and H. Tomiyama, “Novel list schedul-
ing strategies for data parallelism task graphs,” International Journal
on Networking and Computing, vol. 4, no. 2, 2014.

[11] J. Turek, J.L. Wolf, and P.S. Yu, “Approximate algorithms scheduling
parallelizable tasks,” Annual ACM Symposium on Parallel Algorithms
and Architectures, 1992.

[12] H. Yang and S. Ha, “ILP based data parallel multi-task map-
ping/scheduling technique for MPSoC,” International SoC Design
Conference, 2008.

[13] C. Chen and C. Chu, “A 3.42-approximation algorithm for schedul-
ing malleable tasks under precedence constraints”, IEEE Transac-
tions on Parallel and Distributed Systems, vol. 24, no. 8, 2013.

[14] K. Shimada, S. Kitano, I. Taniguchi, and H. Tomiyama, “ILP-based
scheduling for parallelizable tasks,” IEICE Transactions on Funda-
mentals, vol. E100-A, no. 7, 2017.

[15] J. Kim, H. Kim, K. Lakshmanan, R. Rajkumar, “Parallel scheduling
for cyber-physical systems: Analysis and case study on a self-
driving car,” International Conference on Cyber-Physical System,
2013.

[16] R.P. Dick, D.L. Rhodes, W.H. Wolf, “TGFF: Task graph for free,”
International Workshop on Hardwere/Software Codesign, 1998.

[17] IBM CPLEX Optimize,
http://www-01.ibm.com/software/commerce/optimization/cplex-
optimizer/
(Last accessed : July 16, 2017)

