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ABSTRACT 

This paper studies scheduling of malleable fork-join tasks. In 
our scheduling problem, each task can be partitioned into multi-
ple sub-tasks, and the sub-tasks are scheduled independently. 
The optimal number of sub-tasks is determined during schedul-
ing simultaneously. This paper formulates the scheduling prob-
lem as an integer linear programming problem. 
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1 INTRODUCTION 

Multicore computing attracts an increasing attention because 
of its better power/performance efficiency than single-core com-
puting. In multicore computing, task scheduling, which assigns 
tasks to cores and decides the execution order of the tasks on 
each core, has a significant impact on the system performance. 
Therefore, multicore task scheduling has been extensively stud-
ied in several decades.  

A classic task scheduling problem assumes that each task is 
executed on a single core. Prior algorithms for the problem try to 
execute as many tasks as possible in parallel on multiple cores, 
in order to minimize the overall schedule length (a.k.a. 
makespan). In general, task scheduling is an NP-hard problem, 
and it is difficult to find an exact solution in a practical time [1]-
[3]. Therefore, many heuristic and meta-heuristic approaches to 
task scheduling have been proposed, for example, in [4]-[8]. 
Some researchers have extended the scheduling problem in such 
a way that a task may use multiple cores [9]. Recent works on 
this direction include [10]-[15]. Liu et al. proposed heuristic al-
gorithms to minimize the scheduling length of a given task-
graph [10]. They allow individual tasks to use multiple cores, but 
the number of cores assigned to each task is assumed to be fixed. 
Unlike Liu’s work, the work in [11] proposes a computational 
model called malleable, which means that the number of cores 
assigned to each task is determined at the same time as schedul-
ing. They develop polynomial time algorithms for multiproces-
sor scheduling problem of malleable tasks. Scheduling for malle-
able tasks is also studied in [12], [13] and [14].  Yang and Ha’s 
work in [12] allows tasks to run on multiple cores. Their work in 
[12] also assumes that tasks are malleable. They propose a multi-
task mapping/scheduling technique for scalable MPSoC. The so-
lution is based on integer linear programming (ILP). They aim at 

minimization of hardware cost, while satisfying the deadline 
constraints of the tasks. In [13], Chen and Chu develop an ap-
proximation algorithm for malleable task scheduling. In [14], a 
malleable task scheduling technique based on ILP was proposed. 
Each task is executed on multiple cores and many tasks are exe-
cuted on multiple cores in parallel. They aim at minimization of 
schedule length. The previous works on malleable task schedul-
ing in [12]-[14] allow a task to run on multiple cores at a syn-
chronous manner, where the task starts and finishes the execu-
tion on the multiple cores at the same time. In [15], Kim et al. 
develop a real-time scheduling algorithm for malleable fork-join 
tasks. In the scheduling of malleable fork-join tasks, a task is 
partitioned into multiple sub-tasks (or threads), and the sub-
tasks are scheduled independently. The number of sub-tasks is 
determined during the scheduling process simultaneously. They 
assume that the tasks are independent, and try to meet deadline 
constraints of the tasks. This paper studies scheduling of mallea-
ble fork-join tasks. Unlike the work in [15], this work assumes a 
set of dependent tasks, and tries to minimize a makespan. To the 
best of our knowledge, this is the first paper which studies 
scheduling of dependent, malleable fork-join tasks. 

In this paper, we extend the malleable task model proposed in 
[14] towards a malleable fork-join task model. Given a set of de-
pendent malleable tasks and a set of homogeneous cores, this 
work splits the tasks into sub-tasks, assigns the cores to the sub-
tasks, and schedules the sub-tasks in such a way that the overall 
schedule length is minimized. Our task scheduling technique is 
based on ILP. 

This paper is organized as follows. Section 2 reviews a related 
work on which this work is built. Section 3 presents an ILP for-
mulation of our task scheduling problem, and Section 4 evaluates 
our scheduling technique. Finally, Section 5 concludes this paper.  

2 SCHEDULING FOR MALLEABLE SYN-

CHRONOUS TASKS 

This work is based on the work in [14] where a Malleable 
Synchronous (MS) task scheduling technique is proposed. This 
section reviews the MS scheduling presented in [14]. 

2.1 Scheduling Example 

An example for MS scheduling is shown in Figures 1 and 2. A 
set of tasks is represented as a directed acyclic graph (DAG) as 
shown in Figure 1. Each task has the execution times, which de-
pends on the number of cores assigned to the task. For example 
in Figure 1, the execution time of task 1 is 45 when it is assigned 
a single core. If two cores are assigned to task 1, its execution EWiLi’17, 2018, Seoul, South Korea, 
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time is 25. MS scheduling decides the number of cores for each 
task during scheduling. Figure 2 shows an optimal MS schedul-
ing for the task graph in Figure 1, and the overall schedule 
length is 45. 

2.2 Problem Formulation 

The MS scheduling technique presented in [14] is based on In-
teger Linear Programming (ILP), and scheduling solutions are 
obtained with a commercial ILP solver. 

Let 𝑐𝑜𝑟𝑒𝑠𝑖,𝑘 be a 0-1 variable, which becomes 1 if task 𝑖 is as-
signed 𝑘 cores, and otherwise 0.  The number of cores assigned 
to task 𝑖 is expressed as follows. 

∀𝑖, ∑ 𝑐𝑜𝑟𝑒𝑠𝑖,𝑘𝑘 = 1  (1) 

Let 𝑚𝑎𝑝𝑖,𝑗 denote a 0-1 decision variable. 𝑚𝑎𝑝𝑖,𝑗 becomes 1 if 
task 𝑖 is mapped to core 𝑗, and otherwise 0. 𝑚𝑎𝑝𝑖,𝑗 represents the 
mapping of task 𝑖. Note that 𝑐𝑜𝑟𝑒𝑠𝑖,𝑘 depends on 𝑚𝑎𝑝𝑖,𝑗 and is 
determined as follows. 

∀𝑖, ∑ 𝑚𝑎𝑝𝑖,𝑗𝑗 = ∑ 𝑐𝑜𝑟𝑒𝑠𝑖,𝑘 ∙ 𝑘𝑘   (2) 

Let 𝑇𝑖𝑚𝑒𝑖,𝑘 denote the execution time of task 𝑖 on 𝑘 cores. We 
assume that 𝑇𝑖𝑚𝑒𝑖,𝑘 is given. In other words, 𝑇𝑖𝑚𝑒𝑖,𝑘 needs to be 
obtained dynamic profiling or static analysis techniques before 
task scheduling. Then, 𝑡𝑖𝑚𝑒𝑖, the execution time of task 𝑖, is giv-
en by the following equation. 

∀𝑖, 𝑡𝑖𝑚𝑒𝑖 = ∑ (𝑐𝑜𝑟𝑒𝑠𝑖,𝑘 ∙ 𝑇𝑖𝑚𝑒𝑖,𝑘)𝑘   (3) 

Let 𝑠𝑡𝑎𝑟𝑡𝑖 and 𝑓𝑖𝑛𝑖𝑠ℎ𝑖 denote the start time and finish time of 
task i, respectively. Note that 𝑠𝑡𝑎𝑟𝑡𝑖 is a decision variable and 

𝑓𝑖𝑛𝑖𝑠ℎ𝑖 is a dependent variable defined by the following equa-
tion. 

∀𝑖, 𝑓𝑖𝑛𝑖𝑠ℎ𝑖 = 𝑠𝑡𝑎𝑟𝑡𝑖 + 𝑡𝑖𝑚𝑒𝑖  (4) 

If two tasks, 𝑖1 and 𝑖2, are mapped to the same core, the exe-
cution of the two tasks cannot be overlapped in time. This re-
source constraint is formulated by the following formula. 

∀𝑖1, 𝑖2, 𝑗,  

 𝑚𝑎𝑝𝑖1,𝑗 + 𝑚𝑎𝑝𝑖2,𝑗 < 2 
∨ 𝑓𝑖𝑛𝑖𝑠ℎ𝑖1 ≤ 𝑠𝑡𝑎𝑟𝑡𝑖2 

∨  𝑓𝑖𝑛𝑖𝑠ℎ𝑖2 ≤ 𝑠𝑡𝑎𝑟𝑡𝑖1 

 
 

(5) 

This work assumes a set of dependent tasks, and the tasks 
may have a precedence dependency. Let 𝐹𝑙𝑜𝑤𝑖1,𝑖2 denote a prec-
edence dependency between task 𝑖1 and 𝑖2. 𝐹𝑙𝑜𝑤𝑖1,𝑖2 is 1 when 
task 𝑖1   must be finished before task 𝑖2  starts. Otherwise, 
𝐹𝑙𝑜𝑤𝑖1,𝑖2 is 0. We assume that 𝐹𝑙𝑜𝑤𝑖1,𝑖2 is given. Then, the prec-
edence constraint is expressed as follows. 

∀𝑖1, 𝑖2, 𝐹𝑙𝑜𝑤𝑖1,𝑖2 → 𝑓𝑖𝑛𝑖𝑠ℎ𝑖1 ≤ 𝑠𝑡𝑎𝑟𝑡𝑖2 (6) 

This work aims at minimization of the overall schedule length. 
Therefore, the objective function of our scheduling problem to 
be minimized is given as follows. 

 max
𝑖

{𝑓𝑖𝑛𝑖𝑠ℎ𝑖} (7) 

The scheduling problem for malleable synchronous tasks is 
now formally defined: Given a set of tasks, a set of cores, 𝑇𝑖𝑚𝑒𝑖,𝑘 
and 𝐹𝑙𝑜𝑤𝑖1,𝑖2, find 𝑚𝑎𝑝𝑖,𝑗 and 𝑠𝑡𝑎𝑟𝑡𝑖 which minimize the objec-
tive function (7) subject to the six constraints (1)-(6). 

3 SCHEDULING FOR MALLEABLE FORK-

JOIN TASKS 

In this section, we propose a scheduling technique for Mallea-
ble Fork-Join (MFJ) tasks. In MFJ scheduling, tasks are split into 
sub-tasks and they are scheduled independently. It is possible to 
schedule them on different cores in parallel or on same cores 
sequentially. Given a set of tasks and a set of homogeneous cores, 
this work decides (a) the number of sub-tasks for each task, (b) 
mapping of the sub-tasks onto the cores, and (c) the start time of 
each sub-task. 

3.1 Scheduling Example 

 

 
 

Figure 3: MFJ scheduling 
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Figure 1: Task graph 
 
 

 
 

Figure 2: MS scheduling 
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Figure 3 shows an example for MFJ scheduling for the task-
graph in Figure 1. Similar to MS scheduling in Figure 2, MFJ 
scheduling determines the number of cores for each task during 
scheduling. However, unlike MS scheduling where a task is syn-
chronously executed on multiple cores, MFJ scheduling splits a 
task into sub-tasks and allow them to start asynchronously at 
different times. For example, in Figure 2, task 2 is split into two 
sub-tasks. One of the sub-task is executed on core 0 at time 0, 
while another sub-task is executed on core 3 at time 15. Then, 
the overall length of the MFJ schedule is 43 time units, which is 
shorter than the MS scheduling result in Figure 2. 

It should be noted that MFJ scheduling and MS scheduling are 
targeted at different task models. It does not mean that MFJ 
scheduling outperforms MS scheduling. However, it is not a 
good idea to apply MS scheduling algorithms to MFJ tasks. 

3.2 Problem Formulation 

Our MFJ scheduling technique is based on ILP.  
Let us assume that a set of tasks and a set of cores are given. 

This work decides (a) the number of sub-tasks for each task, (b) 
mapping of the sub-tasks onto the cores, and (c) the start time of 
each sub-task. 

Let 𝑠𝑝𝑙𝑖𝑡𝑖,𝑘 denote a 0-1 decision variable. 𝑠𝑝𝑙𝑖𝑡𝑖,𝑘 becomes 1 if 
task 𝑖 is split into 𝑘 sub-tasks (in other words, if task 𝑖 is execut-
ed on 𝑘 cores), otherwise 0. The following constraint must hold, 
where 𝑘 is within the range of 1 to the number of cores. 

∀𝑖, ∑ 𝑠𝑝𝑙𝑖𝑡𝑖,𝑘𝑘 = 1  (8) 

Let 𝑇𝑖𝑚𝑒𝑖,𝑘,𝑗 denote the execution time of j-th sub-task of task 
i when task i is assigned k cores. 𝑇𝑖𝑚𝑒𝑖,𝑘,𝑗  is 0 for 𝑗 > 𝑘. We as-
sume that 𝑇𝑖𝑚𝑒𝑖,𝑘,𝑗 is given, and how to obtain 𝑇𝑖𝑚𝑒𝑖,𝑘,𝑗 values 
is out of scope of this paper. 

Figure 4 shows an example of MFJ scheduling on four cores. 
The table on the left top of Figure 4 shows 𝑇𝑖𝑚𝑒1,𝑘,𝑗  values for 
task 1. In this example, task 1 is split into two sub-tasks. In other 
words, task 1 is assigned two cores. In this case, 𝑠𝑝𝑙𝑖𝑡1,2 becomes 
1. Although there are two sub-tasks for task 1, we assume that 
there exist two virtual sub-tasks whose execution time is zero, as 
shown in Figure 4. This trick simplifies our ILP formulation. 

 Using 𝑠𝑝𝑙𝑖𝑡𝑖,𝑘 and 𝑇𝑖𝑚𝑒𝑖,𝑘,𝑗, the execution time of 𝑗-th sub-

task in task 𝑖 is defined as follows. 

∀𝑖, 𝑗, 𝑡𝑖𝑚𝑒𝑖𝑗 = ∑ (𝑇𝑖𝑚𝑒𝑖,𝑘,𝑗 ∙ 𝑠𝑝𝑙𝑖𝑡𝑖,𝑘)𝑘   (9) 

Unlike the previous work in [14], sub-tasks are scheduled in-
dependently. Let 𝑠𝑡𝑎𝑟𝑡𝑖,𝑗  and  𝑓𝑖𝑛𝑖𝑠ℎ𝑖,𝑗  denote the start time and 

the finish time of 𝑗-th sub-task in task 𝑖, respectively. Note that 
𝑠𝑡𝑎𝑟𝑡𝑖,𝑗  is a decision variable and  𝑓𝑖𝑛𝑖𝑠ℎ𝑖,𝑗 is a dependent varia-
ble defined by the following equation. 

∀𝑖, 𝑗,  𝑓𝑖𝑛𝑖𝑠ℎ𝑖,𝑗 = 𝑠𝑡𝑎𝑟𝑡𝑖,𝑗 + 𝑡𝑖𝑚𝑒𝑖,𝑗  (10) 

Next, let 𝑐𝑜𝑟𝑒𝑖,𝑗  be the identification number of the core 

which is assigned 𝑗-th sub-task in task i. If two sub-tasks, sub-
task 𝑗1 in task 𝑖1 and sub-task 𝑗2 in task 𝑖2, are mapped to the 
same core, the execution of the two sub-tasks cannot be over-
lapped in time. This resource constraint is formulated by the fol-
lowing formula. 

∀𝑖1, 𝑖2, 𝑗1, 𝑗2 (𝑖1 ≠ 𝑖2 ∨  𝑗1 ≠ 𝑗2),   

 𝑐𝑜𝑟𝑒𝑖1,𝑗1 ≠ 𝑐𝑜𝑟𝑒𝑖2,𝑗2 
∨  𝑓𝑖𝑛𝑖𝑠ℎ𝑖1,𝑗1 ≤ 𝑠𝑡𝑎𝑟𝑡𝑖2,𝑗2 

∨  𝑓𝑖𝑛𝑖𝑠ℎ𝑖2,𝑗2 ≤ 𝑠𝑡𝑎𝑟𝑡𝑖1,𝑗1 

 
 

(11) 

This work assumes a set of dependent tasks, where the tasks 
may have a flow dependency among them. Let  𝑠𝑡𝑎𝑟𝑡_𝑚𝑖𝑛𝑖 and 
 𝑓𝑖𝑛𝑖𝑠ℎ_𝑚𝑎𝑥𝑖 denote the start time and the finish time of task 𝑖, 
respectively. They are defined as follows. 

 

∀𝑖,  𝑠𝑡𝑎𝑟𝑡_𝑚𝑖𝑛𝑖 = 𝑚𝑖𝑛𝑗{𝑠𝑡𝑎𝑟𝑡𝑖,𝑗}  (12) 

∀𝑖,  𝑓𝑖𝑛𝑖𝑠ℎ_𝑚𝑎𝑥𝑖 = 𝑚𝑎𝑥𝑗{𝑓𝑖𝑛𝑖𝑠ℎ𝑖,𝑗} (13) 

Let 𝐹𝑙𝑜𝑤𝑖1,𝑖2 denote a flow dependency from task 𝑖1 to task 
𝑖2. 𝐹𝑙𝑜𝑤𝑖1,𝑖2 is 1 when task 𝑖1 must be finished before task 𝑖2 
starts. Otherwise,  𝐹𝑙𝑜𝑤𝑖1,𝑖2 is 0. We assume that  𝐹𝑙𝑜𝑤𝑖1,𝑖2 is 
given. Then, the precedence constraint is expressed as follows. 

∀𝑖1, 𝑖2,  𝐹𝑙𝑜𝑤𝑖1,𝑖2 → 𝑓𝑖𝑛𝑖𝑠ℎ_𝑚𝑎𝑥𝑖1 ≤ 𝑠𝑡𝑎𝑟𝑡_𝑚𝑖𝑛𝑖2 (14) 

This work aims at minimization of the overall schedule 
length. Therefore, the objective function of our scheduling prob-
lem to be minimized is given as follows. 

 max
𝑖

{𝑓𝑖𝑛𝑖𝑠ℎ_𝑚𝑎𝑥𝑖} (15) 

Our scheduling problem for malleable fork-join tasks is now 
formally defined: Given a set of tasks, a set of cores, 𝑇𝑖𝑚𝑒𝑖,𝑘,𝑗  
and  𝐹𝑙𝑜𝑤𝑖1,𝑖2, find 𝑠𝑝𝑙𝑖𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑖,𝑗 and 𝑠𝑡𝑎𝑟𝑡𝑖,𝑗  which minimize 
the objective function (15) subject to the seven constraints (8)-
(14). 

Although formulas (11)-(15) are not in a linear form, they can 
be easily linearized by simple transformation techniques. Actual-

 

 

 
 

Figure 4: Splitting a task into sub-tasks 
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ly, many ILP solvers are able to translate such non-linear formu-
las into linear ones automatically. 

4 EXPERIMENTS 

4.1 Experimental Setup 

In order to test the effectiveness of this work, we conducted a 
set of experiments. We generated fifteen task-graphs using Task 
Graph For Free (TGFF) [16]. Each task-graph contains up to 30 
tasks. TGFF assumes that each task is executed on a single core, 
and 𝑇𝑖𝑚𝑒𝑖,𝑘,𝑗  is given only for  𝑘 = 1 . Therefore, we set 

𝑇𝑖𝑚𝑒𝑖,𝑘,𝑗 = ⌈ 𝑇𝑖𝑚𝑒𝑖,1,𝑗 × (0.1 + 0.9/𝑘) ⌉ for 𝑘 > 1 in our exper-
iments, where each sub-task is assumed to have 10% overhead 
which cannot be parallelized. For each task-graph, we varied the 
number of cores from two to eight. 

We have compared four scheduling methods including the one 
presented in this paper as follows. 
 Single: ILP-based scheduling when each task is assigned a 

single core. 

 Max: Each task is assigned all cores, and tasks are scheduled 

sequentially. The schedule length is ∑ ∑ 𝑇𝑖𝑚𝑒𝑖,𝑁,𝑗𝑗𝑖  where N 

is the number of cores in the target system. 

 MS: ILP-based malleable synchronous task scheduling pre-

sented in [14]. 

 MFJ: ILP-based malleable fork-join task scheduling presented 

in this paper. 

Among the four scheduling methods, Single, MS and MFJ are 
based on ILP. In order to solve the ILP problems for the three 
methods, we used IBM ILOG CPLEX 12.7 [17] on dual Intel Xeon 
E5-2650 processors with 128GB memory. Since ILP is very time-
consuming, optimal solutions cannot be found in a practical time 
for large task-graphs. In our experiments, CPU runtime of 
CPLEX is limited up to 60 hours, and the best solutions found at 
that time were used for evaluation. Since we ran CPLEX on 32-
threading host computer (dual processors, 8 cores / 16 threads 
per processor), CPU time of 60 hours is approximately 2 hours in 
real time. 

4.2 Experimental Results 

The scheduling results for fifteen task-graphs and their aver-
age are shown in Figures 5, 6 and 7. In each figure, the four 
scheduling methods are compared, and the schedule lengths are 
normalized to the MS method [14]. Figures 5, 6 and 7 show 
scheduling results on two, four and eight cores, respectively.  

The ILP solver for the Single method found optimal solutions 
for forty four task graphs out of forty five (fifteen graphs in each 
of the three figures) within the time limit. The ILP solver for the 
MS and MFJ methods found optimal solutions for the thirty six 
task graphs and seven task graphs, respectively.  

The schedule length of the Single method was the longest 
among the four methods in any case. This is because the Single 
method assigns a single core to each task even when no other 
task is executable due to flow dependencies. This significantly 
degrades the CPU utilization. 

 
Figure 5: Scheduling results on 2 cores 
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The CPU utilization of the Max method is 100% since tasks are 
assigned all cores in the target multicore system and are 
executed sequentially. The Max method outperforms the Simple 
method, but is not as good as the MS and MFJ methods. This is 
because of the performance overhead of parallelization. We as-
sume that each sub-task has 10% overhead. As the number of 

sub-tasks increases, the overall performance overhead also in-
creases. If a task graph has a rich amount of inter-task parallel-
ism, tasks should be scheduled onto multiple cores without split-
ting into sub-tasks in order to minimize the overhead. Since the 
Max method always splits tasks into the maximum number of 
sub-tasks, it suffers from the overhead of parallelization. 

 
Figure 6: Scheduling results on 4 cores 

 

 
Figure 7: Scheduling results on 8 cores 
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The Single method takes advantage of inter-task parallelism, 
but ignores intra-task parallelism. On the other hand, the Max 
method takes advantage of intra-task parallelism, but ignores 
inter-task parallelism. The MS method and MFJ method take ad-
vantage of both inter-task parallelism and intra-task parallelism 
in order to minimize the schedule length. 

Let us compare the MS and MFJ methods. In Figure 5 where 
tasks are scheduled on two cores, the MS method and the MFJ 
method yield the same quality of results for all task graphs ex-
cept tgff14. Theoretically, the solution space of MFJ completely 
covers that of MS. Thus, the optimal solution of MFJ should be 
better than (or at least equal to) the optimal solution of MS. 
However, due to the wider solution space, the ILP solver was not 
able to find the good solutions for the MFJ method within a lim-
ited time. On the other hand, the ILP solver quickly found good 
solutions for the MS method. The scheduling results on four 
cores (Figure 6) are similar to results on two cores (Figure 5). The 
MS method outperforms the MFJ method for three task graphs 
out of fifteen, and the two methods are comparable for the other 
task graphs. The results in Figure 7 are somewhat different from 
the ones in Figures 5 and 6. For four task graphs (i.e., tgff00, 
tgff04, tgff08 and tgff09), the MFJ method yields better schedules 
than the MS method. These task graphs are relatively small, and 
the ILP solver successfully found good schedules within a limited 
time. However, for the three larger task graphs (i.e., tgff12, tgff13 
and tgff14), the MS method outperformed MFJ. 

Our experimental results demonstrate both strength and 
weakness of our MFJ task scheduling method. On a strong side, 
the MFJ scheduling is effective when the target system has a 
large number of cores. On a weak side, the ILP-based MFJ sched-
uling is not scalable and is hardly applied to large task graphs. 
Fast heuristic algorithms for MFJ scheduling are necessary. 

5 CONCLUSIONS 

This paper addressed a scheduling problem for malleable fork-
join tasks on multiple cores. We presented a solution technique 
for the scheduling problem based on integer linear programming 
formulation. Our scheduling technique decides the number of 
sub-tasks, allocation of the sub-tasks onto cores and the execu-
tion order of the sub-tasks. The experimental results show both 
strength and weakness of our technique, compared with prior 
techniques. Our technique found better schedule results than 
prior techniques when the system has a large number of cores, 
while our technique failed to find good results for large task 
graphs in a practical time. In future, we plan to develop fast heu-
ristic algorithms for the scheduling problem. 
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