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ABSTRACT
General-purpose programming languages C and C++ address only
the functional aspect of programs. In contrast, real-time program-
ming languages address not only the functional aspect but also the
nonfunctional real-time aspect to automatically ensure the consis-
tency of both aspects in the resulting code. Despite many real-time
programming languages proposed in the literature, embedded and
real-time programs for economical reasons have continued to be
written in C/C++ with their real-time aspect being dealt separately
using modeling tools (e.g., MATLAB/Simulink) and the consistency
of both aspects being checkedmanually. As embedded and real-time
systems permeate through people’s lives, it becomes increasingly
imperative that both aspects be kept consistent automatically to
improve the reliability of the systems. To that end, we propose
a real-time programming language called Tice with three novel
features: (1) Tice programs are written as modern standard C++
programs. (2) Tice programs can be compiled using any modern
off-the-shelf standard C++ compiler. (3) Tice programs compose
with other C/C++ programs as C++ libraries. These novel features
make Tice significantly more economical than other real-time pro-
gramming languages proposed in the literature.

KEYWORDS
real-time programming language, hard real-time (HRT), embedded
domain-specific language (EDSL), C++ programming, C++ active
library, C++ template meta-programming (TMP), static program
analysis, software engineering

1 INTRODUCTION
Since its inception, IEEE Spectrum Top Programming Languages
annual rankings have C++ in the top four along with C, Java, and
Python [2]1. ROS (Robot Operating System) codebase also reflects
the rankings by being written in C++ (64%), Python (14%), C (7%),
XML (7%), LISP (4%), Java (3%), and others (1%) [5]. C++, however,
is not an RTPL (real-time programming language) despite being
prevalent in embedded and real-time system development [11, 14,
15]. On the other hand, RTPLs with different MoCCs (models of real-
time computation and communication) have been proposed, such
as Esterel [1], TCEL [9], CRL [17], Giotto [8], and others surveyed
in [16]. They, however, find little use in the industry where C and
C++ are prevalent as reflected in the statement made by one of ROS

1We selected all language types to avoid language stereotyping bias, and by using Edit
Ranking, we took the average of applying every weighting scheme, except Custom, to
all years, except 2014 whose data for C and C++ were missing in the 2018 edition.

EWiLi’18, 4 October 2018, Torino, Italy
Copyright held by Owner/Author.

founders, “any real-time requirements would be met in a special-
purpose manner” [7].

While meeting real-time requirements in an ad hoc manner may
benefit from a separation of concerns by using different tools for
different concerns (e.g., MATLAB/Simulink to address the nonfunc-
tional real-time aspect and C++ to address the functional aspect
of an embedded program), doing so limits program development
and maintenance speed because extra time is needed to manually
verify that the functional and nonfunctional real-time aspects of the
programs continue to be consistent. Moreover, any manual effort
to ensure the consistency of both aspects is prone to error whose
impact could be grave as embedded and real-time systems permeate
through people’s lives. A systematic solution to the consistency
problem is the use of an RTPL, which automatically keeps both
program aspects consistent in the resulting code, in particular an
RTPL with a high-level real-time abstraction, which affords a sep-
aration of concerns between the real-time and functional aspects.
With C and C++ being prevalent, however, the cost of manually
ensuring the consistency of both program aspects is commonly
far less than the cost of using an RTPL, in particular the cost of
integration with other existing programs (e.g., operating systems,
device drivers, software libraries, and legacy codebases) and sup-
porting tools (e.g., profiler and debugger) as well as the cost of
losing the separation of concerns in case of using an RTPL with a
low-level real-time abstraction. We therefore propose an economical
RTPL, called Tice, with a high-level real-time abstraction, which is
synthesized from [8, 13]’s time-triggered LET (Logical Execution
Time) and from [6, 9]’s specifications of not only a DAG (directed
acyclic graph) of periodic asynchronous computation nodes (the
asynchrony naturally allows the DAG to be executed concurrently
in a multiprocessor system) but also ETE (end-to-end) delay and
temporal correlation constraints on the DAG. Tice is an economical
RTPL because it requires no change in the existing modern standard
C++ programming toolchain, in particular the following three novel
features: (1) a Tice program is written as a modern standard C++
program, requiring no change to the IDE (integrated development
environment), (2) a Tice program can be compiled using any mod-
ern off-the-shelf standard C++ compiler, requiring no change to the
compiler, and (3) a Tice program composes seamlessly with other
C++ programs as a C++ library, requiring no change to the linker.
To that end, this paper makes two contributions. First, this paper
advances the state of the art of RTPLs by introducing an economical
RTPL in the form of a C++ active library, which to our knowledge
is absent in the literature. Second, this paper presents the details
of the syntax and semantics of the proposed language as well as
how its C++ active library, which henceforth is called Tice compiler,
compiles Tice programs.
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1 #include <iostream >
2 #include "al.hpp"
3 int main() { std::cout << al::sqrt <-2>(); }

Figure 1: Using C++ active library al.h by calling its function
al::sqrt in a C++ program.

1 $ g++ -std=c++14 -O2 using-al-1.cpp

8 al.hpp:17:3: error: static assertion failed: sqrt
9 undefined for negative number

Figure 2: The metaprograms in al.h ensure the domain-
specific safety of the program in Figure 1 at compile time.

1 $ g++ -S -std=c++14 -O2 -o- using-al-2.cpp

15 movl $_ZSt4cout , %edi
16 movsd .LC0(%rip), %xmm0
17 call _ZNSo9_M_insertIdEERSoT_

62 .LC0:
63 .long 1719614412
64 .long 1073127582

Figure 3: Using sqrt<2> in Figure 1, the compiler produces
an assembly that uses

√
2 value (line 16) computed at compile

time by al.h (lines 63–64 formhexadecimal 3FF6A09E667F3B-
CC, about 1.41421 by IEEE 754), not computing

√
2 at runtime.

We first give an overview of our proposal in Section 2 and follow
that with the details of Tice MoCC in Section 3. Tice syntax and
semantics are then presented in Section 4 followed by the descrip-
tion of the compilation process in Section 5. Lastly, we outline the
related work in Section 6 and our conclusions in Section 7.

2 OVERVIEW
Tice affords its three novel features using C++ template metapro-
gramming. Specifically, Tice compiler is a collection of template
metaprograms packaged in a C++ active library. An active library [3]
presents to its users the experience of using a traditional software
library in a program as illustrated in Figure 1. But under the hood
when a C++ compiler compiles the program, the metaprograms
in the active library, which are illustrated in Figure 4, perform
activities once exclusive to compilers, such as ensuring program
safety as shown in Figure 2 and performing program optimization
as shown in Figure 3. Tice whose codebase is publicly accessible
at https://savannah.nongnu.org/projects/tice is written in C++14
[12]2 and has dependency only on C++14 standard libraries [12,
Ch. 17–30]. While C++17 is the latest standard, C++14 has more
mature support than C++17 in popular C++ compilers.

On the other hand, Tice affords its high-level real-time abstrac-
tion by adopting time-triggered LET [13] and time-constrained
event [9]. A Tice program organizes its functional aspect as a sim-
ple DAG, which is a directed graph whose underlying graph has
neither multi-edges nor loops and whose arcs form no cycle. The
graph nodes model C++ functions to be executed periodically, while
the graph arcs model data buffers writable and readable in zero

2The draft of [12] is freely accessible at http://isocpp.org/files/papers/N3797.pdf.

1 #define sc(T) static constexpr T
2 namespace al {
3 template <bool , const double &S, const double &z = S>
4 struct NRM_core { sc(double) v = z; };
5 template <const double &S, const double &prev_z >
6 struct NRM_core <false , S, prev_z > {
7 sc(double) z {prev_z / 2.0 + S / 2.0 / prev_z };
8 sc(bool ) below_threshold {z * z - S < 1E-15};
9 sc(double) v {NRM_core <below_threshold , S, z>::v}; };
10 template <int arg , bool arg_valid = arg >= 0>
11 struct NRM {
12 sc(double) x {arg};
13 sc(double) v {NRM_core <x == 0 || x == 1, x>::v}; };
14 template <int arg >
15 struct NRM <arg , false > {
16 sc(double) v { -1.0};
17 static_assert(arg >= 0,
18 "sqrt undefined for negative number"); };
19 template <int arg >
20 inline double sqrt() { return NRM <arg >::v; } };

Figure 4: Metaprograms in al.h implement al::sqrt using
Newton-Raphson method (NRM).
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Figure 5: Example of a Tice graph.

time only by the producer and consumer nodes3, respectively. ETE
delay and correlation constraints can then be specified on the graph
to ensure that the program is time safe with respect to externally
observable events. Such a graph is henceforth called Tice graph,
which is illustrated in Figure 5 that depicts nodes as circles where Pv
andCv are node v’s period and WCET (worst-case execution time),
respectively, arcs as arrows, an ETE delay constraint as a larger
square that is connected with dashed lines to the constrained nodes
where Zmin and Zmax are the permitted minimum and maximum
ETE delays, respectively, and a correlation constraint as a smaller
square that is also connected with dashed lines to the constrained
nodes where Z is the correlation threshold. A Tice graph, however,
does not show all details that are fully and formally captured by
Tice formal model. Therefore, a Tice program uses the API (Ap-
plication Programming Interface) of Tice active library to express
Tice formal model. Consequently, Tice syntax uses C++ syntax to
state the valid API usage, which serves as Tice language constructs,
while Tice semantics is denoted by Tice formal model.

3 FORMAL MODEL
Tice formal modelM is defined asM = (MoCC, ETE, Corr) whose
elements give the details of a Tice graph, its ETE delay constraints,
and its correlation constraints, respectively. The details of the for-
mal model along with the proofs of its soundness and decidability,
including the outline of its mapping to real-time tasks, can be found

3A node being the subject of an action or the possessor of a property means that the
action/property is performed/possessed by the function modeled by the node.

https://savannah.nongnu.org/projects/tice
http://isocpp.org/files/papers/N3797.pdf
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at https://goo.gl/XLLgsn. In this paper, N+, N, Q, Q+, and Q≥0 de-
note the sets of positive integers, nonnegative integers, all rationals,
positive rationals, and nonnegative rationals, respectively.

3.1 Model of Computation & Communication
In giving the details of a Tice graph, the first element ofM is defined
as MoCC = (MoComp, MoComm) whose elements give the details of the
graph’s nodes and arcs, respectively, formalizing Tice MoCC.

3.1.1 Model of Computation. Tice’s model of computation is for-
malized as MoComp = (V, fP : V→Q+, fC : V→Q+). The nonempty
finite set V contains exactly all of the nodes in a Tice graph. A node
v has its period Pv and WCETCv specified by defining functions fP
and fC, respectively, in such a way so that Cv ≤ Pv (Cv , Pv ∈ Q+).

Each node v in its k-th period (k ∈ N+) starts at some time
ts ≥ rv,k = (k − 1)Pv and finishes at some time tf < kPv (i.e., v
has its relative deadline equal to its period). If v had executed on a
single processor core without interference since time ts until time
tf, thenCv ≥ tf − ts. As a result, if v manipulates its internal states
(e.g., by reading/writing some static variables), the manipulation
completes by time tf. On the other hand, if v has at least one
outgoing arc, the output of the computation started at time ts will
be readable by the computation(s) modeled by the adjacent node(s)
not before or at time tf but at the beginning of the next period (at
time rv,k+1). This is the semantics of time-triggered LET [13].

Based on the presence of an incoming or an outgoing arc, a node
is classified as either a sensor, an actuator, or an intermediary node
for the purpose of specifying a time safety constraint on a Tice
graph. A sensor node has either no incoming arc and no outgoing
arc or no incoming arc but at least one outgoing arc. A sensor node
models a computation that obtains events from the environment
by manipulating its internal states, for example, by reading some
hardware I/O ports. In contrast, an actuator node has at least one
incoming arc but no outgoing arc. An actuator node models a com-
putation that delivers events to the environment by manipulating
its internal states, for example, by writing some hardware I/O ports.
Since internal state manipulations complete by time tf, if an event
is to be delivered, it will be delivered to the environment before
time tf, not at the next release time of the actuator node. In other
words, Tice relaxes the time-triggered LET semantics on the actua-
tor nodes of a Tice graph. Lastly, an intermediary node has at least
one incoming and at least one outgoing arcs.

3.1.2 Model of Communication. Tice’s model of communication
is formalized as MoComm = (E, ft : E → ΘM, fI : E →

⋃
θ ∈ΘM

Aθ ).
The possibly-empty finite set E contains exactly all of the arcs
in a Tice graph. Each of the arcs models a typed unidirectional
communication channel, which henceforth is simply called channel,
from a producer node to a consumer node. The channel’s type is
specified by defining function ft. A channel consists of two data
buffers: (1) a source buffer that is only written by the producer node,
and (2) a sink buffer that is only read by the consumer node. Every
sink buffer is initialized with data that are specified by defining
function fI such that for any arc (v,v ′) in E, fI ((v,v ′)) ∈ Aft ((v,v ′))
with Aθ being the set of all possible data whose type is θ .

Writing to a source buffer and reading from a sink buffer are
asynchronous and, as a result, nonblocking. If a node v has at least

one incoming arc, then whenever v is released, it reads all of the
sink buffers synchronously (i.e., all of the reads take zero time).
Since every sink buffer is initialized, v has a well-defined behavior.
On the other hand, if a node v has at least one outgoing arc, then
v has only one source buffer to write its output to because two
or more outgoing arcs share a single source buffer4. The node v
writes to the source buffer whenever v is released, and the write
is complete by time tf. Then, at the beginning of the next period
(when the node is released again) the data in the source buffer is
copied to the corresponding sink buffer(s) synchronously (i.e., the
copying takes zero time). Hence, the data output by the node v in
its k-th release is available for reading by the consumer node(s)
only during the period between the k-th and (k + 1)-th releases.
Lastly, when copying to and reading from a sink buffer happen
simultaneously, copying is ordered before reading.

3.2 Time Safety Constraints
In describing time safety constraints, (1) Vs denotes the nonempty
finite set of sensor nodes, (2) Va denotes the possibly-empty finite
set of actuator nodes, and (3) v⇝v ′ (v is connected to v ′) denotes
the existence of at least one directed path from node v to node v ′.

3.2.1 End-To-End Delay Constraints. The ETE delay constraints
specified on a Tice graph are formalized by the second element
ofM defined as ETE =

(
TE2E, fE2E : TE2E →

(
Q≥0 × Q+

))
with the

first element giving the constrained nodes and the second element
giving the corresponding lower and upper bounds on the permitted
delays. Each of the constraints can only be specified on a connected
sensor-actuator node pair, and therefore, TE2E ⊆

{
(vs,va) ∈ (Vs ×

Va)
���vs⇝va

}
. A constraint (vs,va) ∈ TE2E is respected if any event

flowing from the sensor node vs to the actuator node va has an
ETE delay D such that Zmin ≤ D ≤ Zmax with Zmin and Zmax
being the permitted minimum and maximum ETE delays, that is,
fE2E ((vs,va)) = (Zmin,Zmax) with Zmin < Zmax.

3.2.2 Correlation Constraints. The third element ofM formal-
izes the correlation constraints specified on a Tice graph and is
defined as Corr =

(
TC, fT : TC → Q

≥0
)
with the first element

giving the constrained nodes and the second element giving the
corresponding correlation thresholds. Each of the constraints can
only be specified on a nonempty set of sensor nodes that is paired
with one actuator node where each of the sensor nodes is connected
to the actuator node. Hence, TC ⊆

⋃
va∈Va

{
(V′s,va)

���V
′
s ∈
(
℘
({
vs ∈

Vs
���vs⇝va

})
\ {∅}
)}
. Each constraint (V′s,va) ∈ TC is respected

if for any consumer node vc with at least two incoming arcs and
for any event flowing from the sensor nodes in V′s that vc reads
synchronously at time t , the times when the events were read by
the sensor nodes have absolute differences that are not greater than
Z with Z being the correlation threshold, that is, fT ((V′s,va)) = Z .

4 SYNTAX AND SEMANTICS
As already mentioned, Tice is not implemented as a standalone
language, but as an active library, which is also known as an em-
bedded domain-specific language (EDSL), in the C++ language. This

4An arc being the subject of an action or the possessor of a property means that the
action/property is performed/possessed by the channel modeled by the arc.

https://goo.gl/XLLgsn
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means that software developers can rely on the usual C++ features
in writing a program, complementing them with some Tice con-
structs to describe the structure of the program (as a Tice graph)
and the hardware properties. The C++ compiler will take care of
transforming Tice annotations in a C++ program at compile time. As
a result, Tice is based on the C++ syntax (with particular references
to templates). In the rest of this section, unless stated otherwise,
every line-number reference refers to Figure 6.

Figure 6 presents a description of the Tice syntax, showing the
canonical C++ syntax in bold face enclosed within a pair of single
quotes. Canonical C++ syntax means that the parts in bold face
can be written differently as long as the result is valid C++ syntax
and has the same semantics as the replaced parts. For instance,
instead of using a long comma-separated typedef list to follow the
syntax rule in line 1, multiple typedefs can be employed to separate
the hardware-dependent part in one file as in Figure 7(b) from the
hardware-independent part in another file as in Figure 7(d).

The Tice syntax in Figure 6 uses the following nonterminal (sym-
bol) definitions. Every nonterminal with suffix “_ident” represents
a (valid) sequence of C++ terminals that expresses a C++ identifier.
The nonterminals “nonnegative_int” and “positive_int” represent
sequences of C++ terminals that express values inN andN+, respec-
tively. In line 10, “fn_ptr” represents a sequence of C++ terminals
that expresses a function pointer. In lines 26 and 27, “type” rep-
resents a sequence of C++ terminals expressing a C++ object type,
which is any type other than void, a reference type, and a function
type [12, §3.9¶8]. In line 26, “init_val” represents a sequence of C++
terminals that expresses a value whose type is compatible with the
type expressed by the nonterminal “type” in the same line. Lastly,
in line 27, “init_val_ptr” represents a sequence of C++ terminals
that expresses a pointer to an object whose type is compatible with
the type expressed by the nonterminal “type” in the same line.

While every nonterminal with suffix “_ident” can formally be
replaced with a single nonterminal, such as “identifier”, we refrain
from doing so for the following reading aid. In line 6, the C++
identifier represented by the nonterminal “HW_desc_ident” can be
referred to in line 14 when the line’s “HW_desc_ident” represents
the same identifier. In line 10, “comp_ident” can be referred to in line
20 when the line’s “comp_ident” represents the same identifier. In
line 20, “node_ident” can be referred to in line 15/24/25/36/37 when
the respective line’s “node_ident” represents the same identifier.
Lastly, in line 18, “Tice_program_ident” can be referred to in a place
where it is valid to instantiate a class with a nondefault constructor,
which usually is in function main (an alternative is in the declaration
of a global variable). With this reading aid in place, it should be
clear that, although it is valid by the EBNF grammar, using the
identifier represented by the nonterminal “comp_ident” in line 10
as the identifier represented by the nonterminal “HW_desc_ident”
in line 14 will result in Tice compiler raising a compilation error.

The syntax rule in line 1 shows that a Tice program consists of
two parts: hardware-dependent part (“HW_dependent_part”) and
hardware-independent part (“HW_independent_part”). The rules to
specify the hardware-dependent part are found in lines 4–11, while
the rules to specify the hardware-independent part are found in
lines 13–37. The rules to specify both parts make use of the auxiliary
rules in lines 39–42. The auxiliary rule “positive_rational” specifies
a positive rational p/q by specifying a pair of positive integers, the

first and second of which being p and q, respectively. Similarly,
“nonnegative_rational” specifies a value inQ≥0 by specifying a pair
of nonnegative and positive integers. Each auxiliary rule assumes
one as the pair’s second element if it is omitted.

Rule “HW_dependent_part” in line 4 shows that the hardware-
dependent part of a Tice program consists of a target hardware
description (“HW_desc”) and one or more computations (“computa-
tion”) that constitute the program functional aspect. In line 6, rule
“HW_desc” shows that currently a target hardware description spec-
ifies only the set of available processor core IDs (“core_ids”) (e.g.,
Figure 7(b, c) line 5). When the core ID is omitted, a Tice program
will be compiled to a single non-real-time task that immediately
terminates normally. This is useful to validate the design of the
program real-time aspect by letting Tice compiler perform program
safety checks only without mapping the Tice graph to real-time
tasks. Lastly, rule “computation” in line 9 shows that a computation
must specify its WCET on the target hardware (“WCET”), which
constructs function fC (cf. Section 3.1.1) piecewise, and a pointer to
the computation itself (“fn_ptr”) (e.g., Figure 7(b, c) lines 6–9).

Rule “HW_independent_part” in line 13 shows that the hard-
ware-independent part of a Tice program consists of one or more
nodes (“node”) that form the setV (cf. Section 3.1.1) and a Tice graph
that is constructed by referring to the nodes (“node_ident”). Zero or
more arcs can then be specified on the Tice graph (“feeder”), and if
at least one arc is specified, it is possible to specify zero or more ETE
delay constraints (“ETE_delay”) (cf. Section 3.2.1) followed by zero
or more correlation constraints (“correlation”) (cf. Section 3.2.2).
Rule “node” in line 19 shows that a node inVmodels a computation
(“comp_ident”) that will be executed periodically at the specified
rate (“period”), which constructs function fP (cf. Section 3.1.1) piece-
wise, (e.g., Figure 7(d) lines 9–10). Rule “feeder” in line 22 shows
that the set E (cf. Section 3.1.2) is constructed in terms of its disjoint
subsets where each subset (e.g., Figure 7(d) lines 12–13) specifies
all of the incoming arcs of a consumer node (“consumer”) (e.g., v3).
Each of the incoming arcs is then specified in terms of the producer
node (“producer”) (e.g., v1 and v2) and the channel modeled by the
arc (“channel”). Rule “channel” in line 26 gives two different ways
to specify the initial value of a channel. When the value can be
specified as a nontype template parameter (e.g., values of integral
types like int), the first alternative (Chan_inlit) can be used to
specify the value literally (“init_val”) (e.g., Figure 7(d) line 12). Else,
the value has to be specified externally (e.g., as a global variable
as in Figure 7(d) line 7) and the second alternative (Chan) is used
to specify the channel’s initial value by means of a pointer (“init_-
val_ptr”) (e.g., Figure 7(d) line 14). Either way, the specification of
a channel’s initial value constructs function fI (cf. Section 3.1.2)
piecewise. Both alternatives also specify the channel’s type (“type”)
in the same way, which constructs function ft piecewise. Rule
“ETE_delay” in line 28 imposes an ETE delay constraint on a sensor
(“sensor”) and an actuator (“actuator”) nodes, the pair of which
forms the set TE2E, with some permitted minimum and maximum
delays (“min_delay” and “max_delay”), the pair of which constructs
function fE2E piecewise, (e.g., Figure 7(d) line 15). Lastly, rule “corre-
lation” in line 33 imposes a correlation constraint on an actuator
(“actuator”) and a nonempty set of sensor (“sensor”) nodes, the pair
of which forms the set TC, with a particular threshold (“threshold”),
which constructs function fT piecewise, (e.g., Figure 7(d) line 16).
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1 Tice_program = ' ',
2 HW_dependent_part , ' ', HW_independent_part , ' ';
3
4 HW_dependent_part = HW_desc , ' ',
5 computation , {' ', computation };
6 HW_desc = ' ', core_ids , ' ', HW_desc_ident;
7 core_ids = ' ',
8 [ nonnegative_int , {' ', nonnegative_int} ], ' ';
9 computation = ' ',
10 fn_ptr , ' ', WCET , ' ', comp_ident;
11 WCET = positive_rational;
12
13 HW_independent_part = node , {' ', node}, ' ',
14 ' ', HW_desc_ident , ' ',
15 node_ident , {' ', node_ident},
16 [ ' ', feeder , {' ', feeder},
17 {' ', ETE_delay}, {' ', correlation} ],
18 ' ', Tice_program_ident;
19 node = ' ',
20 comp_ident , ' ', period , ' ', node_ident;
21 period = positive_rational;
22 feeder = ' ', producer , ' ', channel ,
23 {' ', producer , ' ', channel}, ' ', consumer , ' ';
24 producer = node_ident;
25 consumer = node_ident;
26 channel = ' ', type , ' ', init_val , ' '
27 | ' ', type , ' ', init_val_ptr , ' ';
28 ETE_delay = ' ',
29 sensor , ' ', actuator , ' ',
30 min_delay , ' ', max_delay , ' ';
31 min_delay = nonnegative_rational;
32 max_delay = positive_rational;
33 correlation = ' ', actuator , ' ',
34 threshold , ' ', sensor , {' ', sensor}, ' ';
35 threshold = nonnegative_rational;
36 sensor = node_ident;
37 actuator = node_ident;
38
39 positive_rational = ' ',
40 positive_int , [' ', positive_int], ' ';
41 nonnegative_rational = ' ',
42 nonnegative_int , [' ', positive_int], ' ';

typedef
, ;

,
,

HW < >
Core_ids <

, >
Comp(

, )

, ,
Program < ,

,
, ,
, ,

>
Node <

, >

Feeder < ,
, , , >

Chan_inlit < , >
Chan < , >

ETE_delay <
, ,

, >

Correlation < ,
, , >

Ratio <
, >

Ratio <
, >

Figure 6: Tice syntax expressed in the ISO/IEC standard
EBNF (Extended Backus-Naur Form) [10].

5 COMPILATION
A Tice program is compiled in two stages as shown in Figure 8. The
first stage is Tice compiler front-end that performs program safety
checks, while the second stage is Tice compiler back-end that maps
a Tice program to a set of real-time tasks and their schedule on
available processor cores (the schedule states, among other things,
the task partitioning policy). The mapping performed by the back-
end only needs to ensure that the result behaves in accordance with
the Tice formal model expressed in the program, and hence, the
mapping is not necessarily injective (e.g., all functions modeled by
the graph nodes can be mapped to one real-time task scheduled
using cyclic executive on one core). To supply further information
needed by the back-end (e.g., core IDs), a Tice program uses HW,
the Tice hardware description class template. The two-stage com-
pilation makes Tice not only extensible but also portable because
without changing the program real-time aspect, which is processed
by the front-end, the back-end can not only incorporate new results
from real-time scheduling research but also retarget the program
for different hardware described by different HW instantiation.

A Tice program is compiled when the C++ compiler encounters
the instantiation of the identifier that is represented by “Tice_pro-
gram_ident” in Figure 6 line 18 (e.g., P(argc, argv) in Figure 7(d)

1 #include <array >
2 typedef std::array <double , 5> X;
3 int fn1(); double fn2(); X fn3(int , double ); void fn4(X);

(a) File subprograms.hpp.
1 #include "subprograms.hpp"
2 #include "tice/v1.hpp"
3 using namespace tice::v1;
4 typedef
5 HW<Core_ids <4>> hw_desc ,
6 Comp(&fn1 ,Ratio <1,10>) cp1 ,
7 Comp(&fn2 ,Ratio <3,10>) cp2 ,
8 Comp(&fn3 ,Ratio <2>) cp3 ,
9 Comp(&fn4 ,Ratio <2,10>) cp4;

(b) File hw-1.hpp.

#include "subprograms.hpp"
#include "tice/v1.hpp"
using namespace tice::v1;
typedef
HW<Core_ids <2, 4>> hw_desc ,
Comp(&fn1 ,Ratio <3,10>) cp1 ,
Comp(&fn2 ,Ratio <9,10>) cp2 ,
Comp(&fn3 ,Ratio <6>) cp3 ,
Comp(&fn4 ,Ratio <6,10>) cp4;

(c) File hw-2.hpp.
1 #if defined USE_HW_1
2 #include "hw -1.hpp"
3 #elif defined USE_HW_2
4 #include "hw -2.hpp"
5 #endif
6 #include <cstdlib >
7 namespace { X i3_4; double i2_3 (0); };

8 using namespace tice::v1; typedef
9 Node <cp1 , Ratio <6>> v1, Node <cp2 , Ratio <5>> v2,
10 Node <cp3 , Ratio <2>> v3, Node <cp4 , Ratio <3>> v4,
11 Program <hw_desc , v1, v2, v3, v4,
12 Feeder <v1, Chan_inlit <int , -1>,
13 v2, Chan <double , &i2_3 >, v3>,
14 Feeder <v3, Chan <X, &i3_4 >, v4>,
15 ETE_delay <v2, v4, Ratio <0>, Ratio <12>>,
16 Correlation <v4, Ratio <5>, v1, v2> > P;

17 int main(int argc , char *argv []) {
18 for (int i = 1; i <= i3_4.size (); ++i)
19 i3_4[i-1] = (argv[i] ? std:: strtod(argv[i], nullptr)
20 : 0);
21 P(argc , argv); }

(d) File main.cpp.

Figure 7: OrdinaryC++ functions implementing the program
functional aspect (a) are annotated using Tice to execute on
two different multiprocessor systems (b) and (c) whose real-
time aspect is implemented by a Tice program (d) whose
lines 8–16 express the Tice graph in Figure 5.
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available processor cores, partitioning strategy)

C++ program compilation

C++/Tice
program file

C++
object file

Linking Executable
file

FileLegend:

Tice program
safety check

Tice mapping to real-time
workload & schedule

Tice
program

? The usual
compilation

Yes

No

Process/subprocess Decision process
A B
A B A supplies type information to (sub)process B
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Figure 8: The compilation of a C++/Tice program.

line 21), which corresponds to the “Yes” branch of the sole de-
cision process in Figure 8. The metaprograms of Tice compiler
front-end then perform program safety checks according to the
constraints presented in Section 3. For example, g++ -std=c++14



EWiLi’18, 4 October 2018, Torino, Italy Tadeus Prastowo, Luigi Palopoli, and Luca Abeni

-Wfatal-errors prints the following error message as the first
meaningful line when a node’s period is less than its WCET, which
may happen in the evolution of an embedded program as it is ported
to another hardware that increases the WCET or as the revision of
its HRT specifications decreases the period: In instantiation of
struct tice::v1::error::node::period_is_greater_than_-
or_equal_to_wcet<false>, while the third last meaningful line
gives the error location at line 28 column 45 of the compiled file: v1/
test-v1_internals_node-fail_1.cpp:28:45: required from
here. To compare, clang++ -std=c++14 -Wfatal-errors prints
similar error messages with the most important ones being found
near the earliest and latest lines. That is, using Wfatal-errors
switch coupled with our design of raising an error using individual
metaprograms with meaningful names within nested namespaces
results in informative error messages whose reasons and locations
are easily located near the earliest and latest lines printed by the C++
compiler. The back-end metaprograms would then run to map the
program to real-time tasks, raising any error in the same manner.

6 RELATEDWORK
Tuchscherer, et al. [18] propose for the control functions (functional
aspect) of an embedded automated driving system to be expressed
directly in C++, instead of separately in MATLAB/Simulink, to have
an integral model representation (i.e., an automatic consistency)
with the dynamic object management (nonfunctional aspect) of the
system. Tice similarly expresses the functional and the real-time
(nonfunctional) aspects of a program directly in C++.

Deters, et al. [4] propose a C++HRT active library that organizes a
program’s functional aspect in terms of a Liu-Layland taskset whose
tasks are C++ classes to be scheduled on a single processor core
using rate monotonic. The active library ensures that the program
is time safe by performing a schedulability test. Tice raises the real-
time abstraction level of [4] by effectively hiding the active library of
[4] within Tice compiler back-end as one possible mapping target.

Tice formal model M has its first element MoCC simplify the
MoCC of Giotto [8], mainly by allowing only a single mode and by
not strictly keeping the time-triggered LET on the actuator tasks.
On the other hand, the remaining elements ofM (ETE and Corr),
which formalize the ETE delay and correlation constraints specified
on a Tice graph, are inspired by [6].

Lastly, unlike other RTPLs (e.g., [1, 8, 9]) that require the use of a
new compiler if not also a new programming language, Tice being
embedded in C++ imposes no such requirements and no extra cost
beyond the usual cost of using a new C++ library.

7 CONCLUSION AND FUTUREWORK
We proposed Tice, an economical RTPL in the form of a C++ active
library, whose high-level real-time abstraction is synthesized from
[8, 9]. Tice is economical because Figure 7 shows that Tice syntax
is a straightforward C++ that many embedded and real-time system
developers are accustomed to. Tice syntax also directly expresses
a Tice graph, which represents Tice’s MoCC and its associated
semantics (cf. Section 3), allowing for easier maintenance and evo-
lution. Furthermore, Tice programs can be edited, compiled, linked,
debugged, and profiled using existing modern standard C++ pro-
gramming toolchains, which are prevalent in the development of

embedded and real-time systems. Aside from that, as an RTPL, Tice
key advantage over the general-purpose language C++ is its ability
to keep consistent the program functional and real-time (nonfunc-
tional) aspects automatically. The key advantage is demonstrated
in Section 5 where a mistake in the program evolution is automati-
cally caught by Tice metaprograms that can be engineered to raise
informative error messages, giving not only the locations but also
the domain-specific reasons of the errors.

Tice development sufficiently progressed to answer questions
related to programming experience as given in the preceding para-
graph. Our short-term goal is to complete Tice compiler back-end
to answer questions related to the real-time quality of the gener-
ated code. Our long-term goal would be on answering questions
on interoperability with external tools, such as a WCET analyzer
to automatically supply the computation WCETs, and questions on
Tice industrial impacts, especially to see whether “any real-time
requirements would [still] be met in a special-purpose manner” [7].
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