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ABSTRACT
Read-ahead schemes of page cache have been widely used
to improve read performance of Linux systems. As An-
droid system inherits the Linux kernel, traditional read-
ahead schemes are directly applied in mobile devices. How-
ever, read request sizes and page cache sizes in mobile de-
vices are much smaller than other platforms, which may de-
crease read-ahead efficiency and hurt user experience. The
read-ahead efficiency is defined as hit pages / all pre-fetched
pages in a sequential read. To study the efficiency of tradi-
tional read-ahead in mobile devices, this paper first observes
that many pre-fetched pages are unused in page cache, which
causes high page cache eviction ratio with high extra access
latency. Then, this paper analyzes the factors that closely
relate to the access latency. It is found that there exists
a trade-off between read-ahead size and access latency. A
size-tuning scheme is then proposed to explore this trade-off.
Experimental results on real mobile devices have shown that
the proposed scheme can reduce the number of pre-fetched
pages and improve the efficiency of read-ahead without de-
creasing the page cache hit ratio.

1. INTRODUCTION
Read performance is critical to user experience on mobile

devices because a quick response is expected for read op-
erations, such as launching applications [1][2]. Page caches
companied by read-ahead scheme can largely decrease read
latency and have been widely applied in Linux systems. As
Android system inherits the Linux kernel, traditional read-
ahead scheme is directly applied in mobile devices. However,
mobile devices have limited resources [5] and their request
sizes and cache sizes have a lot of differences from servers,
which leads to an inefficiency of read-ahead. For example,
when pre-fetching 100 pages into the page cache, only about
3 pages of them will be read by the requests again. The
other 97 unused pages stay in the page cache, easily leading
to frequent evictions. When page cache is full, some pages
have to be evicted from the page cache first. These eviction-
s induce many extra latencies. To quantitatively show this
influence, the latencies of launching Twitter and Facebook
in three situations are collected on a real Android mobile
device (HuaweiP9 mounted with fourth extended filesystem
(Ext4) and flash friendly file system (F2FS)), as shown in
Figure 1.
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Figure 1: The latencies of launching Twitter and Facebook
in three situations.

In the “Cached” case in Figure 1, cache hit happens and
the requested data pages can be directly accessed. It is im-
plemented by re-launching the app when it is still in memo-
ry 1. In the “Read” case, cache miss happens and cache has
enough space to launch the app immediately. It is imple-
mented by launching the app after cleaning the page cache.
In the “Evictfirst” case, cache miss happens and cache is
full. Some pages have to be evicted from the cache to re-
lease space first. It is implemented by launching the app
after sequentially launching 20 apps. The results show that
the latency of launching app is the shortest in the “Cached”
case. Compared to “Read” case, the “Evictfirst” case causes
a longer launching latency for the listed two apps. This ad-
ditional latency in the “Evictfirst” case is mainly caused by
the page cache eviction.

In recent years, the works focusing on read ahead schemes
can be classified into two types. The first type predicts the
next app to use according to the information, such as user
location [12][4] and then pre-fetches the data of the predicted
next app [14]. The second type modifies the read-ahead
scheme to pre-fetch pages according to other rules, such as
the disk layout [6][7].

Focusing on read-ahead schemes on mobile devices, this
paper first obtains three observations based on experiments
in real mobile devices. Then, related factors that induce
benefit and cost of current read-ahead scheme are analyzed
and it is figured out that there exists a trade-off between
read-ahead size and access latency. Finally, a size-tuning
method is proposed to find a proper maximum size of read-
ahead with which the eviction ratio can be reduced as much
as possible without increasing the number of I/O requests.

In summary, this paper makes the following contributions:

1Check it by the command dumpsys meminfo.



• Observed that the inefficiency of read-ahead schemes
are caused by the small request size and cache size in
mobile devices;

• Analyzed the factors related to the access latency and
identified that there is a trade-off between read-ahead
size and access latency;

• Proposed a size-tuning scheme to find a proper maxi-
mum read-ahead size by exploiting the above trade-off.
Experimental results show that this size can improve
the efficiency of read-ahead without decreasing page
cache hit ratio.

The rest of this paper is organized as follows. Section 2
describes background information and motivation. Several
observations on real mobile devices and analysis are present-
ed in Section 3. Section 4 proposes a size-tuning scheme to
exploit the trade-off between read-ahead size and access la-
tency and evaluates it on real mobile devices. Section 5 lists
related works. This paper is concluded in Section 6.

2. BACKGROUND AND MOTIVATION
In this section, an overview of Android I/O stack, read-

ahead scheme and file systems of mobile devices are present-
ed. Besides, the request sizes of mobile devices and servers
are compared.

2.1 Overview of Android I/O Stack
Android is a mobile operating system developed by Google,

based on the Linux kernel and designed primarily for mobile
devices. Figure 2 illustrates an architecture of Android I/O
stack, including user space, Linux kernel, and device.

Application is the program to perform coordinated func-
tions for the benefit of user, such as YouTube, Twitter, etc.

VFS Layer is designed for allowing applications to access
different types of file systems in a uniform way.

Page Cache is used to provide quick accesses to cached
pages and improve overall performance. The sizes of page
cache in mobile devices are usually smaller than in server.

File System is used to control how data are stored and
retrieved. It could affect the efficiency of read-ahead and hit
ratio of page cache through data layout.

Generic Block Layer translates host requests into block
I/O (bio). One bio is an ongoing I/O block device operation.

I/O Scheduler Layer re-organizes I/O operations to de-
cide the order of submitting to the storage devices.

Flash Storage is an electronic non-volatile storage medi-
um. It constitutes device with the above layer.

2.2 Read-ahead Scheme
The read-ahead scheme is designed for improving the page

cache hit ratio by pre-fetching next few pages in a sequen-
tial read operation. When a request is a sequential read
operation, read-ahead will be conducted to pre-fetch pages
with the size 2 or 4 times of that read operation. If read-
ahead hits, the size of pre-fetched pages will be increased
by 2 times of the last pre-fetch operation until reaching the
maximum size of read-ahead (default 128KB). If read-ahead
misses, the size of read-ahead will be degraded by 2 pages
(8KB) until reaching the minimal size of read-ahead (default
16KB).

Read-ahead is located in the same layer as page cache,
and above the file system layer, but its hit ratio depends
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Figure 2: Android I/O stack overview.
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Figure 3: Request size distribution of read operations. The
traces of mobile devices are collected in the accordingly
file system (F2FS on Nexus9 and Ext4 on Nexus6). The
traces of servers are the typical traces, which are also used
in [10][13].

on the specific file system. This is because that the read-
ahead scheme is based on an assumption that sequential
read operation on file level is also sequential on the logical
address of devices. However, the data layout depends on the
specific file system.

2.3 File System on Mobile Devices
There are two popular file systems on current mobile de-

vices: Ext4 and F2FS. These two file systems have different
influences on read performance because of their log and up-
date schemes.

Ext4 was born as a series of backward-compatible exten-
sions to Ext3 [11]. It is the most popular file system on
current mobile devices. Ext4 adopts in-place update, which
writes update data at the old logical addresses.

F2FS [9] is another widely used file system on mobile
devices. If the free space is enough, F2FS buffers a se-
quence of data in the cache and then writes all the changes
at the end of the log sequentially. Meanwhile, the original
data are marked as invalid. This log and update scheme
needs a garbage collection (GC) to reclaim space. However,
when space is almost full, to improve performance, it adopts
threaded log scheme, which reuses the space of invalid data
without GC.

Since different file systems and space status will affect the
data layout and thus affect the efficiency of read-ahead, two
file systems and two space status in F2FS will be used in
following experiments.

2.4 Request Sizes Comparison
To introduce the motivation of this paper, the compari-

son of request sizes between mobile devices and servers are



presented in Figure 3. These results are collected by blk-
trace[3]. The results show that most of the request sizes
of Linux server are large, e.g. 4-64KB or more than 64KB.
However, most of the request sizes of mobile devices are s-
maller than 64KB. Android directly inherits the read-ahead
from Linux kernel, in which the maximum size of the read-
ahead is 128KB (32 pages). This leads to a lot of unused
pre-fetched pages. For example, to sequentially read 7 pages,
156 (4+8+16+32+32+32+32) pages will be pre-fetched and
the efficiency of read-ahead is 4.5%. These redundant pages
will induce extra access latencies and thus affect the user
experience.

3. OBSERVATIONS AND ANALYSIS
In this section, the number of pre-fetched pages will be

observed on real mobile devices. The experimental scenarios
and setup will be presented first. And then, the page cache
eviction ratio and extra access latency induced by these pre-
fetched unused pages will be presented. Finally, the factors
that closely relate to the extra access latency are analyzed.
Based on the analysis, it is found that there exists a trade-off
between read-ahead size and extra access latency.

3.1 Experimental Scenarios and Setup
The 120 experimental scenarios and the experimental set-

up used are presented in this section.

3.1.1 Experimental Scenarios
To comprehensively study the efficiency of read-ahead on

the mobile devices, data are collected in 120 scenarios. Each
scenario is represented by 5 capital letters. The configura-
tions are listed in Table 1.

To figure out the influence of the file system on the hit ra-
tio of the page cache and read-ahead, both two mainstream
file systems of mobile devices, F2FS and Ext4, are involved
in our experiments. To show the influence of read-ahead on
the page cache, we compare the hit ratio of the page cache
when read-ahead is turned on and turned off. Moreover, the
logging ways are different in F2FS when the storages (Flash-
es) are full and have enough space, while logging ways are
the same in Ext4. So we add these two scenarios (F and
E) in F2FS and just one scenario (E) in Ext4. Additional-
ly, cleaning cache is a critical step for testing the hit ratio
of the page cache and read-ahead because that the cache is
not empty2 after restart operation. Furthermore, launching
and using apps are different types of operations. Launching
apps mainly generates sequential read operations while using
apps mainly generates random and some sequential read and
write operations. Thus these two scenarios have different in-
fluences on the hit ratio of the page cache and read-ahead.
As users’ common operations, both of them need to be test-
ed. Finally, different apps have different using patterns, so
7 popular apps (including browser, map, game, multimedia
and social apps) are selected in the experiments.

For clarity, the letters with specific order present experi-
mental scenarios. For example, in the results, FRESF rep-
resents that the testing file system is F2FS and Read-ahead
is turned on, and storage has Enough space, Facebook is
tested after reStarting the mobile device. According to the
results of our experiments, some interesting observations will

2Check it by command free -m in current mobile devices.

Table 1: Interpretation of the capital letter represented sce-
narios.

Order Letter Meaning

1 F F2FS

E Ext4

2 R With readahead

N Without readahead

3 E Enough space (more than 50% of capacity)

F Full in F2FS (less than 5% of capacity)

4 S Test after restart

C Test after clean cache

5 M Launching 20 Apps

Launching T Launching Twitter

Apps F Launching Facebook

5 C Using Chrome

Using T Using Twitter

Apps F Using Facebook

A Using Angrybird

M Using Google Map

E Using Google Earth

Y Using YouTube

Table 2: Platforms used in experimentations.

Name System Storage

Nexus9 CPU: NVIDIA Denver eMMC16GB
Memory: 2GB Data partition: 10.8GB
OS: Linux 3.4.0 File system : F2FS
Android: 5.0.1

Huawei CPU: ARM’s Cortex-A72 eMMC32GB
P9 Memory: 3GB Data partition: 25.1GB

OS: Linux 3.10 File system : F2FS or Ext4
Android: 6.0

Nexus6 CPU: Krait 450 eMMC 32GB
Memory: 3GB Data partition: 26GB

OS: Linux 3.10.40 File system : Ext4
Android: 6.0.1

be shown in the next subsection. Moreover, the reasons for
these observations will be analyzed.

3.1.2 Experimental Setup
To compare the influence of different file systems, three d-

ifferent Android mobile devices are used in our experiments.
Their configuration details are shown in Table 2. Nexus9
employs F2FS as default file system of the data partition.
The default file system of data partition in HuaweiP9 is also
F2FS, but it can be converted to Ext4. So it can be used to
do the influence comparison of F2FS and Ext4. In Nexus6,
the default file system of its data partition is Ext4. Launch-
ing and using apps are conducted on the data partition, so
their file systems will affect the experimental results.

3.2 Observations
In this section, a set of experiments are conducted on

HuaweiP9 with Ext4 and F2FS file systems to comprehen-
sively study efficiency of read-ahead schemes in mobile de-
vices. According to the experimental results, three observa-
tions have been found.

The first observation is that many unused pages are
pre-fetched into page cache by read-ahead. The ratio of
max-sized (128KB) pre-fetch when launching apps and using
apps are shown in Figure 4a and Figure 4d respectively. The
results show that there are a lot of max-sized pre-fetch in
both launching and using app cases. When using apps, the
ratio can reach 72%; When launching apps, the ratio can
reach 80%. However, according to Figure 3, most of the
request sizes are smaller than 64KB in mobile devices. This
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(b) When launching apps.
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(c) When launching apps.
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(e) When using apps.
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Figure 4: Read-ahead efficiency and page cache eviction ratio on HuaweiP9. If the first letter is F, that means the file system
is F2FS. Otherwise, the file system is Ext4. The second letter R means read-ahead scheme is turned on. If the third letter
is E, that means the storage has enough space. Otherwise, the storage is full (more than 95%). If the fourth letter is S,
conducting restart operation before tests. Otherwise, cleaning page cache before tests. For example, FRES: file system, with
read-ahead, enough space and restart before tests.

means that too many unused pages are pre-fetched. The
efficiencies of read-ahead when launching and using apps are
shown in Figure 4b and Figure 4e respectively. The average
efficiency is 3% in F2FS and 2% in Ext4. This means that
most of pre-fetched pages are unused.

The second observation is that the eviction ratio in-
duced by read-ahead is unexpectedly high, especially in F2FS.
The page cache eviction ratios3 in different scenarios are
shown in Figure 4c and 4f. In F2FS, when launching 20
apps, the eviction ratio could be 1.1. This is because that
some of the pre-fetched pages have been evicted from the
cache, even though when there is no request. The eviction
ratio in F2FS is larger than Ext4, no matter when launching
apps or using apps. One of the major reasons is that when
processing a request, the data read into page cache by F2FS
is larger than by Ext4.

The third observation is that page cache eviction has
induced extra access latency. According to the results in
Figure 1, the latencies in“Evictfirst”case could be 23.8% and
41.5% longer than in “Read” case when launching Twitter
and Facebook, respectively.

In a word, many unused pages are pre-fetched into the
limited page cache, which induces high page cache eviction
ratio and thus leads to extra access latency.

3.3 Access Latency Analysis
Based on the above observations, this subsection analyzes

the factors that are closely related to the access latency.
The latency of reading a page is different in four cases,

including “Cached”, “Read”, “Evictfirst1”, and “Evictfirst2”.
Their latencies are listed in Table 3.

In “Cached” case, the requested page is in the page cache,
therefore it can be directly accessed from the page cache.

3eviction ratio = evicted pages / requested pages

The latency of read operation only includes the latencies of
“Check cache” and “Read from cache”. Both the latencies
of “Check cache” and “Read from cache” are on nanoseconds
level. Hence, the latency of read operation is very short.

In “Read” case, cache miss happens but the page cache
has enough space for the requested page, thus this page can
be read into page cache immediately. So the read operation
includes the latencies of“Check cache”, “Create page”, “Read
from device” and “Read from cache”. The latency of “Read
from device”is on microseconds level while other parts are on
nanoseconds level. The latency of read operations is longer
than “Cached” case.

In “Evictfirst1” case, the page cache is full, some pages
have to be evicted from the cache to release space first, so
that the requested page can be read into the cache. In this
case, the evicted page is clean (it has not been updated),
thus it can be removed directly. The latency of read opera-
tion includes the latencies of “Check cache”, “Remove one”,
“Create page”, “Read from device” and “Read from cache”.
Only more than “Read” case by “Remove one”, which is on
nanoseconds level. So the latency of read operation is similar
to the “Read” case.

In “Evictfirst2” case, the page cache is full and the evict-
ed page is dirty (it has been updated), thus it needs to be
written back to the secondary storage first. The latency of
read operation includes all the latencies. The latencies of
“Write back” and “Read from device” are on microseconds
level. Hence, the latency of read operations is the longest.

Read-ahead can improve read performance by improving
the page cache hit ratio and reducing I/O operations. This
means read-ahead could increase the number of “Cached”
case. However, if the efficiency of read-ahead is too low, the
unused pages will occupy the page cache. In other words,
the inefficiency of read-ahead will increase the number of



Table 3: The comparison of latency of read operations with four seances. “ns” represents the latency is on nanosecond level
and “us” represents the latency is on microseconds level. “Y” represents that this kind of latency is included.

Check cache Evict page from cache Create page Read from device Read from cache

Write back Remove one

Latency ns us ns ns us ns

Cached Y Y

Read Y Y Y Y

Evictfirst1 Y Y Y Y Y

Evictfirst2 Y Y Y Y Y Y

Evictfirst1 and Evictfirst2. The efficiency of read-ahead can
be improved by reducing the size of read-ahead. However,
if the read-ahead size is too small, it will decrease the page
cache hit ratio and increase the number of I/O requests,
which thus can increase the access latency. There is a trade-
off between read-ahead size and access latency.

4. SOLUTION AND EVALUATION
In this section, a size-tuning scheme is proposed to exploit

the trade-off between read-ahead size and access latency.
To evaluate this scheme, a case study is implemented on
HuaweiP9 with F2FS and Ext4.

4.1 Size-tuning Scheme
Size-tuning scheme aims to find a proper maximum size

of read-ahead (MSR) to reduce the pre-fetched pages with-
out increasing the number of I/O requests. The size-tuning
scheme calculates the MSR based on the maximum request
size denoted as maxreqsize. On mobile devices, as shown
in Figure 3, almost all of the request sizes are smaller than
128KB (32 pages). The maxreqsize is 32 pages, which is
calculated based on the average mobile workloads.

It is not tricky to find the proper MSR, because that too
small value would increase the number of I/O while too
large value would induce a lot of unused pages pre-fetched.
For example, in original read-ahead (by default MSR is 32
pages), to sequentially request 32 pages (maxreqsize), 956
(4+8+16+32...+32) pages will be pre-fetched by 32 read-
ahead operations. Each read-ahead operation is one I/O
operation. Actually, the first four I/O will pre-fetch 60 pages
(>maxreqsize). The pages other than the first 32 pages are
unused in this sequential read operation. If MSR is tuned to
16 pages, 492 (4+8+16+16...+16) pages will be pre-fetched
by 32 read-ahead operations. The first four I/O will pre-
fetch 44 pages (>maxreqsize). If MSR is tuned to 8 pages,
252 (4+8+8+8...+8) pages will be pre-fetched by 32 read-
ahead operations. The first four I/O will pre-fetch 28 pages
(<maxreqsize). In this case, the fifth I/O will be needed to
pre-fetch the remaining 4 pages to meet the maxreqsize.

Based on the above discussion, a size-tuning scheme is
proposed to calculate MSR. The equation for calculating
the new maximum size of read-ahead (NMSR) is as follows:

arg minx{4 ∗
x∑

i=0

2i ≥ maxreqsize} (1)

arg minNMSR{
x∑

i=0

min{4 ∗ 2i, NMSR} ≥ maxreqsize} (2)

The x represents the I/O number. The minimum number
of I/O can be calculated by Equation 1. Substitute the x
obtained by Equation 1 into Equation 2,the minimum NM-
SR can be calculated. Note that the size-tuning scheme is
offline.

4.2 Evaluation Results
To evaluate this size-tuning scheme, a case study is imple-

mented on HuaweiP9. As shown in Figure 3, maxreqsize is
32. According to above two equations, the NMSR is calcu-
lated as 16 pages. In this section, the page cache hit ratio,
the average size of read-ahead, and the efficiency of read-
ahead are compared when with original MSR and NMSR.
We only the influences on Ext4 and F2FS file systems as
examples. The evaluation results are shown in Figure 5.

Figure 5a and 5d show that the hit ratio of the page cache
with NMSR is very close to the original hit ratio. This means
that introducing NMSR will not impact the hit ratio of the
page cache in both launching and using apps cases.

Figure 5b and 5e show that with NMSR, the average re-
quest size pre-fetched by read-ahead can be reduced. This
means that the amount of the pre-fetched pages are most
likely to be reduced.

Figure 5c and 5f show that the efficiency of the read-ahead
can be significantly improved in some cases. When launch-
ing 20 apps, the efficiency of read-ahead can be improved
by 30 times and 6.5 times in F2FS and Ext4 respectively.
This is because there are a lot of sequential read operations.
Launching Facebook and launching Twitter also mainly gen-
erate sequential read operations, but their results do not
present significant improvements. This is because the time
of launching one app is too short to show the benefits.

In summary, the proposed NMSR can improve the effi-
ciency of read-ahead without reducing the page cache hit
ratio and thus improve the read performance.

5. RELATED WORK
This paper, to our knowledge, is the first to study the

efficiency of read-ahead schemes on mobile devices. There
are two groups of works related to the read-ahead scheme
optimization. The first group aims to predict the next few
apps according to the user’s information. The second group
is to change the read-ahead scheme according to other rules.

Predicting the usage of applications
If the usage of applications is known exactly, user expe-

rience could be much improved. Matsumoto et al.[12] pre-
dicted the application usage according to the usage pattern-
s. Parate et al.[14] not only predicted the application usage,
but also pre-fetched the requested pages for the predicted ap-
plication. Chung et al.[4] reduced the application launching
time by terminating “unbeneficial” background applications.

Read-ahead improvement according to other rules
Some read-ahead schemes use other rules to pre-fetch pages
for a high accuracy. Jiang et al.[6] proposed a new read-
ahead scheme to pre-fetch pages according to both data lay-
out and access history on disk. Khaleel et al.[7] proposed
average least frequency used removal (ALFUR) by using
intelligent agent to improve the performance and speed of
browsing web sites using internet. Kim et al.[8] proposed
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Figure 5: The comparison of the page cache hit ratio and performance between the original read-ahead and with NMSR.

a novel scheme to properly harness the swapping to mobile
systems to provide extra usable memory by reclaiming inac-
tive pages and improving memory utilization.

Few previous works discuss the efficiency of read-ahead
schemes. However, we find the efficiency of read-ahead on
mobile devices is very low, which leads an extra latency.
The proposed tuning read-ahead size scheme can solve this
problem and is easily implemented.

6. CONCLUSION
Read-ahead schemes have been widely used to improve

read performance in Linux kernel, but the traditional read-
ahead size is too large for mobile devices. This work observes
that many unused pages are pre-fetched in page cache by tra-
ditional read-ahead, which causes a high page cache eviction
ratio with extra access latency. Based on these observation-
s, this paper further analyzes the factors that closely relate
to the access latency. According to the analysis, it is found
that there is a trade-off between read-ahead size and access
latency. To exploit this trade-off, this paper proposes a size-
tuning scheme. To evaluate this scheme, a case study is im-
plemented on real mobile devices. The experimental results
show that the proposed method can significantly reduce pre-
fetched pages. On average, the efficiency of read-ahead has
been improved by 2.9 times in using app case and by 6.5
times in launching app case without decreasing page cache
hit ratio. In the future work, we will propose a scheme to
tuning the zooming pace and the stop time of read-ahead.
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