
Performance-aware load shedding for
monitoring events in container based environments

Rolando Brondolin
Politecnico di Milano

DEIB department
rolando.brondolin@polimi.it

Matteo Ferroni
Politecnico di Milano

DEIB department
matteo.ferroni@polimi.it

Marco Santambrogio
Politecnico di Milano

DEIB department
marco.santambrogio@polimi.it

ABSTRACT
Runtime monitoring tools have become fundamental to assess
the correct operation of complex systems and applications. Un-
fortunately, the more precise is the monitoring (sampling rate,
information granularity, and so on), the higher is the overhead
introduced in the system itself. In this paper, we propose a
new load shedding framework that enables runtime adapta-
tion of monitoring agents under heavy system load, exploiting
an heuristic Load Manager to control the agent status and a
runtime support for domain-specific policies. We implemented
the proposed methodology on Sysdig, with an average control
error improvement of 3.51x (12.25x at most), w.r.t. previous
solutions.

CCS Concepts
•Information systems→ Streammanagement;•General
and reference→ Performance;•Software and its engineer-
ing → Monitors;

Keywords
Monitoring; Data-stream processing; Load Shedding

1. INTRODUCTION
In the last few decades, embedded systems has moved from

System-on-Chip (SoC) based on micro-controllers to fully-fledged
platforms powered by multi-core processors. This allowed the
concurrent execution of multiple tasks and services on the same
hardware, enabling the development of complex applications in
multiple scenarios (e.g., automotive, Internet TV, mobile and
other embedded use cases like low-power microservers).

Such a technological shift is bringing into the embedded world
a set of technologies that had been an exclusive for workstations
and servers for years. On the one hand, this is the case of virtual-
ization, whose objectives are resources partitioning and applica-
tions isolation in a multi-tenant system, even if this is embedded
[21]. On the other hand, software containers can further reduce
the resource footprint of applications and decrease the overhead
of isolation, an important aspect especially for embedded plat-
forms [6]. In both cases, a thorough and precise monitoring of
hardware platform, operating system and of tenant applications
is fundamental to audit the correct operation of a complex sys-
tem, embedded or not: unfortunately, the more precise is the
monitoring (sampling rate, information granularity, and so on),
the higher is the overhead introduced in the system itself.

EWiLi’18, 4 October 2018, Torino, Italy.
Copyright held by Owner/Author

An interesting use case is Sysdig [24], a monitoring tool based
on system calls tracing [15], meant to monitor Docker containers
[10] at runtime: it provides a monitoring agent that runs in the
system and traces every system call, collecting data for threads
and File Descriptors (FDs) and grouping the resulting metrics
for each application, container and host. When the monitored
applications are serving a small amount of requests, Sysdig has to
collect few system calls, with a negligible overhead on the system.
Then, when the activity of the applications rises, the number of
system calls parsed becomes significant, increasing the agent load
and rapidly filling its memory buffers: the consequence are an
excessive computational overhead and an undiscriminated loss of
events. Self adaptation then becomes an important requirement
to prevent this critical situation at runtime.

In this context, we propose a new Load Shedding (LS) frame-
work that enables runtime adaptation of a monitoring system,
downscaling the quality of the output metrics depending on the
system load. The contribution of this work is twofold:

1. we propose a LS methodology for monitoring agents based
on pluggable and domain-specific policies, that relies on
input characteristics and allows to drop events given their
meta-data (and not their whole content);

2. we designed and implemented the LS framework, which
exploits performance degradation techniques to adapt the
throughput of Sysdig to the input stream, allowing it to
have a limited impact in case of system overload.

The rest of this paper is organized as follows: Section 2 details
the previous works in the field; Section 3 presents a prelimi-
nary analysis of the LS problem, discussing also the system
calls considered in the monitoring activity; Section 4 details the
methodology, the design and its implementation in the LS frame-
work; Section 5 presents the results of the experiments conducted
to validate the proposed methodology; finally, Section 6 draws
the most remarkable conclusions, pointing out future directions.

2. RELATED WORKS
Monitoring is fundamental to audit applications and infras-

tructures performance and effectiveness, both in embedded
environments and cloud-based ones [2]. As for cloud environ-
ments, System-level monitoring tools are available from the
same providers (e.g. Amazon Cloudwatch [8]), as well as from
third party producers, like Azurewatch [4], Nagios [17, 12],
OpenNebula [19], Ganglia [16], and others.

However, the intrinsic dynamism of container-based infras-
tructures moved the focus from system-level to application-level
monitoring [11], where application containers are the fundamen-
tal building block of complex ecosystems. Monitoring tools can

rely on instrumentation [22], plug-ins, Management Interfaces
(MIs) (e.g. Java Management eXtentions (JMX) [13]) or custom
builds of applications.

Another possibility is to retrieve information directly at the
OS-level, thus tracing system calls and network activity [20] to
collect advanced metrics. Tools like NewRelic [18], Datadog
[9] and Sysdig [24] then rose to cope with this new challenge:
Sysdig has been our choice for the validation of the proposed
methodology, although any of the others can be chosen. Sysdig
is a Software as a Service (SaaS) solution which relies on system
calls tracing and MIs to collect aggregated metrics about CPU
and Memory usage, Network and File activity, segmenting and
grouping them by application, container, host and infrastructure
using an agent deployed on each machine. Sysdig is open-source
[24] and provides detailed information about system status using
Linux tracepoints [15]: it is composed by (1) a kernel module,
which traces system calls and exposes some buffers to (2) the
user-space application, which analyzes the events stream.

In this context, the problem of optimizing the agent becomes a
key aspect as the amount of system calls increases. LS techniques
have been introduced mainly in centralized and distributed Data
Stream Management Systems (DSMSs) like STREAM [3] and
Aurora [1] to reduce the overhead manipulating the input stream
and dropping events at runtime. Aurora defines a LS system
[25] based on drop operators added inside the streaming graph,
introducing the concept of Load Shedding Road Map (LSRM).
The algorithm computes several LSRMs off-line and applies
one of them to the query network depending on the system
load. CTRL [26] is a LS system based on Aurora that efficiently
controls the DSMS overloading with identification techniques.

These approaches work on the single input data and do not
tackle the typical data aggregation performed by monitoring
agents. The LS system of STREAM [5] instead, works on aggre-
gation queries over data streams, minimizing the quality loss in
the output data and guaranteeing the desired Quality of Service
(QoS). Finally, a recent works like FFWD [7] starts from that
point and tackles the LS problem with a framework composed
by an heuristic controller and pluggable policies in the context
of sentiment analysis; however, only response time is addressed,
while no consideration on the overhead is made.

3. MOTIVATING EXAMPLE AND GOALS
Sysdig is the monitoring tool we chose to validate the method-

ology proposed in this paper: its agent is able to trace system
calls [23] in a large variety of Linux kernel versions, and its
source code is available open-source. Monitoring these events
is extremely useful for both troubleshooting and runtime audit:
the difference is that the CPU overhead introduced is not a
concern in the former use case, while is critical in the latter.

If we consider the graph of Figure 1, we can see a run of
Sysdig when observing the system calls of the pts/nginx bench-
mark from the Phoronix test suite [14], which is producing '
1.4 million events per second. The graph shows CPU usage of
Sysdig obtained on a Dell Power Edge T630, equipped with two
Intel Xeon E5-2650 v3 @ 2.3GHz and 128GB RAM DDR4 in
three different scenarios. The first one is the CPU load of the
Sysdig troubleshooting tool (in red): it consumes almost one
core of the whole system, as the agent traces every system call,
even non strictly useful ones. If we select only the system calls
related to process creation, context switch and FDs activity (e.g.
open, close, read, write, dup, socket, connect, accept, bind, etc.),
the CPU load of the agent for the same workload is traced in
blue: even if it decreased, it is still far from being negligible.

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

C
P

U
 lo

ad
 (

%
)

time (s)

set-point = 1.1%
sysdig
agent

load shedding

Figure 1: CPU load of sysdig, agent and agent with
LS with nginx from Phoronix test suite.

This work aims at (1) controlling the overhead of the moni-
toring agent, adapting the volume of events processed, while (2)
maximizing metrics precision and monitoring accuracy. This is
showed by the green plot, produced by the agent equipped with
the proposed LS framework: it considers the same events tackled
by the blue plot, however, it drops part of them to meet both
the aforementioned goals, as detailed in the rest of the paper.

4. SYSTEM DESIGN
Figure 2 shows the main components of the Sysdig agent,

highlighting the integrations made by the LS framework.

Kernel
Driver

Load Shedding
Filter libscap libsinsp libsanalyzer

Policy
Wrapper

Load
Manager

Shedding
Plan

event buffers

ok

ko
ko count

account metrics

λ(t) U(t)

stream statsupdated plan

μ(t+1)

event

output
metrics

syscall trace
drop probability

Ut

inspect event

Component Data structureInternal flow External flow Queue

Figure 2: Sysdig and LS framework integrations with
filter, shedding plan, policy wrapper and load manager.

The agent is composed by two main actors: the kernel driver
and the user-space agent. The former traces system calls and
maps them on the events header and payload, sending them
to the interface buffers, one per core. The latter consumes
events from the buffers, parsing them to account the system
call parameters to the proper thread and FD.

The user-space application is then built upon three compo-
nents: a) libscap, b) libsinsp, c) libsanalyzer. Libscap is in charge
of selecting the oldest event from the buffers, sending it to lib-
sinsp, which extracts the data and updates the monitoring state.
Then, the libsanalyzer component groups data per application,
container and host. Finally, the metrics are sent to a back-end
infrastructure at a fixed time interval: no more details about
this are provided here, as this is outside the scope of the work.

The LS framework adds the LS Filter between the interface
buffers and libscap, thus defining where to shed the excessive load.

The filter is in charge of discarding events, depending on the drop
probabilities stated for each process in the Shedding Plan. This
component is fed by the LS policies hosted in the Policy Wrapper,
which computes how much load to shed using the output of
the Load Manager. Finally, the Load Manager decides when to
shed the load computing the throughput of the agent using the
buffers state, the CPU usage set-point and the current CPU
utilization. The framework is also in charge of rescaling the
output metrics depending on the amount of dropped events.

4.1 Load management
The user-space application can be modeled as a single-server

node fed by a set of queues, that can be abstracted to a single
queue given the event consumption strategy adopted. The appli-
cation measures the arrival rate λ(t) as the number of incoming
events and µ(t) as the number of served events in a given time
interval. The event consumption behavior of the agent can
then be modeled by means of the Little’s Law, i.e., the CPU
utilization of the application is proportional to the arrival rate
λ(t) and the service time S(t).

If we consider a one second time interval, we can approximate
the service time as 1

µmax
, where µmax is the estimated max-

imum throughput of the agent. The resulting equation gives an
estimation of the utilization of the user-space application, but
still does not consider the events waiting in the queue, which
are addressed by equation (1). The queue length at time t is
a function of the queue length at time t−1 and the number of
incoming and served events, as shown in equation (2).

U(t)=
λ(t)

µmax
+
Q(t)

µmax
(1)

Q(t)=Q(t−1)+λ(t)−µ(t) (2)

We can then combine the previous formulas to obtain the
formulation of equation (3):

µ(t)=2·λ(t)−λ(t−1)−µmax ·
(
U(t)−U(t−1)

)
(3)

If we assume that the input arrival rate does not change abruptly
over time, we can approximate λ(t) as the arrival rate at last
time interval λ(t−1): this assumption holds as far the system
evolution is slower than the controller.

The last step through the definition of the heuristic Load
Manager is to define the feedback error e(t), as shown in equa-
tion (4) This leads to the final formulation of the Load Manager,
as in equation (5):

e(t)=U(t)−Ū (4)

µ(t+1)=λ(t)+µmax ·e(t) (5)

The Load Manager formulation just obtained is composed by
two contributions: on the one hand, when the contribution
of the feedback error e(t) tends to 0, the stability condition:
µ(t)≤λ(t) is met; on the other hand, the second contribution:
µmax ·e(t) ensures a fast response of the Load Manager in case of
deviations from the CPU load set-point, allowing the application
to consume all the events in the queue in the given time interval.
Equation (5) then represents the throughput that allows the
application to keep up with the events in the queue.

4.2 Event selection
Once the Load Manager has computed the new throughput,

it needs to plan how much load to shed and which events to
drop. To this aim, we split the agent throughput into µc(t),
i.e., the system capacity (measured as the number of computed

events per second), and µd(t), i.e., the dropping rate of the LS
system, thus obtaining (6):

µ(t)=µc(t−1)+µd(t) (6)

As we did for λ(t), if the input stream does not change abruptly
over time, we can approximate µc(t) to µc(t−1). Starting from
equation (6), the proposed LS system selects which events to
drop using a probabilistic approach; where, in any case, the ap-
proximated metrics computed with the LS framework should be
as close as possible to the exact ones. Keeping this in mind, we
can define policies able to express which events must be dropped
and with which probability, still guaranteeing the throughput
µ(t+ 1) defined by the Load Manager. The rest of this sec-
tion proposes two policies related to the case study at hand,
which use domain-specific knowledge on system and application
monitoring.

4.2.1 Fair policy
Each process in the system produces different amount of

events: the fair policy computes a shedding probability for each
one to maintain good visibility on small processes and achieving
good accuracy in estimating metrics of bigger ones. We can
define the number of computed events µci(t+1) for each process
as in equation (7), where |H| is the number of processes. We
can then define for each process a probability P(Xi) (where
Xi means “the event of process i is not taken”) as 1 minus
µci(t+1) over the service rate of that process µi(t+1), as in
equation (8). The value µi(t+1) is approximated rescaling µi(t)
on µ(t+1). Moreover, if we substitute (7) in (8), we obtain the
final formulation of the probability P(Xi).

µci(t+1)=
µc(t+1)

|H| (7)

P(Xi)=1−µci(t+1)

µi(t+1)
=1− µc(t+1)

|H|·µi(t+1)
(8)

In case of processes with unbalanced µi(t), the smaller ones
will have P(Xi)'0, while the bigger ones will have P(Xi)'1.
To achieve optimality in event attribution, the policy orders
the processes by their µi(t) in ascending order, assigning the
events to be computed as in equation (9) and rescaling the
remaining events accordingly. Each probability computed by
the fair policy is then stored in the Shedding Plan, that in our
case is represented by the thread table of the agent.

µci(t+1)=min

(
µc(t+1)

|H| ,µi(t+1)

)
(9)

4.2.2 Priority-based policy
The priority-based policy is meant to monitor critical pro-

cesses with higher accuracy with respect to others. It defines
priorities for each relevant process, while all the others are
considered with minimum priority (i.e., best-effort monitoring).
Given a priority pi∈N and the set of processes H, we can define
the normalized priority wi ∈R as in equation (10), where wi
represents the weight of the process in the input flow. We can
then apply the normalized priority to obtain the number of
computed events for each process µci(t+1) as in equation (11).

wi=
pi

|H|∑
i=1

pi

(10)

µci(t+1)=wi ·µc(t+1) (11)

As we can see from equation (11) and equation (7), wi is the
generalization of the “fair” weight used for the policy of section

Table 1: test configurations for homogeneous tests.
test id name # instances priority # evts/s

A nginx 1.1.0 3 3 884846
B postmark 1.1.0 3 4 1274787
C fio 1.4.0 1 4 1284232
D simplefile 1 2 1507153
E apache 1.6.1 2 2 1975027

4.2.1, where the processes have priority equal to 1. We can now
define the probability P(Xi) as one minus the weighted priority
wi times the ratio between the total number of computed events
µc(t+1) and the service rate for that process µi(t+1) as in
equation (12):

P(Xi)=1−µci(t+1)

µi(t+1)
=1−wi ·

µc(t+1)

µi(t+1)
(12)

Again, when the processes have unbalanced µi(t) we assign the
number of computed events for each process as in equation (13).
In this way, µci(t+1) is selected only if it is smaller than the
process service rate µi(t+1). The remaining events, if any, are
reassigned to the bigger processes in the list rescaling µci(t+1)
accordingly.

µci(t+1)=min

((
wi ·µc(t+1)

)
,µi(t+1)

)
(13)

4.3 Implementation details
The agent already implements a filtering mechanism in the

kernel module, which incrementally halves the input stream
on a 1 second basis in case of overload until the user-space
application reaches the target CPU load. On the one hand, this
solution relieves the user-space application from processing all
the events. On the other hand, it makes impossible to accurately
reconstruct the aggregated metrics.

To cope with this issue, the LS filter is instantiated at the
beginning of the user-space pipeline, discarding events as soon
as they arrive in the buffers and precisely accounting them for
metric reconstruction. Moreover, the LS filter works only on
the events header to avoid duplicated analysis that should be
done by other agent components.

Each system call has two events associated, thus the LS filter
should treat them together. For each event, the LS filter finds
the related thread in the thread table and the FD when the
system call uses it. If the thread or the FD is missing, the event
is discarded, otherwise the LS filter selects whether to drop the
event or not depending on the probabilities computed by the
policies of section 4.2, and accounts the event for the metric
correction phase.

5. EXPERIMENTAL RESULTS
The experimental evaluation focuses on two key performance

indicators: the a) stability of the load manager (i.e., it is able to
maintain the monitoring overhead bounded in all the test cases)
and the b) quality of the output (i.e., we are able to provide
good approximations for the output metrics). On the one hand,
the monitoring agent should maintain the CPU overhead as
close as possible to the set-point, adapting its throughput in
case of sudden spikes of the input stream. On the other hand,
the load adaptation of the agent should minimize the events
drop and the quality degradation of the output metrics.

With these goals in mind, we tested the Load Manager and the
policies described in Section 4.2 w.r.t. the kernel drop technique

Table 2: test configurations for heterogeneous tests.
test id instances # evts/s

F 3x nginx, 1x fio 1381261
G 1x nginx, 1x simplefile 1394268
H 1x apache, 2x postmark, 1x fio 1782978

described in Section 4.3, when executing the following five bench-
marks: apache, nginx, fio, postmark from Phoronix test suite
[14] and a custom one we called simplefile. The benchmarks are
executed in two configurations: homogeneous, where we simulate
a dedicated server (as described in Table 1), and heterogeneous,
where we simulate a scenario in which resources are shared
among different workloads (as shown in Table 2). For each test,
we analyze the stability property, providing the Mean Absolute
Percentage Error (MAPE) between the effective CPU usage and
the set-point, and the quality property, providing the MAPE be-
tween the approximated and the exact metrics computation. We
conducted the tests on a Dell Power Edge T630, equipped with
two Intel Xeon E5-2650 v3 @ 2.3GHz and 128GB RAM DDR4.

5.1 Stability of the Load Manager
Table 3 shows the results obtained with the agent equipped

with the kernel-drop filtering system and the agents with the
two policies described in Section 4.2. We tested the agents with
three different set-points (1.0%, 1.1% and 1.2% of the whole
system capacity) to evaluate the Load Manager response with
different constraints, repeating the experiment more than 20
times for each case. Results shows that the Load Manager
performs better than the kernel-drop solution in most cases,
with an average improvement of the MAPE of 3.51x (12.35x
at most). Table 3 also shows that, in both the fair and priority
cases, the MAPE decreases as we increase the target set-point,
as expected. Moreover, in some cases the kernel-drop algorithm
leads to an oscillatory behavior with a significant amplitude. On
the contrary, the proposed solution allows a fine grain control and
action that allow to converge the CPU usage near the set-point.

The proposed Load Manager performs worse in only one case
(i.e. test H) and reaches saturation in only another case, i.e.,
with test E and test H with set point 1.0%. This happens as
the system is under heavy load and the agent is discarding '
96% of the events. This situation is mainly due to the cost of
reading events inside the input buffers, which can be mitigated
moving part of the filtering process in the kernel driver. The
kernel-drop implementation does not suffer this problem, given
that the event filter is deployed directly in the kernel driver.

5.2 Quality of the output metrics
For what concerns the quality of the output under heavy load

conditions, we collected the output metrics of the agent equipped
with the kernel-drop system and with the two policies of section
4.2, for each test listed in Tables 1 and 2. Results for set-point
1.1% are shown in Figure 3 for the tests of Table 1 and in Figures
4, 5 and 6 for the tests of Table 2. For each test, we measured
the MAPE of the file and network latency metrics and of the file
and network volume metrics, obtained comparing the estimated
and exact metrics of the agents. All the graphs have the y-axis
in logarithmic scale, to allow a better visualization of the results.
As for the homogeneous tests, the kernel-drop baseline and the

proposed LS framework have similar performances with nginx,
postmark, fio and apache, as shown in Figures 3(a), 3(b), 3(c),
3(e) respectively: this happens as these tests have a regular
behavior in terms of system calls, thus making the results inde-

Table 3: MAPE (lower is better) between U and Ū (Ū set to 1.0%, 1.1%, 1.2% of system capacity) with tests of
table 1 (A, B, C, D, E) and table 2 (F, G, H). The proposed solution is highlighted in bold.

test
Ū=1.0% Ū=1.1% Ū=1.2%

kernel-drop fair priority kernel-drop fair priority kernel-drop fair priority
A 4.11% 1.79% 2.86% 7.12% 1.78% 3.78% 7.44% 1.63% 2.41%
B 27.93% 5.51% 5.89% 34.06% 4.37% 4.46% 6.07% 3.04% 4.58%
C 24.12% 2.19% 2.15% 28.03% 2.27% 2.24% 19.48% 2.04% 2.05%
D 14.14% 1.55% 1.77% 11.52% 1.41% 1.54% 15.52% 1.52% 1.65%
E 21.46% 15.94% 17.45% 26.02% 8.51% 8.99% 18.71% 3.58% 7.97%
F 16.95% 6.33% 6.81% 22.67% 8.11% 3.74% 27.00% 4.39% 2.76%
G 18.88% 3.81% 3.04% 16.42% 3.37% 2.73% 19.74% 3.35% 3.29%
H 5.26% 13.06% 25.67% 13.49% 8.41% 8.01% 20.36% 10.05% 5.8%

avg 16.61% 6.65% 8.2% 19,92% 4.78% 4.44% 16.54% 3.70% 3.81%

 1

 10

 100

 1000

latency-file

latency-net

volume-file

volume-net

M
A

P
E

 (
%

)
lo

g

vanilla
fair

(a) kernel drop 50.67%,
fair drop 75.8%,
pts/nginx (A)

 1

 10

 100

 1000

latency-file

latency-net

volume-file

volume-net

M
A

P
E

 (
%

)
lo

g

vanilla
fair

(b) kernel drop 40.49%,
fair drop 43.2%,
pts/postmark (B)

 1

 10

 100

 1000

latency-file

latency-net

volume-file

volume-net

M
A

P
E

 (
%

)
lo

g

vanilla
fair

(c) kernel drop 27.02%,
fair drop 57.13%,
pts/fio (C)

 1

 10

 100

 1000

latency-file

latency-net

volume-file

volume-net

M
A

P
E

 (
%

)
lo

g

vanilla
fair

(d) kernel drop 4.48%,
fair drop 81.43%,
simplefile (D)

 1

 10

 100

 1000

latency-file

latency-net

volume-file

volume-net

M
A

P
E

 (
%

)
lo

g

vanilla
fair

(e) kernel drop 69.02%,
fair drop 94.73%,
pts/apache (E)

Figure 3: MAPE between exact and approximated metrics for tests A,B,C,D,E with file and network latency, file
and network volume (lower is better). The graphs are in log scale.

 0.1

 1

 10

 100

 1000

 10000

 100000

latency-file

latency-net

latency-file

latency-net

latency-file

latency-net

latency-file

latency-net

M
A

P
E

 (
%

)
lo

g

kernel-drop
fair

priority

nginx-3nginx-2nginx-1fio

(a) MAPE latency for 1x fio, 3x nginx

 0.1

 1

 10

 100

 1000

 10000

 100000

volume-file

volume-net

volume-file

volume-net

volume-file

volume-net

volume-file

volume-net

M
A

P
E

 (
%

)
lo

g

kernel-drop
fair

priority

nginx-3nginx-2nginx-1fio

(b) MAPE volume for 1x fio, 3x nginx

Figure 4: MAPE between exact and approximated metrics for test F (lower is better), with kernel drop 69.77%,
fair drop 90.39%, priority drop 88.89%. The graphs are in log scale.

pendent from the drop strategy. On the contrary, this is not the
case of the simplefile test, which performs a set of read and write
operations on several files in a regular manner, with writes ops
buffered by the Operating System (OS): with this optimization,
the volume of bytes read and written remains the same, but the
latency can vary unpredictably, leading to the result in Figure
3(d), where our solution better estimates the file latency metric.

We then mixed some tests to simulate co-located workloads
competing for the same resources. Figure 4 shows the results of
test F, where 3 instances of nginx and one instance of postmark
are running at the same time. In this case, the proposed solution
behaves better in estimating all the metrics of all the running
instances. Moreover, the priorities listed in Table 1 and applied
in the heterogeneous tests enhanced the accuracy on all the
instances with respect to the other processes running in the
system: our solution outperforms by'3 orders of magnitude the
kernel-drop solution with the fio instance in the file metrics. We

experienced the same behavior in test H, with one fio instance,
one apache instance and two postmark instances: Figure 6 shows
that the three implementations performs similarly for apache
and postmark with a limited MAPE, while our solution performs
better with the fio instance. Finally, Figure 5 shows the results
of test G, where one nginx instance and one simplefile instance
run concurrently: results show how we are able to obtain better
estimations w.r.t. kernel-drop for both nginx and simplefile
benchmarks. As a final remark, it is interesting to note how the
proposed solution is able to improve the precision of the output
metrics w.r.t. the kernel-drop solution, even if we often enforce
a higher drop percentage because of the event extraction cost.

6. CONCLUSION
This paper presented a LS framework that allows a monitor-

ing agent to adapt its behavior to both limit CPU overhead and
maximize the accuracy of its output metrics under heavy load
conditions. The framework is composed of an heuristic Load

 1

 10

 100

 1000

latency-file

latency-net

latency-file

latency-net

M
A

P
E

 (
%

)
lo

g
kernel-drop

fair
priority

nginxsimplefile

(a) MAPE latency for 1x sim-
plefile, 1x nginx

 1

 10

 100

 1000

volume-file

volume-net

volume-file

volume-net

M
A

P
E

 (
%

)
lo

g

kernel-drop
fair

priority

nginx-1simplefile

(b) MAPE volume for 1x sim-
plefile, 1x nginx

Figure 5: MAPE between exact and approximated
metrics for test G (lower is better), with kernel drop
41.95%, fair drop 78.37%, priority drop 73.95%. The
graphs are in log scale.

 0.1

 1

 10

 100

 1000

 10000

 100000

latency-file

latency-net

latency-file

latency-net

latency-file

latency-net

latency-file

latency-net

M
A

P
E

 (
%

)
lo

g

kernel-drop
fair

priority

postmark-2postmark-1fioapache

(a) MAPE latency for 1x apache, 1x fio, 2x postmark

 0.1

 1

 10

 100

 1000

 10000

 100000

volume-file

volume-net

volume-file

volume-net

volume-file

volume-net

volume-file

volume-net

M
A

P
E

 (
%

)
lo

g

kernel-drop
fair

priority

postmark-2postmark-1fioapache

(b) MAPE volume for 1x apache, 1x fio, 2x postmark

Figure 6: MAPE between exact and approximated
metrics for test H (lower is better), with kernel drop
48.43%, fair drop 85.31%, priority drop 85.04%. The
graphs are in log scale.

Manager, which autonomously corrects the monitoring agent
throughput, a LS Filter, that accurately discards events, and
a runtime management for domain-specific policies.

Results show how the Load Manager outperforms the pre-
vious filtering implementation by 3.51x on average, 12.25x at
most. At the same time, the domain-specific policies and the
LS Filter enable an accurate metric estimation, outperforming
the previous solution in most of the cases.

We are actively working to bring our LS framework to the next
level. As the experimental evaluation showed, the framework
pays a high filtering cost related to the event extraction process.
This happens because the event processing of the Sysdig case
study is memory bound, as the agent performs few operations on
each event. This issue does not affect the kernel-drop solution,
which is the baseline with which we compare in this work.

Future work will exploit a kernel-level filtering, combining
the efficiency of this solution with the control precision guaran-
teed by the Load Manager and the flexibility provided by the
domain-specific policies.

7. REFERENCES
[1] D. J. Abadi, D. Carney, U. Çetintemel,

M. Cherniack, C. Convey, S. Lee, M. Stonebraker, N. Tatbul,
and S. Zdonik. Aurora: a new model and architecture for data
stream management. The VLDB Journal-The International
Journal on Very Large Data Bases, 12(2):120–139, 2003.

[2] G. Aceto, A. Botta, W. De Donato, and A. Pescapè. Cloud mon-
itoring: A survey. Computer Networks, 57(9):2093–2115, 2013.

[3] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar,
K. Ito, R. Motwani, U. Srivastava, and J. Widom. Stream: The
stanford data stream management system. Book chapter, 2004.

[4] azurewatch. http://www.paraleap.com/azurewatch.

[5] B. Babcock, M. Datar,
and R. Motwani. Load shedding for aggregation queries
over data streams. In Data Engineering, 2004. Proceedings.
20th International Conference on, pages 350–361. IEEE, 2004.

[6] P. Bellavista and A. Zanni. Feasibility of fog
computing deployment based on docker containerization over
raspberrypi. In Proceedings of the 18th international conference
on distributed computing and networking, page 16. ACM, 2017.

[7] R. Brondolin, M. Ferroni, and M. Santambrogio. Ffwd: Latency-
aware event stream processing via domain-specific load-shedding
policies. In Computational Science and Engineering (CSE) and
IEEE Intl Conference on Embedded and Ubiquitous Computing
(EUC) and 15th Intl Symposium on Distributed Computing
and Applications for Business Engineering (DCABES),
2016 IEEE Intl Conference on, pages 130–137. IEEE, 2016.

[8] amazon cloudwatch. https://aws.amazon.com/cloudwatch/.

[9] Datadog. https://www.datadoghq.com.

[10] Docker. https://www.docker.com.
[11] K. Fatema, V. C. Emeakaroha, P. D. Healy,

J. P. Morrison, and T. Lynn. A survey of cloud monitoring
tools: Taxonomy, capabilities and objectives. Journal
of Parallel and Distributed Computing, 74(10):2918–2933, 2014.

[12] E. Imamagic and D. Dobrenic. Grid infrastructure
monitoring system based on nagios. In Proceedings of the
2007 workshop on Grid monitoring, pages 23–28. ACM, 2007.

[13] Java management
extentions. http://www.oracle.com/technetwork/articles/java/
javamanagement-140525.html. [Online; accessed 02-Oct-2016].

[14] M. Larabel and M. Tippett. Phoronix test suite, 2011.
[15] Linux tracepoints. https://www.kernel.org/doc/Documentation/

trace/tracepoints.txt. [Online; accessed 03-Oct-2016].

[16] M. L. Massie, B. N. Chun, and D. E. Culler. The
ganglia distributed monitoring system: design, implementation,
and experience. Parallel Computing, 30(7):817–840, 2004.

[17] Nagios. https://www.nagios.com.

[18] Newrelic. https://newrelic.com.
[19] Opennebula monitoring.

http://docs.opennebula.org/5.2/deployment/open cloud
host setup/monitoring.html. [Online; accessed 08-Nov-2016].

[20] F. Risso and L. Degioanni. An architecture for high performance
network analysis. In Computers and Communications, 2001. Pro-
ceedings. Sixth IEEE Symposium on, pages 686–693. IEEE, 2001.

[21] D. Rossier. Embeddedxen: A revisited
architecture of the xen hypervisor to support arm-based
embedded virtualization. White paper, Switzerland, 2012.

[22] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson,
M. Plakal, D. Beaver, S. Jaspan, and C. Shanbhag. Dapper,
a large-scale distributed systems tracing infrastructure. 2010.

[23] Linux system calls. http://man7.org/linux/man-pages/
man2/syscalls.2.html. [Online; accessed 03-Oct-2016].

[24] Sysdig monitoring tool. https://sysdig.com.
[25] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and

M. Stonebraker. Load shedding in a data stream manager. In
Proceedings of the 29th international conference on Very large
data bases-Volume 29, pages 309–320. VLDB Endowment, 2003.

[26] Y.-C. Tu, S. Liu, S. Prabhakar, and B. Yao.
Load shedding in stream databases: a control-based approach.
In Proceedings of the 32nd international conference on
Very large data bases, pages 787–798. VLDB Endowment, 2006.

