
HyMAD: a Hybrid Memory-Aware DVFS strategy

Camélia Slimani
Univ. Bretagne Occidentale,

UMR6285, Lab-STICC, France
Ecole Sup. Info., Algeria

camelia.slimani@univ-
brest.fr

Stéphane Rubini
Univ. Bretagne Occidentale,

UMR6285, Lab-STICC, France
rubini@univ-brest.fr

Jalil Boukhobza
Univ. Bretagne Occidentale,

UMR6285, Lab-STICC, France
boukhobza@univ-brest.fr

ABSTRACT
Non-volatile memories, such as Phase Change Memories (
PCM), have interesting energy properties. In effect, their
static energy consumption is negligible while the consumed
dynamic energy depends on the performed operation (read-
/write). Several Dynamic Voltage and Frequency Scaling
(DVFS) mechanisms have been proposed to optimize the
energy consumption of memory-bound tasks in embedded
systems. In a hybrid memory, using both DRAM and PCM,
these DVFS strategies need to be adapted to take into ac-
count the different energy behaviors of both memories. In
this paper, we propose a Hybrid Memory-Aware DVFS strat-
egy (HyMAD) to reduce the energy consumption for mem-
ory bound tasks. This mechanism relies on both the rate of
PCM write operations and the overall memory access rate
to tune the CPU frequency. HyMAD takes also into account
the priority of a task to tune the ”performance loss”/ ”energy
efficiency” trade-off. We compared HyMAD with a state-of-
the-art technique by evaluating the Energy-Squared-Delay
product (ED2P). HyMAD ED2P enhancement was evalu-
ated between 2-45% as compared to a system without DVFS
and up to 20% as compared to a state-of-the-art DVFS strat-
egy.

CCS Concepts
•Hardware→Non-Volatile Memory; Memory and dense
storage; •Software and its engineering → Memory
Management; •Operating Systems → performance;

1. INTRODUCTION
Nowadays, the volume of data to process in embedded sys-

tems is growing exponentially [12]. Consequently, a higher
main memory capacity is required to offer a satisfying com-
puting capacity. However, DRAM technology integration
has reached its limit in term of density, it can hardly scale
with the growing application needs [11].

Emerging Non-Volatile Memories (NVM), such as PCM,

EWiLi’18, 4 October 2018, Torino, Italy.
Copyright held by Owner/Author

have interesting properties and can be a solution to such an
issue. In effect, PCM has a higher density than DRAM [10].
In addition, its non-volatility property makes the static en-
ergy very low as compared to DRAM that requires periodic
refreshing. In terms of performance and dynamic energy
consumption, PCM and DRAM are nearly equivalent for
read operations. However, write operations on PCM are
significantly slower and consume more energy as compared
to DRAM [2]. In this context, it is important to design sys-
tems that take advantage of PCM properties whilst avoiding
their energy overhead.

One of the most popular energy saving technique is the
Dynamic Voltage and Frequency Scaling (DVFS). DVFS
makes it possible to act on the CPU frequency to reduce
the CPU dynamic power, and thus, the total system en-
ergy. Several state-of-the-art studies proposed to exploit the
memory access boundedness of a task to reduce the CPU fre-
quency [3, 6]. The basic idea behind these studies is that
the more a task spends time in memory access, the more
the frequency can be decreased. This allows to save energy
without incurring a significant performance loss [3].

In a system equipped with a hybrid main memory com-
posed of DRAM and PCM, having different energy proper-
ties, we believe that frequency scaling needs to be performed
according to memory patterns.

In this paper, we propose a Hybrid Memory-Aware DVFS
(HyMAD) technique that takes into account the heterogene-
ity of the memory. HyMAD relies on optimizing a perfor-
mance loss/energy efficiency trade-off. We used Energy-
Delay Product (EDP) and Energy Delay squared Product
(ED2P) to estimate this trade-off. These two metrics have
been used in several DVFS studies [4]. The basic idea be-
hind HyMAD is to build a frequency scaling model based
on the energy properties of the system (CPU, DRAM and
PCM) with the objective to minimize EDP/ED2P metrics.

HyMAD is based on two main phases, an off-line phase
in which the frequency scaling model is built based on the
real system energy and performance properties (using local
minimum search). CPU, DRAM and PCM are the main
components accounted for. The second phase is an on-line
phase during which the more adequate frequency is chosen
according to the application profile using the built model.

We also considered the task static priority in frequency
scaling. The Linux kernel uses this metric to compute the
time slice duration of a task. The higher the static priority,
the higher the time slice. Then, we found it irrelevant to
reduce the frequency for tasks having a high static priority.

Our experiments show that HyMAD enhances ED2P by

2-45% as compared to no DVFS, and up to 20% as compared
to state-of-the-art strategy [3].

This paper is organized as follows: Section 2 gives some
background knowledge in addition to some related work
summary. Section 3 describes HyMAD design. Section 4
discusses the evaluation methodology and results. We fi-
nally conclude and give some perspectives in Section 5.

2. BACKGROUND AND RELATED WORK

2.1 Background on memory architecture
Table 1 shows a comparison between PCM and DRAM

established from different state-of-the-art surveys [2], [13],
[5]. The advantages of PCM memories are shown in the
first two lines. In effect, the main advantage of PCM is the
small cell size. This allows a higher density and thus inte-
grating more memory capacity in an embedded system. In
addition, it offers a low static energy consumption, in con-
trast to DRAM that requires periodic refreshing. The read
operation performance and energy are almost equivalent to
those of DRAM. However, PCM presents one main disad-
vantage which is the costly write operation both in terms of
energy and performance.

Several studies [2] investigated a hybrid memory to com-
bine the advantages of DRAM and PCM. In this paper, we
consider the horizontal integration of PCM, which is the
most studied combination [2] in which the main memory is
composed of a DRAM and a PCM at the samel level.

Memory type DRAM PCM

Cell size (F2) 60-100 4-12
Static energy (mW/GB) 4 0

Read latency (ns) 10 20
Write latency (ns) 20 150

Write energy consumed per bit pJ/b) 2-3 14 - 20

Table 1: DRAM and PCM technology properties

2.2 Related Work
Existing DVFS strategies can be classified in: (1) appli-

cation level techniques and (2) system level techniques.
Application level techniques: Here, the frequency scal-

ing directives are achieved by the application. These direc-
tives are added off-line during the compilation phase [7] or
on-line according to the tasks behavior [14].

System level techniques: At this level, applications are
not aware of the frequency scaling. The system tunes the
frequency according to several criteria. In the Linux kernel,
for example, the higher the CPU utilization, the more the
frequency is increased. In [3] and [6], the strategies rely on
the memory-boundedness of tasks that can be defined as
the ratio between memory access time and overall execution
time. The higher the memory-boundedness, the lower the
frequency is set. This is done in order to save energy without
decreasing much the performance since memory access time
is prominent and does not scale with frequency.

In our study, we are interested in system level techniques.
To estimate the efficiency of our strategy, we used Workload
Decomposition (WD) [3] as a reference in the evaluation
part. The authors proposed to decompose the task execution
time into an on-chip CPU time (Ton) and an off-chip memory
access time (Toff). They used the ratio between both to
scale the frequency according to the following equation:

scenario 1

scenario 2

scenario n

Local mini-

mum search

Local mini-

mum search

Local mini-

mum search

Logarithmic

Regression

.

.

.

fopt1

fopt2

fopti

Task Exec

Application
of the
generic
model

Memory access rate

PCM Write Rate

Frequency for the next time slice

Generic

Model

Energy consumption

Execution delay

Energy consumption

Execution delay

Energy consumption

Execution delay

Off-line phase

On-line phase

Figure 1: Overview of HyMAD strategy

ftarget =
fmax

1 + PFloss(1 +
Toff

Ton
· fmax

ft−1)
(1)

In eq. 1, the higher the memory boundedness (
Toff

Ton
), the

more the frequency is reduced. PFloss is used to tune the
aggressiveness of the frequency scaling (from 0.05 to 0.2).

3. HYMAD DESIGN

3.1 Overview of the solution
As discussed in the related work Section, several DVFS

strategies for memory-bound tasks have been designed. To
the best of our knowledge, none has considered a hybrid
memory. Given a data placement in a hybrid memory for
a time period, HyMAD tunes the frequency of the CPU
according to three parameters to trade off between energy
and performance. Note that data placement into hybrid
memory is out of the scope of this paper.

The basic idea behind HyMAD is to build an off-line fre-
quency scaling model that minimizes the ED2P, then to ap-
ply this model on-line to tune the frequency according to
the task memory access pattern.

Figure 1 shows an overview of HyMAD off-line and on-line
phases. The off-line phase is used to build the model. During
this phase, we compute the execution time and energy con-
sumption of running tasks with different memory scenarios.
This is done relying on the embedded platform properties in
terms of CPU, DRAM and PCM energy and performance
properties. A memory scenario consists in defining the mem-
ory boundedness of a task in addition to the proportion of
write operations operated on the PCM.

From the computed energy and execution time of different
scenarios, and using a local minimum search, we determined
the optimal frequency (fopt) reduction that minimizes ED2P.

Once this model is defined, we use it on-line to scale the
frequency according to system needs. At the end of each
time slice (t), we measure the memory access rate and PCM

write rate for the scheduled task. The generic model is ap-
plied with these measures to get the frequency to apply for
the next time slice of the task.

3.2 System Model
In order to estimate the energy consumed by a hybrid

memory system, we extended the model described in [3].
The overall execution time Texec is composed of two parts,
the on-chip CPU processing time Ton, and the off-chip time
spent in main memory operations Toff . For simplicity, the
CPU is assumed to be stalled during memory access.

Texec(f) = Ton(f) + Toff (2)

Texec and Ton are frequency (f) dependent since the time
spent on-chip depends on the number of execution cycles
and the frequency. For a given number of cycles N and a
number of cycles per instruction CPI, Ton(f) is given by:

Ton(f) =
N · CPI

f
(3)

In our model, we distinguish between PCM and DRAM
access times (TPCM and TDRAM respectively). Therefore,
we subdivided the off-chip time as follows:

Toff = TDRAM + TPCM (4)

TDRAM and TPCM include the times for both read and
write operations. We assume that these times are equivalent
on DRAM (TDRAMr/w). So the DRAM latency is related to
the overall number of accesses (operations) Nacc. For PCM,
we distinguish between the number of read Nr and write Nw
operations (respective latency is TPCMr and TPCMw). So:

Toff = Nacc · TDRAMr/w +Nr · TPCMr +Nw · TPCMw (5)

The energy consumed by the system is also decomposed
into on-chip and off-chip energy. The on-chip energy de-
pends on the CPU frequency as it will be detailed here after.

E(f) = Eoff + Eon(f) (6)

The off-chip energy is composed of DRAM and PCM dy-
namic and static energy. As for the execution time, we
did not distinguish between read and write operations for
DRAM energy, but we did for PCM:

Eoff = EDRAMstat +Nacc ·EDRAMr/w +Nr ·EPCMr +Nw ·EPCMw

(7)
For CPU, the energy is divided into static and dynamic:

Eon(f) = ECPUstat + ECPUdyn (f) (8)

As in [8], we consider that the static energy does not depend
on the frequency. The on-chip energy is given by [1]:

Eon(f) = ECPUstat + Ceff · V 2 · f · Ton (9)

where Ceff is the circuit effective capacitance, V the volt-
age and f the frequency. As in [1], we considered that the
voltage is proportional to the frequency (V = a · f), so the
previous equation becomes:

Eon(f) = ECPUstat + Ceff · a2 · f3 · Ton (10)

We assume that the memory access behavior of a task is
almost the same between two time slices allocated by the
scheduler [3]. Thus, we used the behavior of the previous
time slice to tune the frequency for the current one.

3.3 The off-line phase
The aim of the off-line phase is to determine a model of

frequency scaling that adapts to the energy properties of
the system. In this section, we first describe a formal model
that allows to identify the frequency that minimizes ED2P
for a given data placement and memory boundedness (note
that the same work can be done for EDP). Then, we apply
this model to a case of study to show how to infer a generic
model knowing the properties of an embedded system.

3.3.1 Identifying the optimal frequency
For a given data placement and memory boundedness, the

optimal frequency that minimizes ED2P is:

ED2P (f) = E(f) · T 2(f) (11)

where E(f) is the energy consumed during T (f) when using
the frequency f .

When the frequency is reduced from the maximum (fmax)
supported by the CPU to a target frequency (ftarget), the
consumed energy E(ftarget) is reduced with a proportion P1

compared to the energy E(fmax):

E(ftarget) = (1− P1) · E(fmax) (12)

However, the execution time is increased with a propor-
tion P2 compared to the execution time T (fmax):

T (ftarget) = (1 + P2) · T (fmax) (13)

Consequently and according to eq. 11:

ED2P (ftarget) = (1− P1) · (1 + P2)2 · ED2P (fmax) (14)

The optimal frequency minimizes the quantity (1−P1) ·(1+
P2)2. We note this quantity G.

In order to take into account the energy features of the
system when identifying the optimal frequency, we develop
in what follows the expressions of P1 and P2.

With the assumption that the static energy does not de-
pend on the frequency [8], the energy reduction P1 when the
frequency is reduced from fmax to ftarget can be given by:

P1 =
ECPUdyn (fmax)− ECPUdyn (ftarget)

E(fmax)
(15)

Using eq. 10 and after replacing Ton by its detailed ex-
pression in eq. 3, we obtain the following expression for P1:

P1 =
Ceff · α2 · f2

max ·N · CPI
E(fmax)

· (1− (
ftarget
fmax

)2) (16)

Eq. 16 shows that the reduction of energy depends on:

• The ratio of the energy consumed by the CPU and the
overall energy consumption. This dependency appears
in eq. 16 by the following term that we call C:

C =
Ceff · α2 · f2

max ·N · CPI
E(fmax)

(17)

• The ratio between fmax and ftarget that we call R:

R =
ftarget
fmax

(18)

Then eq. 16 is simplified to:

P1 = C · (1−R2) (19)

The value of P2 is obtained using eq. 2. It is given by:

P2 =
T (ftarget)− T (fmax)

T (fmax)
(20)

Since the memory access time does not depend on the fre-
quency, Toff is constant, eq. 20 is then simplified to:

P2 =
Ton(ftarget)− Ton(fmax)

T (fmax)
(21)

After replacing Ton by the expression given in eq. 3, we
obtain the following expression for P2:

P2 =
N · CPI

fmax · T (fmax)
· (fmax
ftarget

− 1) (22)

From Eq. 22, the increase of execution time depends on:

• The ratio between the processing time and the overall
execution time, shown by the following term L:

L =
N · CPI

fmax · T (fmax)
(23)

Thus, the increase of execution time depends on the
memory boundedness of the running tasks. The greater
the processing time, the higher P2.

• The ratio R between fmax and ftarget.

Then:

P2 = L · (1

R
− 1) (24)

Equations 16 and 22 show that the quantity G to minimize
is closely related to the energy features of the system and
the memory boundedness of the running tasks. Once the
expressions of P1 and P2 detailed, G can be expressed as:

G(R) =
1

R2
· (L2 − CL2) +

1

R
· (2L− 2L2 + 2CL2 − 2CL)+

1 + L2 − 2L− C +R · (2CL− 2CL2) +R2 · (C + CL2 − 2CL)

(25)

Thus, we can identify the value of R that minimizes ED2P
for a given scenario. The optimal reduction Ropt is obtained
when the first derivative of the G function according to R is
zero. Since the frequency of the processor cannot be equal
to zero, R never equals zero. This allows to simplify the
equation that Ropt must satisfy to:

R4 · (2C + 2CL2 − 4CL) +R3 · (2CL− 2CL2)

+R · (2L2 − 2L− 2CL2 + 2CL) + 2CL2 − 2L2 = 0
(26)

From the obtained optimal reduction Ropt, we can determine
the optimal frequency fopt to set for the next time slice.

Using eq. 26 for frequency scaling is cumbersome as it
requires to determine C and L which requires complex en-
ergy measurements. Thus, we built a generic model that
approaches the optimal frequency reduction of eq. 26. This
explained in the next section.

3.3.2 Building the frequency scaling model
In order to define a generic close to optimal model for

frequency scaling according to the system energy properties,
we determine, for a set of scenarios, the optimal frequency
using eq. 26. We can then apply regression to obtain a
simpler generic model for frequency scaling.

β0 β1 β2
-0.52 -0.38 -0.11

Table 2: Model instantiation

According to our assumption that both memory access
rate and PCM write rate should be considered, and after
testing the model with RaspBerry and BeagleBone Black
boards, we observed that the frequency reduction follows a
logarithmic shape, thus, we propose the following model:

R = e
PS−100

39
·(β0+β1Rmem+β2Rwpcm) (27)

Where Rmem represents the rate of memory accesses:

Rmem =
Toff
T

(28)

Rwpcm represents the rate of PCM writes:

Rwpcm =
Nw · TPCMw

T
(29)

PS is the static priority of the task. Priority interval for
conventional tasks is from 100 to 139 (lower value is the
higher priority). In eq.27, when PS is 100, R is 1 which
means that the frequency is set to the maximum value fmax.
The higher PS, the more the frequency can be reduced.

3.3.3 Instantiating the frequency scaling model: the
RaspBerry Model-A case study

In order to evaluate the efficiency of the regression model
that we proposed, we applied it to the RaspBerry Model-A
system. Knowing its energy features from the data sheet
[9], we built several scenarios. Each scenario consists of the
memory boundedness of task, the percentage of write op-
erations performed on PCM, the energy consumed by the
CPU and the hybrid memory and the processing and mem-
ory times. We then determined for each scenario the optimal
frequency value using eq. 26.

From those calculated frequencies, we performed a regres-
sion according to the model given in eq. 27 to get the values
of β0, β1 and β2. The results are given in Table 2.

0 0.2 0.4 0.6 0.8 1

0.44

0.46

0.48

0.5

0.52

0.54

% of writes on PCM

O
pt

im
al

fre
qu

en
cy

re
du

ct
io

n
R

Optimal frequency reduction Regression frequency reductions

Figure 2: Theoretical and regression model comparison

We compared the frequency reductions given by the ob-
tained regression model and the optimal frequency reduc-
tions obtained with the theoretical model proposed in Sec-
tion 3.3.1. Results are shown in Figure 2. We note that
frequency reductions given by the regression model are very
close to the optimal frequency reductions from eq. 26.

3.4 The on-line phase
Once the model is defined, it is used to scale the fre-

quency according to the system needs. the memory access
rate Rmem and the PCM write rate Rwpcm are measured.
Knowing these two parameters and the static priority of the
task to run in the next time slice, the frequency for current
slice is scaled using the model of eq. 27.

4. EVALUATION
This section presents the evaluation of HyMAD. First, we

describe the methodology used, then, we discuss the results.

4.1 Experimentation Setup
For the following experimentations, we used the energy

properties of the RaspBerry Model A. The evaluations were
performed using synthetic applications, where the memory
access rate and the percentage of writes on PCM were varied.

4.2 Performance Evaluation Methodology
We mainly used two metrics for comparison, the Energy-

Delay and Energy-Delay2 products (EDP and ED2P).
Our experiments were performed in three steps:
(1) We evaluated the relevance of considering both mem-

ories (PCM and DRAM) explicitly in the model. To do so,
we compared to three strategies :

1. A model that was built the same as HyMAD, but with-
out specifically considering PCM. We assumed that all
memory accesses consume the same energy amount.
Consequently, only Rmem was considered. The energy
consumption of an operation was fixed to the one of a
DRAM operation. The regression gives the following
frequency scaling model:

R = e
PS−100

39
·(−0.51−0.71·Rmem) (30)

In what follows, this model is called MAD (Memory
Access DVFS strategy).

2. Workload decomposition model (WD) [3], see the re-
lated work section.

3. A DVFS-free system where the frequency is always set
to the maximum value.

HyMAD, MAD and WD were applied on three applications
with memory boundedness of 0.1, 0,5 and 0.9. The experi-
ment is performed with a PCM write energy of 17.5pJ [5]. In
order to better show the impact of the PCM, we also tested
with the energy consumption of PCM writes to 70pJ .

(2) To test if the HyMAD model works fine even when
PCM is not accessed, we considered workloads that do not
perform memory operations on the PCM and compared Hy-
MAD to WD which was designed for a DRAM-only systems.

(3) The last experiment was achieved to observe the de-
sired impact of the static priority (PS) on HyMAD.

4.3 Results and Discussion
1) Impact of considering the PCM: Figures 3a, 3b and 3c

show by how much HyMAD enhances MAD for the ED2P
metric. We notice that HyMAD does not reduce the fre-
quency as much as MAD. We also observe that HyMAD
enhances ED2P metric by 2-8% as compared to MAD. This
means that the optimal frequency reduction in the hybrid

memory case is different than in the DRAM-only case. The
effectiveness of HyMAD as compared to MAD is due to the
fact that MAD considers that all memory accesses consume
the same amount of energy. Thus, it is important to con-
sider the heterogeneity of the memory to better scale the
frequency. When comparing HyMAD to WD, we observe
that HyMAD enhances ED2P up to 20% according to the
PCM write rate. When compared to a DVFS-free system,
HyMAD enhances the ED2P value between 2-45%.

Figure 4 shows the results of the same experiment while
varying the PCM write energy to 70pJ. The enhancement
performed by HyMAD as compared to MAD is 2-14 % and
3-15% as compared to WD.

2) HyMAD on PCM-free workloads: Figure 5 shows the
comparison of HyMAD with WD in case of a workloads not
accessing the PCM. We notice that HyMAD gives better
performance for both EDP and ED2P metrics. It enhances
EDP as compared to WD by 5-33 %. ED2P enhancement is
1-15 %. This means that our methodology is effective even
for an NVM-free embedded platform.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

Memory boundedness

E
D

2
P

/
ED

P
En

ha
nc

em
en

t
2

4

6

·105

Fr
eq

ue
nc

y
(K

H
z)

EDP enhancement ED2P enhancement
frequency set by HyMAD freuency set by WD

Figure 5: HyMAD EDP and ED2P as compared to WD for
PCM-free workloads

3) Impact of static priority: Figure 6 shows the frequency
scaling according to the static priority. We experimented
with three values of PS: 100 (high priority task), 120 (medium
priority task) and 139 (a low priority task). HyMAD does
not reduce the frequency for a high priority task. The lower
the priority, the more the frequency can be scaled.

0 0.2 0.4 0.6 0.8 1

3

4

5

6

7

·105

% of writes on PCM

Fr
eq

ue
nc

y
(K

H
z)

HyMAD frequency for PS=100 HyMAD frequency for PS=120
HyMAD frequency for PS=139

Figure 6: Impact of static priority on HyMAD

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

% of writes on PCM

E
D

2
P

En
ha

nc
em

en
t

2

4

6

·105

Fr
eq

ue
nc

y
(K

H
z)

HyMAD vs WD HyMAD vs MAD
HyMAD vs DVFS-free system HyMAD frequency

MAD frequency WD frequency

(a) Rmem=0.1

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

% of writes on PCM

E
D

2
P

En
ha

nc
em

en
t

2

4

6

·105

Fr
eq

ue
nc

y
(K

H
z)

HyMAD vs WD HyMAD vs MAD
HyMAD vs DVFS-free system HyMAD frequency

MAD frequency WD frequency

(b) Rmem=0.5

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

% of writes on PCM

E
D

2
P

En
ha

nc
em

en
t

2

4

6

·105

Fr
eq

ue
nc

y
(K

H
z)

HyMAD vs WD HyMAD vs MAD
HyMAD vs DVFS-free system HyMAD frequency

MAD frequency WD frequency

(c) Rmem=0.9

Figure 3: HyMAD ED2P enhancements over MAD and WD with different Rmem and a PCM write consumption of 17.5pJ

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

% of writes on PCM

E
D

2
P

En
ha

nc
em

en
t

2

4

6

·105
Fr

eq
ue

nc
y

(K
H

z)

HyMAD vs WD HyMAD vs MAD
HyMAD vs DVFS-free system HyMAD frequency

MAD frequency WD frequency

(a) Rmem=0.1

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

% of writes on PCM

E
D

2
P

En
ha

nc
em

en
t

2

4

6

·105

Fr
eq

ue
nc

y
(K

H
z)

HyMAD vs WD HyMAD vs MAD
HyMAD vs DVFS-free system HyMAD frequency

MAD frequency WD frequency

(b) Rmem=0.5

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

% of writes on PCM

E
D

2
P

En
ha

nc
em

en
t

1

2

3

4

5

·105

Fr
eq

ue
nc

y
(K

H
z)

HyMAD vs WD HyMAD vs MAD
HyMAD vs DVFS-free system HyMAD frequency

MAD frequency WD frequency

(c) Rmem=0.9

Figure 4: HyMAD ED2P enhancements over MAD and WD with different Rmem and a PCM write consumption of 70pJ

5. CONCLUSION
This paper presents HyMAD, a hybrid memory-aware DVFS

strategy. The main idea behind HyMAD is to consider the
heterogeneity of a memory in order to design an efficient
DVFS policy. In effect, as PCM energy consumption is very
high in case of write operations, the optimal behavior to
adopt is different from the case of a DRAM-only architec-
ture. HyMAD aims to determine the optimal behavior of
frequency scaling adapted for a given hardware platform.For
future work, we would like to investigate ways to couple Hy-
MAD with a data placement strategy at the operating sys-
tem level for energy/performance trade-off optimization.

6. REFERENCES
[1] Y. Benmoussa, E. Senn, N. Derouineau, N. Tizon, and

J. Boukhobza. Joint dvfs and parallelism for energy
efficient and low latency software video decoding.
IEEE TPDS, 29(4):858–872, April 2018.

[2] J. Boukhobza, S. Rubini, R. Chen, and Z. Shao.
Emerging NVM: A survey on architectural integration
and research challenges. ACM TODAES,
23(2):14:1–14:32, 2017.

[3] K. Choi, R. Soma, and M. Pedram. Fine-grained
dynamic voltage and frequency scaling for precise
energy and performance tradeoff based on the ratio of
off-chip access to on-chip computation times. IEEE
TCAD, 24(1):18–28, 2005.

[4] R. Cochran, C. Hankendi, A. Coskun, and S. Reda.
Identifying the optimal energy-efficient operating
points of parallel workloads. In ICCAD, pages
608–615, Nov 2011.

[5] G. Dhiman, R. Ayoub, and T. Rosing. PDRAM: A
hybrid PRAM and DRAM main memory system. In
ACM/IEEE DAC, pages 664–669, 2009.

[6] C.-H. Hsu and W.-C. Feng. A power-aware run-time
system for high-performance computing. SC, 2005.

[7] C.-H. Hsu, U. Kremer, and M. S. Hsiao.
Compiler-directed dynamic frequency and voltage
scheduling. In PACS, 2000.

[8] N. S. Kim, T. Austin, D. Baauw, T. Mudge,
K. Flautner, J. S. Hu, M. J. Irwin, M. Kandemir, and
V. Narayanan. Leakage current: Moore’s law meets
static power. Computer, 36(12):68–75, Dec 2003.

[9] R. P. T. Ltd. Raspberry pi2 – power and performance
measurement, 2016, (Accessed September 20, 2018).

[10] S. Mittal. Energy saving techniques for phase change
memory (PCM). arXiv preprint arXiv:1309.3785,
2013.

[11] O. Mutlu. Memory scaling: A systems architecture
perspective, Aug. 2013.

[12] P. Ranganathan. From microprocessors to nanostores:
Rethinking data-centric systems. Computer,
44(1):39–48, Jan 2011.

[13] J. S. Vetter and S. Mittal. Opportunities for
nonvolatile memory systems in extreme-scale high
performance computing. CiSE, 17(2):73–82, 2015.

[14] Q. Wu, M. Martonosi, D. W. Clark, V. J. Reddi,
D. Connors, Y. Wu, J. Lee, and D. Brooks. A dynamic
compilation framework for controlling microprocessor
energy and performance. In IEEE/ACM MICRO,
pages 271–282, 2005.

	Introduction
	Background and Related Work
	Background on memory architecture
	Related Work

	HyMAD design
	Overview of the solution
	System Model
	The off-line phase
	Identifying the optimal frequency
	Building the frequency scaling model
	Instantiating the frequency scaling model: the RaspBerry Model-A case study

	The on-line phase

	Evaluation
	Experimentation Setup
	Performance Evaluation Methodology
	Results and Discussion

	Conclusion
	References

