
Modeling and simulation of power consumption and
execution times for real-time tasks on embedded heterogeneous

architectures
Alessio Balsini, Luigi Pannocchi, Tommaso Cucinotta

Scuola Superiore Sant’Anna
Pisa, Italy

firstname.lastname@santannapisa.it

ABSTRACT
In this work, we introduce a power-consumption model for het-
erogeneous multicore architectures that captures the variability of
energy consumption based on processing workload type, in addi-
tion to the classical variables considered in the literature, like type
and frequency of the CPU.

We motivate the approach presenting experimental results gath-
ered on a Odroid-XU3 board equipped with an Arm big.LITTLE
CPU, showing that power consumption has a non-negligible depen-
dency on the workload type. We also present a model to define the
execution time of the tasks, which depends on both the workload,
and the CPU frequency and architecture. We present our modifica-
tions to the open-source RTSIM real-time scheduling simulator to
extend its CPU power consumption and execution time duration
models, integrating results taken from the real platform.

The presented work constitutes a useful base for future research
in power-aware real-time scheduling on heterogeneous platforms.

CCS CONCEPTS
•Computer systems organization→Real-time operating sys-
tems; Embedded systems;

KEYWORDS
Power efficiency, simulation, heterogeneous architectures, real-time
systems, power-aware execution-time modeling

1 INTRODUCTION
Mobile computing is flourishing as an essential tool to support
our daily activities, with relatively powerful battery-operated and
interconnected devices, capable of hosting an operating system
(OS) and a plethora of interactive applications. These devices have
evolved in hardware capabilities over the last few years, with a
growing number of connectivity options, an unimaginable growth
rate for their volatile and persistent storage sizes and increasing
computational power, in the form of multicore architectures. In
this context, energy management has been receiving a lot of at-
tention from both research [15, 16] and industrial communities,
as energy efficiency is now one of the top concerns when design-
ing new devices, functionality, applications and services. These
motivations led to the development of new platforms that are fo-
cused on heterogeneous processors with a unified ISA, such as the

EWiLi’18, 4 October 2018, Torino, Italy.
Copyright retained by the authors

Arm big.LITTLE(RM). These, departing from traditional symmetric
multi-processing (SMP) architectures, possess both low-complexity,
low-power cores specializing in device bookeeping activities, and
high-power cores for CPU-intensive activities, in addition to classi-
cal frequency switching capabilities, where tasks can be migrated
among all of the cores as needed.

This is causing the urgent need for engineering new functionality
at the OS level, and specifically regarding joint CPU scheduling,
task placement and energy management, where proper and novel
trade-offs among energy consumption and interactivity of devices
and applications with the outside world have to be sought. This is
witnessed, for example, by the recent volume of activities around the
Energy-Aware Scheduling (EAS) framework in the Linux kernel2,
engineered around the support for Arm-based CPUs in Android.

To this end, it is essential to rely on accurate models of the un-
derlying hardware behavior and the impact of the available energy-
management tunables on the application performance. These mod-
els can be embedded within proper simulation tools that allow for
estimating the expected impact of novel energy management and
task scheduling features at the OS level on the final application per-
formance and its capability to respect possible timing constraints.

1.1 Problem Presentation and Contributions
Aiming at reproducing the energy behavior of computational activi-
ties within embedded heterogeneous architectures, it is necessary to
take into account the power consumption of the CPUs and the time
necessary to complete the computations, i.e., the execution times.
These metrics allow to calculate the energy involved in the com-
putation process and investigate on interesting trade-offs between
computation performance and energy efficiency.

In this work, we propose a support to tackle the problem of
power-aware CPU scheduling in real-time systems based on hetero-
geneous, single-ISA architectures by adopting aworkload-dependent
power consumption model, coupled with a workload-dependent
execution-time scaling model, at the varying of CPU frequencies.
We base our proposal on experimental results highlighting short-
comings of the commonly adopted simple scaling models at varying
CPU frequencies, assuming power consumption as a quadratic func-
tion of the CPU frequency [26]. Indeed, in Figure 1 we report the
measured power consumption of two real, different workloads on
our reference big.LITTLE board (Odroid-XU3), highlighting that the
power consumption model also strongly depends on the workload

2 More information is available at https://lwn.net/Articles/749738/ and https://
developer.arm.com/open-source/energy-aware-scheduling.

https://lwn.net/Articles/749738/
https://developer.arm.com/open-source/energy-aware-scheduling
https://developer.arm.com/open-source/energy-aware-scheduling

EWiLi’18, 4 October 2018, Torino, Italy Alessio Balsini, Luigi Pannocchi, Tommaso Cucinotta

 0.5

 1

 1.5

 2

 2.5

 3

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Po
w

e
r

co
n
su

m
p
ti

o
n
 (

W
)

Frequency (GHz)

cachekiller
encrypt

idle

Figure 1: Measurements on the power consumption of the
big CPU cluster, running different workloads at different
frequencies.

type. Our measurements show, for example, that at maximum fre-
quency an application performing data encryption (encrypt) has a
power consumption that is 38% higher than a memory-bound appli-
cation generating a huge number of cache misses (cachekiller),
forcing the CPU into continuous stalls waiting for completion of
memory accesses. Real workloads pose themselves somewhere in
the middle between these two extremes, depending on the instruc-
tion mix and data access pattern. Moreover, the same figure shows
that the also the power consumption of the CPUs in a clock-gating
idle state depends on the frequency.

For non-continuously running activities, the energy consump-
tion depends also on the duration of the computations, which is
affected by the frequency of the CPU in a way that is workload-
dependent as well. Classical models rely on a simple scaling of the
execution time with the operating frequency of the CPU. How-
ever, our experimental results show that the workload type affects
this relationship in a non-negligible way. These are compared in
Figure 2, where the measured execution time variation for three
distinct workload types is reported, normalized with respect to the
execution time at the lowest frequency. As evident, some workload
types have a significant deviation from the simple scaling model
commonly adopted in literature (continuous line), corresponding
to Equation (8) in Section 3. More details will follow in Section 5.

The contribution of this work is (i) the development of power
consumption and execution time models derived starting from
established solutions already available in literature, (ii) their im-
plementation through the open-source RTSIM real-time systems
simulator, and (iii) the validation of the simulation outcome with
the measurements performed on a real platform. This tool consti-
tutes then a valuable means for the preliminary evaluation and
testing of novel energy-aware task scheduling algorithms.

2 RELATEDWORK
The research literature related to the present work falls mainly
within the classes of power consumptionmodels for voltage-scalable
embedded and heterogeneous architectures and simulation of real-
time systems including power-aware resource management logic.

 0.1

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
o
rm

a
liz

e
d
 e

xe
c.

 t
im

e

Frequency (GHz)

Cmax fmax / f
bzip2

cachekiller
encrypt

Figure 2: Normalized execution times of differentworkloads
running on a big CPU at different frequencies.

Given the growing interest in energy efficient devices, the re-
search communities have already developed several power con-
sumption models for CPUs. The level of details and complexity is
variable and depends on the specific application.

As long as the power consumption models are concerned, there
are works based on a detailed description of the CPU architecture,
such as the one by Möbius et. al. [19], focusing on a CPU model
for on-line power estimation using performance monitoring counter
of the physical CPU. Other detailed models exist, focusing on the
electronics behind the CPU operation, like the one developed for the
Wattch simulator by Brooks et. al. [6]. Indeed, in this case, the goal
was the architecture-level power analysis, evaluating the power
consumption at the instruction level.

These approaches are very accurate, at the expense of their us-
ability: they require a detailed description of the hardware, and are
often characterized by long computation times for the simulation.
In this paper, we adopt a higher-level abstraction approach, which
uses real data carried out over a set of micro-benchmarks. This
allows for a realistic reproduction of the CPU power consumption
pattern throughout an application execution, without the need for
considering specific architectural details. This way, we can achieve
a trade-off between simulation efficiency and representativeness.

In that direction, high-level descriptions of the CPU power are
preferred, like the ones leveraging on more coarse physical models.
The interest in these models is justified by the fact that the power
consumption of the CPU is modeled using physical quantities like
frequency, currents and voltages, which are easier to access. This
approach is proposed by several works [4, 7, 17, 25], describing
the behavior of real platforms, relying on simplified models with a
limited number of parameters and input variables. As demonstrated
by Colin et. al. [10], the fitting of a non-linear model with only
six parameters over the power behavior of a real board provides
sufficient accuracy.

Our work uses a more complete power consumption model,
obtained taking the cue from the physical behavior of the CPU,
close to the one used by Vogeleer et. al. [12]. The parameters of
the model have been identified through real experiments, which
constitute also a validation process for the final system.

Modeling and simulation of power consumption and execution times. . . EWiLi’18, 4 October 2018, Torino, Italy

In real-time systems research literature, significant investigations
have been carried out in energy-consumption models and energy-
aware task scheduling algorithms guaranteeing system schedula-
bility or minimum levels of quality of service (QoS) while at the
same time trying to realize energy-efficient policies on hardware
supporting dynamic voltage and frequency scaling (DVFS).

In this field, a reliable model for the execution time is of para-
mount importance, both for providing an accurate estimation of
the power consumption, and for guaranteeing timing requirements
for latency-sensitive applications. Often the computation time mod-
els are based on strict theoretical assumption and simplifications,
which are far from the operating condition of a real system. Other
works, on the contrary, go more into details and model the execu-
tion time or delays considering low level hardware information for
the given platform. Works like the one by Palacharla et. al. [20]
analyze the hardware details of the architecture to quantify the
computational speed, but they are too complex and not practical.

A more practical approach, which avoids considering hardware
details, is shown in the work of Petrucci et. al. [23], where the
computation time of a task depends on the accesses to the memory
and number of instructions to be executed by the CPU. Despite the
realism achieved thanks to the empirical identification of the model
parameters, this work only considers CPUs with fixed frequency.
Vogeleer et. al. [12] model instead the computation time of the task
as a simple function of the frequency, thus allowing considering
the effects of CPU frequency scaling.

Compared to the latter approach, ours is still a simple yet rep-
resentative model, thanks to additional parameters. This achieved
acceptable accuracy in our preliminary experimentation.

Other works related to power consumption modeling and sched-
uling optimization exist in the domain of high-performance com-
puting and many-core systems, but their review is omitted.

Concerning the existence of complete frameworks able to re-
produce the overall behavior of a full platform, several tools exist
for modeling, simulation and schedulability analysis of embedded,
real-time distributed systems, including RTSIM [3, 21],MAST2 [14],
TIMES [2], SimTrOS [5], YARTISS [8], FORTAS [11], McSimA+ [1]
and others. However, the main purpose of these is to tackle the
task-set schedulability problem, not considering the energy impact.

The SimDVS [24] by Shin et. al., instead, addresses the problem,
evaluating the impact of the scheduling decisions on the energy
consumption, but is limited to single processor architectures.

Considering the above, it is our belief that a simulation frame-
work supporting real-time scheduling and a more precise energy
model for modern heterogeneous multicore architectures is a useful
tool for future research in the area.

3 PROPOSED APPROACH
3.1 Model of the Power Consumption
As widely known [7, 17], the power consumption of a CPU is de-
termined by different phenomena, related to its transistor nature:
switching activity and leakage effects.

Switching Activity. The switching of transistors during the com-
putation requires power to charge the gates capacitors; moreover, it
gives birth to some power loss due to brief short-circuit conditions

during toggling among logic levels. In the following, the former
is called Pcд , the latter Psc . As done by Vogeleer et. al. [12], the
equations describing these quantities are the following:

Pcд = αCV 2 f and (1)
Psc = ηPcд , (2)

where C is the capacitance of the transistor gates, f is the CPU
switching frequency andV is the CPU voltage. Psc has been consid-
ered to be proportional to Pcд by a factor η. This choice simplifies
the model, without compromising the representativeness. The α fac-
tor represents the number of transistors involved in the switching,
that is the activity level of the CPU. In our proposed model, α is the
quantity that is mostly related to the workload type being run by
the CPU, ultimately leading to different possible power consump-
tion levels. Precisely, α is assumed to vary in a range [α0,αmax],
where the lower bound α0 is associated with the idle state of the
CPU, whilst the upper bound αmax is associated with the CPU
under an intensive workload. The overall power consumption due
to the switching activity Psw is given by the sum of the two, that is,

Psw = Pcд + Psc . (3)

Leakage Effects. Despite the technological improvements in the
semiconductor device fabrication, there are always some leakage
currents flowing between different parts of the transistor. This effect
determines a power loss that will be referred to as Plk . The defini-
tion of a complete model to represent this phenomena is complex
and depends on several variables, including the temperature [18].
To overcome this complexity, some simulators likeWattch model
this component as a fixed percentage of the dynamic power, others
include a simple thermal modeling to improve the accuracy, like
TEM2P2EST [13]. From the work of Skadron et al. [25], it turns out
that there is a relationship between the leakage and the switching
powers. More precisely,

Plk =
(R0
V0T 2

0
e
(BT0
+ BT)

T 2V
)
Psw , (4)

where T0 is the ambient temperature, B is a constant, V0 is the
nominal voltage and R0 the ratio between Plk and Psw whenT = T0.
It is worth highlighting that the equation is temperature dependent.
However, in the case of stable temperature, part of the expression
can be approximated by a constant factor. This leads to Plk =
γVPsw , where

γ =
R0

V0T 2
0
e
(BT0
+ BT)

T 2. (5)

Summarizing, the total power consumption of the CPU, when
working at frequency f , voltage V and stable temperature, is:

PCPU = Psw + Plk = (1 + η)(1 + γV)αC f V 2. (6)

In this work, the constants of the model depend on the operating
conditions, i.e., during the idle state of the CPU, those parameters
are expected to be different from the ones of the model representing
the CPU performing computational activities. Moreover, each kind
of workload has a specific usage of the CPU, inducing a different
power demand: these considerations are taken into account when
identifying the parameters of the power consumption model.

EWiLi’18, 4 October 2018, Torino, Italy Alessio Balsini, Luigi Pannocchi, Tommaso Cucinotta

3.1.1 Power Model Identification. As stated above, the model
used in this simulation framework is a trade-off between complexity
and representativeness, leading to a "gray box" model. Therefore,
the model parameters have been identified by fitting the outcome of
experiments running a set of micro-benchmarks on a real platform.

The identification procedure has been accomplished using Neuro-
Lab3, a tool for data fitting based on genetic algorithms. Specifically,
the function used for the fitting is

PCPU = δ + (1 + η)(1 + γV)K f V 2, (7)

where the αC of the Equation 6 has been substituted with a sin-
gle parameter K , which, together with δ , η and γ , constitute the
parameters of the fitting model. The additional parameter δ intro-
duces a further degree of freedom in the function fitting. Given
the dependence of the power consumption on the workload, the
fitting has been accomplished for each workload type in a given
set, which will be described in Section 5. The γ parameter has been
considered constant, assuming the temperature as stable during
each benchmark. Even though this could be a limitation, a proper
modeling would require considering also the thermal model of the
CPU, which is left to future works.

3.2 Workload-dependent Execution Time
Model

The execution time C of a task running on a CPU with DVFS capa-
bilities is typically assumed as a simple function of the frequency:

C (f) = Cmax
fmax

f
, (8)

whereCmax denotes the execution time at the maximum frequency
fmax on the same CPU. This is based on the assumption that the
time required by a task to complete only depends on the frequency.
In reality, as introduced in Section 1, there are other factors not
considered in this model, affecting the task duration. For example,
the memory access time does not scale with the frequency, thus
represents a bottleneck partially mitigated by the use of caches.

An analytical model we found out to be able to reproduce the
behavior of real workloads at the varying of the CPU frequencywith
a reasonable number of free parameters a,b, c,d is the following:

C (f) = a +
b

f
+ ce−f /d , (9)

which includes, in order: (i) a fixed offset that models the pres-
ence of bottlenecks for which the speed does not depend on the
CPU frequency, (ii) an hyperbolic component that models the ideal
execution time scaling with the frequency, and (iii) an adjustment
on the function slope.

To achieve the maximum accuracy, the execution time model
should also consider, amongst all, the interference introduced by
the other tasks running in the system and causing cache and bus
contention, and hardware devices accessing the bus with DMA
operations. This level of detail is beyond the purpose of this work,
for which we provide an execution time model that applies for
single tasks running in the system, which still represents a valid
approximation for a number of applications.

3More information at: https://github.com/balsini/NeuroLab.

4 IMPLEMENTATION DETAILS
The power consumption and execution time models presented
above have been implemented within the RTSIM simulator. This
is a portable, extensible open-source package written in C++ for
the simulation of real-time operating systems, supporting many
real-time scheduling policies and typical real-time task models. RT-
SIM carries out a high-level simulation focusing on the timing and
schedule of tasks in the system, without any functional-level simu-
lation. Its typical use is to simulate worst-case scheduling scenarios
for real-time task sets under a given scheduling policy, for the
purpose of verifying whether any deadline miss happened or not.
RTSIM includes a library for discrete event simulation (METASIM),
and a set of libraries for real-time kernels simulation (RTLib). It
also provides functionality to trace, store and visualize the events
occurred in the simulated environment.

The simulation of a multicore computing system in RTSIM in-
volves several modules, among which the most important are:

• Task: entity that executes for a given amount of time. A task
can also be periodic, as common for real-time environments.

• Scheduler: the scheduling policy for the tasks running in
the system, for example EDF, global EDF, fixed priority FIFO
or Round-Robin, and others.

• CPU: modulates the duration of the task with the ideal linear
model shown in Equation 8, and provides the basic power
consumption estimation as P(f) = V 2 f .

• Kernel: a glue entity that connects the tasks with the sched-
uler and the CPUs, and manages possible virtual resources
shared among tasks, like semaphores.

• Trace: module to store events and accumulate statistics.
Once the system is initialized, the simulation runs and evolves

with the simulated entities generating, exchanging and executing
simulation events.

Our extensions to RTSIM4 include improvements on the CPU,
Task and Trace classes, and the implementation of the presented
power consumption and execution time models with the CPUModel
class. With our modifications, when a Task is put in execution, it
can now declare the type of workload the task is going to execute,
through an extension to the fixed() virtual instruction type of
the task. This instruction now also specifies the workload type, in
addition to the already available execution time of the computation,
calibrated at the maximum frequency supported on the highest
performance CPU in the system. RTSIM automatically adjusts the
computation duration and the consumed power when scheduling
that task executing each virtual instruction, according to the pro-
vided CPUModel parameters supplied at CPU instantiation time, the
CPU capabilities, the frequency and the workload type.

The TracePowerConsumption class implements a power mea-
surement probe, and it is possible to create one instance for each
CPU, tracking the power consumption by querying the power
model of the associated CPU.

5 EXPERIMENTAL RESULTS
The simulator has been tested by comparing its simulated results
with the ones obtained by experiments on the real platform.

4Freely available at: https://github.com/balsini/rtlib2.0/tree/ewili-2018.

https://github.com/balsini/NeuroLab
https://github.com/balsini/rtlib2.0/tree/ewili-2018

Modeling and simulation of power consumption and execution times. . . EWiLi’18, 4 October 2018, Torino, Italy

All the experiments presented in this section refer to an Odroid-
XU3 board, which embeds a Samsung Exynos 5422 SoC: an Arm
big.LITTLE architecture with four Cortex-A7 and four Cortex-A15
CPUs, running the official Odroid Linux kernel 3.10. Similar results
have been achieved with a Linux kernel 4.15. All the power mea-
surements have been performed with the INA231 power meters
already available within the board.

5.1 Experiments to Gather Model Fitting Data
In order to collect detailed data sufficient to fit our workload-
dependent power consumption model, a number of different work-
load types have been experimented with:

• idle: no task is running, so the system switches to the clock-
gating idle state [22]. Our board supports two idle states, and
the deeper can be accessed only when all the CPUs are idle,
thus is never considered in our experiments.

• bzip25: compression algorithm, with maximum compres-
sion level.

• des3 encrypt/decrypt6: Triple DES encryption algorithm.
• sha256sum7: checksum algorithm.
• cachekiller: application written with the purpose of gener-
ating a cache miss at every iteration, by accessing elements
within an array bigger than the cache memory size, every
access performed with a displacement bigger than the cache
line.

All the data read or written by the aforementioned data intensive
workloads is randomly generated, and stored in a ramfs mounted
partition to avoid possible latencies or throughput limitations due
disk or SD card devices.

To characterize the system behavior for the two different CPUs,
each experiment is run by sequentially pinning the workload task
on one of the big cores first, and on one of the LITTLE cores later.

Each experiment on the real platform is repeated 50 times and
each final data point is obtained as an average on the measured
values, which have been found to have a small variability from run
to run. The observed standard deviation of the measured values for
each experiment, normalized with respect to the average among the
values, has consistently been in the range between 4% and 12.1%.

5.2 Experiments With our Modified RTSIM
In a first experiment, we evaluate the power consumption model
implemented in the simulator. As shown in Figure 3, the simulated
behavior successfully maps on the experimental results for the
presented workloads. On the other hand, the LITTLE CPU presents
a noticeable error in the mid-range frequencies. This effect is likely
due to the CPU power supplier, which may be composed of multiple
circuits [9] causing a discontinuous behavior.

For simplicity, the plot only shows a subset of the tested work-
loads. Among all the workloads, the highest relative least square
error measured in the comparison between the experimental and
simulated results is associated to the cachekiller running on a
LITTLE CPU, and has a value of 16.1%.

5Bzip2 1.0.6, available at: http://www.bzip.org.
6OpenSSL 1.0.2g, available at: https://www.openssl.org.
7GNU coreutils 8.25, available at: http://www.gnu.org/software/coreutils/sha256sum.

 0.1

 0.2 0.4 0.6 0.8 1 1.2 1.4

LI
T
T
LE

 p
o
w

e
r

co
n
su

m
p

ti
o
n
 (

W
) cachekiller (real)

encrypt (real)
cachekiller (simul)

encrypt (simul)

 0.1

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

b
ig

 p
o
w

e
r

co
n
su

m
p

ti
o
n
 (

W
)

Frequency (GHz)

cachekiller (real)
encrypt (real)

cachekiller (simul)
encrypt (simul)

Figure 3: Comparison between the power consumption sim-
ulated with RTSIM and the respective experimental results.

The next experiment evaluates the execution time model for the
example workloads running on different CPUs at different frequen-
cies. In this case, as demonstrated in Figure 4, the model behavior
is definitely close to the experimental data on the real platform.

As in the previous experiment, the highest relative least square
error measured in the comparison between the experimental and
simulated results is associated to the cachekiller running on a
LITTLE CPU, and has a value of 3.57%.

6 CONCLUSIONS
This paper presented an effective modeling approach to reproduce
the energy and timing behavior of a heterogeneous multicore ar-
chitecture, running real-time tasks and under different workload
conditions. The work dealt also with the implementation of the
proposed models on the RTSIM simulator, extending its capabilities
to obtain a comprehensive suite for simulation of energy-aware
strategies.

The extended RTSIM real-time scheduling simulator has been
tested through experiments, checking the output of the simulated
scenarios with respect to the real cases. The accuracy of the results
in terms of simulated execution times and energy consumption
showed that this work represents a valuable tool for the evaluation
and testing of novel energy-aware task scheduling algorithms.

http://www.bzip.org
https://www.openssl.org
http://www.gnu.org/software/coreutils/sha256sum

EWiLi’18, 4 October 2018, Torino, Italy Alessio Balsini, Luigi Pannocchi, Tommaso Cucinotta

 1

 10

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4

LI
T
T
LE

 c
o
m

p
u
ti

n
g

 t
im

e
 (

s)

bzip2 (real)
cachekiller (real)

encrypt (real)
bzip2 (simul)

cachekiller (simul)
encrypt (simul)

 1

 10

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

b
ig

 c
o
m

p
u
ti

n
g

 t
im

e
 (

s)

Frequency (GHz)

bzip2 (real)
cachekiller (real)

encrypt (real)
bzip2 (simul)

cachekiller (simul)
encrypt (simul)

Figure 4: Validation of the execution timesmodel of the sim-
ulator by comparing the experimental results.

As a future work, we consider the extension of the simulation
environment to improve the modeling of the power consumption
and execution time for complex workload patterns in terms of het-
erogeneity of the workload and degree of execution parallelism. On
the other hand, it would be useful to investigate further modeling
approaches for describing generic workloads, i.e., memory bound
or CPU bound.

REFERENCES
[1] J. H. Ahn, S. Li, S. O, and N. P. Jouppi. 2013. McSimA+: Amanycore simulator with

application-level+ simulation and detailed microarchitecture modeling. In 2013
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS). 74–85. https://doi.org/10.1109/ISPASS.2013.6557148

[2] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang Yi.
2004. TIMES: A Tool for Schedulability Analysis and Code Generation of Real-
Time Systems. In Formal Modeling and Analysis of Timed Systems, Kim Guldstrand
Larsen and Peter Niebert (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
60–72.

[3] Cesare Bartolini and Giuseppe Lipari. 2011. The RTSIM scheduling simulator.
(2011). http://rtsim.sssup.it/

[4] R. Basmadjian andH. deMeer. 2012. Evaluating andmodeling power consumption
of multi-core processors. In 2012 Third International Conference on Future Systems:
Where Energy, Computing and Communication Meet (e-Energy). 1–10. https:
//doi.org/10.1145/2208828.2208840

[5] Michael Bohn, Jörn Schneider, and Christian Eltges. 2013. SimTrOS: A het-
erogenous abstraction level simulator for multicore synchronization in real-
time systems. Journal of Systems Architecture 59, 6 (2013), 297 – 306. https:
//doi.org/10.1016/j.sysarc.2013.02.002

[6] D. Brooks, V. Tiwari, and M. Martonosi. 2000. Wattch: a framework for
architectural-level power analysis and optimizations. In Proceedings of 27th Inter-
national Symposium on Computer Architecture (IEEE Cat. No.RS00201). 83–94.

[7] J. A. Butts and G. S. Sohi. 2000. A static power model for architects. In Proceedings
33rd Annual IEEE/ACM International Symposium on Microarchitecture. MICRO-33
2000. 191–201. https://doi.org/10.1109/MICRO.2000.898070

[8] Younès Chandarli, Frédéric Fauberteau, Damien Masson, Serge Midonnet, and
Manar Qamhieh. 2012. YARTISS: A Tool to Visualize, Test, Compare and Eval-
uate Real-Time Scheduling Algorithms. In WATERS 2012. Italy, 21–26. https:
//hal-upec-upem.archives-ouvertes.fr/hal-00691985

[9] W. H. Cheng and B. M. Baas. 2008. Dynamic voltage and frequency scaling circuits
with two supply voltages. In 2008 IEEE International Symposium on Circuits and
Systems. 1236–1239. https://doi.org/10.1109/ISCAS.2008.4541648

[10] A. Colin, A. Kandhalu, and R. Rajkumar. 2014. Energy-efficient allocation of real-
time applications onto Heterogeneous Processors. In 2014 IEEE 20th International
Conference on Embedded and Real-Time Computing Systems and Applications. 1–10.
https://doi.org/10.1109/RTCSA.2014.6910506

[11] P. Courbin and L. George. 2011. Fortas: Framework for real-time analysis and
simulation. In Proc. of WATERS 2011. Porto, Portugal, 21–26.

[12] Karel De Vogeleer, Gerard Memmi, Pierre Jouvelot, and Fabien Coelho. 2014. The
Energy/Frequency Convexity Rule: Modeling and Experimental Validation onMo-
bile Devices. In Parallel Processing and AppliedMathematics, RomanWyrzykowski,
Jack Dongarra, Konrad Karczewski, and Jerzy Waśniewski (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 793–803.

[13] Ashutosh Dhodapkar, Chee How Lim, George Cai, and W. Robert Daasch. 2001.
TEM2P2EST: A Thermal Enabled Multi-model Power/Performance ESTimator.
In Power-Aware Computer Systems, Babak Falsafi and T. N. Vijaykumar (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 112–125.

[14] Michael González Harbour, J. Javier Gutiérrez, José M. Drake, Patricia López
Martínez, and J. Carlos Palencia. 2013. Modeling distributed real-time systems
with MAST 2. Journal of Systems Architecture 59, 6 (2013), 331 – 340. https:
//doi.org/10.1016/j.sysarc.2012.02.001

[15] Connor Imes and Henry Hoffmann. 2015. Minimizing Energy Under Perfor-
mance Constraints on Embedded Platforms: Resource Allocation Heuristics for
Homogeneous and single-ISA Heterogeneous Multi-cores. SIGBED Rev. 11, 4 (Jan.
2015), 49–54. https://doi.org/10.1145/2724942.2724950

[16] C. Imes, D. H. K. Kim, M. Maggio, and H. Hoffmann. 2015. POET: a portable
approach to minimizing energy under soft real-time constraints. In 21st IEEE
Real-Time and Embedded Technology and Applications Symposium. 75–86. https:
//doi.org/10.1109/RTAS.2015.7108419

[17] N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. S. Hu, M. J. Irwin, M.
Kandemir, and V. Narayanan. 2003. Leakage current: Moore’s law meets static
power. Computer 36, 12 (Dec 2003), 68–75. https://doi.org/10.1109/MC.2003.
1250885

[18] Weiping Liao, Lei He, and K. M. Lepak. 2005. Temperature and supply Voltage
aware performance and power modeling at microarchitecture level. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems 24, 7 (July
2005), 1042–1053. https://doi.org/10.1109/TCAD.2005.850860

[19] C. Möbius, W. Dargie, and A. Schill. 2014. Power Consumption EstimationModels
for Processors, Virtual Machines, and Servers. IEEE Transactions on Parallel and
Distributed Systems 25, 6 (June 2014), 1600–1614. https://doi.org/10.1109/TPDS.
2013.183

[20] S. Palacharla, N. P. Jouppi, and J. E. Smith. 1997. Complexity-Effective Superscalar
Processors. In Conference Proceedings. The 24th Annual International Symposium
on Computer Architecture. 206–218. https://doi.org/10.1145/264107.264201

[21] Luigi Palopoli, Giuseppe Lipari, Gerardo Lamastra, Luca Abeni, Gabriele
Bolognini, and Paolo Ancilotti. 2002. An Object-oriented Tool for Simulating
Distributed Real-time Control Systems. Softw. Pract. Exper. 32, 9 (July 2002),
907–932. https://doi.org/10.1002/spe.467

[22] Preeti Ranjan Panda, B. V. N. Silpa, Aviral Shrivastava, and Krishnaiah Gum-
midipudi. 2010. Power-efficient System Design (1st ed.). Springer Publishing
Company, Incorporated.

[23] Vinicius Petrucci, Orlando Loques, Daniel Mossé, Rami Melhem, Neven Abou
Gazala, and Sameh Gobriel. 2015. Energy-Efficient Thread Assignment Optimiza-
tion for Heterogeneous Multicore Systems. ACM Trans. Embed. Comput. Syst. 14,
1, Article 15 (Jan. 2015), 26 pages. https://doi.org/10.1145/2566618

[24] Dongkun Shin, Woonseok Kim, Jaekwon Jeon, Jihong Kim, and Sang Lyul Min.
2003. SimDVS: An Integrated Simulation Environment for Performance Evalua-
tion of Dynamic Voltage Scaling Algorithms. In Power-Aware Computer Systems,
Babak Falsafi and T. N. Vijaykumar (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 141–156.

[25] Kevin Skadron, Mircea R. Stan, Karthik Sankaranarayanan, Wei Huang, Sivaku-
mar Velusamy, and David Tarjan. 2004. Temperature-aware Microarchitecture:
Modeling and Implementation. ACM Trans. Archit. Code Optim. 1, 1 (March 2004),
94–125. https://doi.org/10.1145/980152.980157

[26] X. Zhong and C. Xu. 2007. Energy-Aware Modeling and Scheduling for Dynamic
Voltage Scaling with Statistical Real-Time Guarantee. IEEE Trans. Comput. 56, 3
(March 2007), 358–372. https://doi.org/10.1109/TC.2007.48

https://doi.org/10.1109/ISPASS.2013.6557148
http://rtsim.sssup.it/
https://doi.org/10.1145/2208828.2208840
https://doi.org/10.1145/2208828.2208840
https://doi.org/10.1016/j.sysarc.2013.02.002
https://doi.org/10.1016/j.sysarc.2013.02.002
https://doi.org/10.1109/MICRO.2000.898070
https://hal-upec-upem.archives-ouvertes.fr/hal-00691985
https://hal-upec-upem.archives-ouvertes.fr/hal-00691985
https://doi.org/10.1109/ISCAS.2008.4541648
https://doi.org/10.1109/RTCSA.2014.6910506
https://doi.org/10.1016/j.sysarc.2012.02.001
https://doi.org/10.1016/j.sysarc.2012.02.001
https://doi.org/10.1145/2724942.2724950
https://doi.org/10.1109/RTAS.2015.7108419
https://doi.org/10.1109/RTAS.2015.7108419
https://doi.org/10.1109/MC.2003.1250885
https://doi.org/10.1109/MC.2003.1250885
https://doi.org/10.1109/TCAD.2005.850860
https://doi.org/10.1109/TPDS.2013.183
https://doi.org/10.1109/TPDS.2013.183
https://doi.org/10.1145/264107.264201
https://doi.org/10.1002/spe.467
https://doi.org/10.1145/2566618
https://doi.org/10.1145/980152.980157
https://doi.org/10.1109/TC.2007.48

	Abstract
	1 Introduction
	1.1 Problem Presentation and Contributions

	2 Related Work
	3 Proposed Approach
	3.1 Model of the Power Consumption
	3.2 Workload-dependent Execution Time Model

	4 Implementation Details
	5 Experimental Results
	5.1 Experiments to Gather Model Fitting Data
	5.2 Experiments With our Modified RTSIM

	6 Conclusions
	References

