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ABSTRACT 

This paper proposes an energy-aware scheduling of malleable 

fork-join (MFJ) tasks on heterogeneous multicores. This work 

allows a task to be split into multiple sub-tasks for fork-join 

parallel execution. The number of the sub-tasks is determined 

simultaneously with scheduling. Our scheduling technique aims at 

the minimization of energy consumption under a deadline 

constraint. In addition, this paper proposes a technique for 

simultaneous scheduling and core-type optimization. The 

technique optimally decides types of cores (to be either “big” or 

“little”) at the same time as MFJ task scheduling in order to 

further reduce energy consumption. 
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1 INTRODUCTION 

Multicore task scheduling, which decides the execution order 

of tasks on multiple cores, has become more important than ever 

due to the increasing number of cores in embedded systems. In 

general, task scheduling problems are NP-hard [1], and a large 

number of researchers have studied task scheduling problems over 

several decades. In a classic multicore task scheduling problem, 

tasks are scheduled on multiple cores so that the tasks are 

executed in parallel on different cores, on the assumption that 

each task is executed on one of the multiple cores [2]. Many real-

world tasks such as multimedia ones, however, can be parallelized 

by dividing data into multiple small pieces which can be 

processed independently in a fork-join fashion. On this direction, 

some researchers have studied scheduling of fork-join tasks where 

each task can be split into multiple sub-tasks and executed on 

multiple cores. 

This paper presents a task scheduling technique for malleable 

fork-join (MFJ) tasks on heterogeneous architectures consisting of 

big cores and little cores.  A task is called malleable if the number 

of the sub-tasks is not fixed prior to scheduling. In other words, 

the technique presented in this paper decides the number of sub-

tasks for each task, at the same time as scheduling. Our goal is 

minimization of energy consumption under a deadline constraint. 

The proposed scheduling technique is based on constraint 

programming. This paper also proposes a technique for 

simultaneous task scheduling and multicore architecture 

customization. The technique decides types of cores (to be either 

big or little) at the same time as MFJ task scheduling.  

The rest of this paper is organized as follows. Section 2 

describes the related work on task scheduling. Section 3 proposes 

a MFJ task scheduling technique. Section 4 proposes a technique 

for simultaneous MFJ task scheduling and core-type optimization. 

Section 5 describes experiments, and Section 6 concludes this 

paper. 

2 RELATED WORK 

In [2], classic techniques on task scheduling for multicore 

architectures are extensively surveyed. Multiple tasks which are 

independent of each other are executed in parallel on different 

cores. However, it is assumed that each task is not parallelized 

and is executed on a single core. Scheduling of parallelized tasks 

is studied in [3-13]. In [3], Liu et al. proposed list-based 

scheduling algorithms for data-parallel tasks. Their work assumes 

that a set of dependent tasks is given in the form of a task-graph, 

where each task is assigned a fixed number of cores. Then, they 

attempt to minimize the overall schedule length (a.k.a. makespan). 

Yang and Ha’s work in [4] also focuses on scheduling of data-

parallel tasks. Unlike the work in [3], their work in [4] assumes 

that tasks are malleable, which means that the number of cores for 

each task is not given, but is determined at the same time as 

scheduling. Their goal is to minimize hardware cost with meeting 

deadline constraints. In [5], the authors take advantage of data-

parallelism and proposed a technique for pipelined task 

scheduling and mapping on heterogeneous MPSoCs. Chen and 

Chu in [6] designed a polynomial-time approximation algorithm 

for malleable tasks to find a minimum makespan. The authors of 

[7] and [8] studied scheduling of malleable tasks based on integer 

linear programming and constraint programming, respectively. In 

[9], fork-join task scheduling for real-time systems is studied. The 

work aims at evaluation of the tractable and intractable fork-join 

real-time task model. Lakshmanan et al. in [10] developed an 

algorithm for malleable fork-join tasks in OpenMP. Saifullah et al. 
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in [11] proposed a real-time task scheduling model, which 

assumes that a task holds the various numbers of threads. Shimada 

in [12] studies malleable fork-join task scheduling based on 

integer linear programming. 

Another direction of studies on multicore task scheduling is for 

heterogeneous multicores [13-16]. In [13], Yan et al. studied a 

task scheduling problem on heterogeneous multiple processors for 

real-time applications, which tries to minimize whole energy 

consumption with two heuristic algorithms under deadline 

constraints. Thomas et al. [14] developed a scheduler based on 

constraint programming for heterogeneous high performance 

computing machines. Their work improves a commercial 

scheduler with greedy approaches to maximize performance and 

quality-of-service. The work in [15] also studies task scheduling 

on heterogeneous multicores for makespan minimization. Barbosa 

et al. [16] proposed list-based static scheduling algorithms for 

malleable tasks. Their work aims to minimize the total schedule 

length of a given set of malleable tasks, whose dependencies are 

represented by a direct acyclic graph on heterogeneous clusters. 

In contrast, this paper studies malleable fork-join task 

scheduling for energy minimization under a deadline constraint on 

heterogeneous multicore architectures. To the best of our 

knowledge, this is the first paper which addresses the topic. 

Another contribution which differentiates this paper from past 

literature is that this paper also proposes simultaneous MFJ task 

scheduling and heterogeneous multicore customization. 

3 SCHEDULING OF MALLABLE FORK-JOIN 

TASKS ON HETEROGENEOUS 

MULTICORES 

3.1 Problem Description 

 Figure 1 shows an example of scheduling of malleable fork-

join (MFJ) tasks on heterogeneous multicores. In Figure 1 (a), a 

set of dependent tasks is represented as a direct acyclic graph, so 

called a task-graph. Each task is associated with the execution 

time which is a function of the number and the type of cores to 

execute the task. The tasks labelled “S” and “E” are empty nodes 

which represent entry and exist points, respectively. Figure 1 (b) 

shows a table of the execution time of task 1. If task 1 is assigned 

a single little core, its execution time is 32 time-units. The 

execution time of task 1 on a single big core is 21. It is assumed 

that task 1 can be parallelized and partitioned into multiple sub-

tasks. If task 1 is partitioned into two sub-tasks, the execution 

time of the sub-task on a little core is 18, while that on a big core 

is 12. The two sub-tasks can be executed on two little cores, two 

big cores, or one big core and one little core. This work assumes 

that, for each task, a table of execution time as shown in Figure 1 

(b) is given. This work also assumes that, for each task, a table of 

energy consumption as shown in Figure 1 (c) is given. The table 

in Figure 1 (c) indicates that task 1 consumes 16 units of energy 

when the task is not parallelized and is executed on a little core. 

When task 1 is partitioned into two sub-tasks and executed on a 

little core and a big core, the task consumes a total energy of 30 (= 

9 + 21). In order to minimize energy consumption without taking 

care of performance, task 1 should be executed on a single little 

core without parallelization. On the other hand, if performance is 

the first priority, the task should be parallelized and big cores 

should be used as much as possible. There are a large number of 

choices between the minimum-energy solution and the maximum-

performance one, even when we focuses on a single task. The 

trade-off between performance and energy consumption should be 

considered during scheduling. 

This work assumes that a deadline constraint is given. The 

overall schedule length (i.e., makespan) must be shorter than or 

equal to the given deadline. Given a set of malleable tasks and a 

deadline constraint, this work decides the number of sub-tasks for 

each task, and schedules the sub-tasks on heterogeneous 

multicores so that the total energy consumption is minimized 

while meeting the deadline constraint.  

An example of schedule result for the task-graph in Figure 1 

(a) is shown in Figure 1 (d). In the figure, it is assumed that the 

hardware consists of two little cores and two big cores. Task 2 is 

parallelized on all of the four cores, while task 3 is executed on a 

single big core. 

This paper assumes that a deadline constraint is given to the 

entire task-graph. However, it should be noted that this work can 

be easily extended in such a way that individual tasks in a task-

graph have their own deadline constraints. 

3.2 Constraint Programming Approach 

This work solves the MFJ task scheduling problem with 

constraint programming (CP). The performance of CP solvers has 

been improved remarkably in the last few decades [17]. One of 

the most advanced CP solvers at present is ILOG CP Optimizer 

from IBM. ILOG CP Optimizer efficiently solves CP problems on 

multicore host computers. Also, ILOG CP Optimizer features 

several built-in functions for scheduling problems. With the built-

 
(a) Task-graph 

# sub-

tasks 

Little Big 

1 32 21 

2 18 12 

3 13 9 

4 11 7 

(b) Execution time of task 1 

# sub-

tasks 

Little Big 

1 16 36 

2 9 21 

3 7 16 

4 5 12 

(c) Energy consumption of task 1 
 

(d) Schedule result 

Figure 1: Scheduling example for malleable fork-join tasks 
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in functions, ILOG CP Optimizer efficiently finds solutions in a 

shorter time. In this work, we take advantage of such advanced 

features of ILOG CP Optimizer. In the rest of this section, we 

presents CP formulation for our scheduling problem for ILOG CP 

Optimizer. 

Interval variables are one of the most important concepts in 

scheduling with ILOG CP Optimizer. An interval variable has a 

start time, an end time and a size (length) of execution. An 

important feature of interval variables is that they can be 

annotated as either present or absent. If an interval variable is 

marked as absent, the variable is ignored during the scheduling 

process. If the interval variable is marked as present, the variable 

is taken into account in scheduling. 

Let 𝑡𝑎𝑠𝑘𝑖𝑗  denote an interval decision variable for 𝑗-th sub-

task in task 𝑖 . We assume that tasks may have precedence 

dependency. A precedence constraint that task 𝑖1 must be finished 

before task 𝑖2 starts is expressed with endBeforeStart function, as 

follows. 

 ∀ 𝑗1 , 𝑗2     𝑒𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝑡𝑎𝑠𝑘𝑖1𝑗1, 𝑡𝑎𝑠𝑘𝑖2𝑗2) (1) 

Let 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑘𝑗𝑡  denote an interval decision variable which 

decides the number of sub-tasks and type of core (either little or 

big)  for 𝑗-th sub-task in task 𝑖. Subscript 𝑘 denotes the number of 

sub-tasks. Then, 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑘𝑗𝑡  is absent for 𝑗 ≤ 𝑘 . Subscript 𝑡 

denotes the type of core, being 1 for a little core and 2 for a big 

core. 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑘𝑗,𝑡=1  is absent if the sub-task j in task 𝑖  is 

assigned a big core. Similarly, 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑘𝑗,𝑡=2  is absent if the 

sub-task j in task 𝑖 is assigned a little core. 

𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 function is one of built-in functions in ILOG CP 

Optimizer. For example, 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒(𝑎, {𝑏1 … 𝑏𝑛})  shows a 

constraint that exactly one of intervals {𝑏1 … 𝑏𝑛}  is present 

provided that interval 𝑎 is present. The start and the end times of 

interval 𝑎 are synchronized with those of 𝑏𝑖 which is chosen to be 

present. If all of 𝑏𝑖 are absent, 𝑎 must be absent as well. Using the 

alternative function, we can guarantee that one of 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑘𝑗𝑡 is 

present for each task, as shown below. 

∀𝑖, 𝑗      𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒(𝑡𝑎𝑠𝑘𝑖𝑗 , ⋃𝑘,𝑡{𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑘𝑗𝑡}) (2) 

If a task is split into k sub-tasks, j-th sub-task for 𝑗 ≤ 𝑘 must 

be present on either little or big core. 

∀𝑖, 𝑘, 𝑗 (𝑗 ≤ 𝑘) 

𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑘𝑗 1) ⋁  𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑘𝑗 2)  (3) 

The numbers of little and big cores are limited. This resource 

constraint is expressed with 𝑝𝑢𝑙𝑠𝑒 and 𝑐𝑢𝑚𝑢𝑙𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 functions 

of ILOG CP Optimizer. Figure 2 shows the concept of the pulse 

function. Let a be an interval variable and h be a scalar value. The 

value of pulse(a, h) is h during the interval a. If h is omitted, h is 

considered to be 1 by default. When a is absent, the pulse value is 

0. The 𝑐𝑢𝑚𝑢𝑙𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 function accumulates the specified value 

which varies over time. Then, the resource constraint is described 

as follows, where 𝑁𝑐𝑜𝑟𝑒𝑠𝑡 denote the number of cores of type 𝑡 

in the target hardware. 

∀𝑡 

𝑐𝑢𝑚𝑢𝑙𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛{∑ ∑ ∑ 𝑝𝑢𝑙𝑠𝑒(𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑘𝑗𝑡)𝑗𝑘𝑖 } ≤ 𝑁𝑐𝑜𝑟𝑒𝑠𝑡  (4) 

 Another important constraint in this work is the deadline. All 

of the tasks must be completed before the deadline. This deadline 

constraint is given as follows. 

𝑚𝑎𝑥
𝑖𝑗

{𝑒𝑛𝑑𝑂𝑓(𝑡𝑎𝑠𝑘𝑖𝑗)} ≤ 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 (5) 

This problem aims to minimize total energy consumption. The 

consumed energy is sum by both Little cores and Big cores. The 

following formulation is the object function of this problem. 

Minimize:  ∑ ∑ ∑ 𝑠𝑖𝑧𝑒𝑂𝑓(𝑡𝑎𝑠𝑘𝑖𝑗)𝑗𝑘𝑖   

× {𝛼 × 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑘𝑗1) 

+𝛽 × 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑘𝑗2)} (6) 

𝑆𝑖𝑧𝑒𝑂𝑓 is a built-in function of the CP Optimizer, which is 

described as the execution time of 𝑗th sub-task in task 𝑖. 

Coefficients 𝛼  and 𝛽  are power consumption of a little core 

and a big core, respectively, and are assumed to be given. 

Now, our scheduling problem is formally defined for ILOG CP 

Optimizer. Given the formulas and a task-graph, the solver finds 

the optimal schedule. 

4 SIMULTANEOUS SCHEDULING AND 

CORE-TYPE OPTIMIZATION 

The scheduling problem addressed in Section 3 assumes that 

the heterogeneous multicore architecture is given. However, in 

some cases of embedded system design, the hardware architecture 

is customized in order for application programs to run more 

efficiently in terms of performance, energy consumption and so 

on. 

This section presents an approach to hardware/software 

codesign for heterogeneous multicore systems. This work 

optimizes the types of cores simultaneously with malleable task 

scheduling. The total number of cores is assumed to be given, but 

the types of the cores are flexible. This work optimally decides the 

types of the cores to be either little or big, at the same time with 

MFJ task scheduling in a single optimization framework. Given a 

set of malleable tasks, the total number of cores, and a deadline 

constraint, this work performs core-type optimization and task 

scheduling so that the total energy consumption is minimized. 

The simultaneous core-type customization and scheduling are 

performed with constraint programming, by slightly extending the 

formulation presented in Section 3. 

 
Figure 2: Pulse function in ILOG CP Optimizer 
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Let 𝐿𝑐𝑜𝑟𝑒s  and 𝐵𝑐𝑜𝑟𝑒𝑠  be decision variables indicating the 

numbers of little cores and big cores, respectively. Let 𝑁𝑐𝑜𝑟𝑒𝑠 

denote the total number of cores, and is assumed to be given. 

Then, formula (4) is replaced with the following three formulas 

for the simultaneous core-type customization and scheduling 

problem. 

𝑐𝑢𝑚𝑢𝑙𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛{∑ ∑ ∑ 𝑝𝑢𝑙𝑠𝑒(𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑘𝑗 1)𝑗𝑘𝑖 } ≤ 𝐿𝑐𝑜𝑟𝑒𝑠  (7) 

𝑐𝑢𝑚𝑢𝑙𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛{∑ ∑ ∑ 𝑝𝑢𝑙𝑠𝑒(𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑘𝑗 2)𝑗𝑘𝑖 } ≤ 𝐵𝑐𝑜𝑟𝑒𝑠  (8) 

𝐿𝑐𝑜𝑟𝑒𝑠 + 𝐵𝑐𝑜𝑟𝑒𝑠 = 𝑁𝑐𝑜𝑟𝑒𝑠 (9) 

5 EXPERIMENTS 

5.1 Experimental Setup 

In order to evaluate this work, we have conducted a set of 

experiments. Nine random task-graphs generated by TGFF [18] 

and three task-graphs derived from real applications in STG [19] 

are used as benchmark task-graphs. There exist no scheduling 

algorithm which addresses the same problems as this paper. 

Therefore, the following four techniques are compared although 

the underlying hardware architectures are different from each 

other. 

 All-Big: MFJ task scheduling on big-only homogeneous 

multicores. This scheduling is solved with constraint 

programming. We modified the ILP formulation in [12] into 

constraint programming one for deadline-constrained energy 

minimization. 

 All-Little: MFJ task scheduling on little-only homogeneous 

multicores. This scheduling is solved in the same way as All-

Big above. 

 Little-and-Big: MFJ task scheduling on heterogeneous 

multicores presented in Section 3 of this paper. Half cores 

are little, and another half are big. 

 Little-and-Big-Customized: Simultaneous core-type 

customization and MFJ task scheduling presented in Section 

4 of this paper. 

All of the four scheduling techniques are performed with 

ILOG CP Optimizer 12.6.2 on dual Xeon E2650 processors (32 

threads in total) with 128GB memory. In general, ILOG CP 

Optimizer finds exactly-optimal solutions. However, for large 

task-graphs, the solver cannot find exactly-optimal solution in a 

practical time. In our experiments, therefore, we limit the CPU 

runtime of ILOG CP Optimizer up to 10 hours, and the best 

solutions found at that time are employed. 

In our experiments, the deadline constraint is varied according 

to the following formula. 

𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 =  𝑋𝐵 + (𝑋𝐿 − 𝑋𝐵) × 𝐷 (10) 

In this formula, XL and XB denote the shortest schedule 

lengths on little-only multicores and big-only multicores, 

respectively. XL and XB are obtained with ILOG CP Optimizer 

for up to 100 hours). D is a parameter indicating the tightness of 

deadline. The smaller D is, the tighter the deadline constraint is. In 

our experiments, D is set to be 100%, 87.5%, 75% and 50%. The 

power consumptions of little and big cores, i.e., 𝛼  and 𝛽  in 

Formula (6), are set to be 1 and 3.375 in our experiments. 

5.2 Experimental Results 

Experimental results are presented in Figures 3, 4, 5 and 6. The 

X-axis of the graphs shows the task-graphs, where the numbers in 

parentheses denote the numbers of nodes in the task-graphs. The 

Y-axis shows the energy consumption of the scheduling results 

obtained by the four techniques. The energy consumption is 

normalized to the All-Big technique. In many cases, no solution is 

found. There are two reasons. One reason is that there is no 

feasible solution for the deadline constraint. Another reason is that 

the CP solver cannot find any feasible solution within the limited 

time even if feasible solutions do exist. 

Figure 3 (a) and (b) show the results under the deadline 

constraint D=100% on four cores and eight cores, respectively. 

Since the deadline constraint is loose, the All-Little method 

achieves the lowest energy in many cases. Theoretically speaking, 

Little-and-Big-Customized must be the best since the solution 

space of Little-and-Big-Customized covers those of the other 

methods. However, because of the limited CPU runtime of ILOG 

CP Optimizer, Little-and-Big-Customized sometimes fails to find 

as good solutions as All-Little. 

When the deadline constraint R is 87.5% as shown in Figure 4, 

All-Little does not find any solution. Little-and-Big finds lower-

energy solutions than All-Big by up to 28%. In most cases, Little-

and-Big-Customized achieves the lowest energy consumption. 

Compared with All-Big, Little-and-Big-Customized finds lower-

energy schedule by up to 41%.  

When the deadline constraint is 75% and 50% as shown in 

Figures 5 and 6, Little-and-Big fails to find any solution in most 

cases. Still, Little-and-Big-Customized finds good solutions in 

many cases.  

Note that the experimental results in Figures 3, 4, 5 and 6 do 

not mean that Little-and-Big-Customized is the best scheduling 

algorithm among the four since the hardware architectures are 

different from each other. The results show that heterogeneous 

multicore architecture is a good approach to the design of low-

energy real-time systems and also that customization of 

heterogeneous multicore architecture further improves energy 

efficiency. The scheduling techniques presented in this paper help 

system designers develop such energy-efficient systems in a 

systematic way. 

6 CONCLUSIONS 

This paper proposes a technique for energy-aware scheduling 

of malleable fork-join tasks on heterogeneous multicores. This 

paper also proposes a technique for simultaneous multicore 

customization and task scheduling. Our experiments show the 

effectiveness of our proposed techniques. 

Since our techniques are based on constraint programming and 

rely on a general-purpose solver, the techniques sometimes fail to 

find solutions. In future, we plan to develop fast heuristic 

algorithms for the scheduling problems. 

  



 

 

  

 
(a) Scheduling results on 4 cores 

 
(b) Scheduling results on 8 cores 

Figure 3: Scheduling results under deadline constraint D=100% 

 

 

 
(a) Scheduling results on 4 cores 

 
(b) Scheduling results on 8 cores 

Figure 4: Scheduling results under deadline constraint D =87.5% 

 

 

 

 
(a) Scheduling results on 4 cores 

 
(b) Scheduling results on 8 cores 

Figure 5: Scheduling results under deadline constraint D =75% 
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(a) Scheduling results on 4 cores 

 
(b) Scheduling results on 8 cores 

Figure 6: Scheduling results under deadline constraint D =50% 
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