
Energy-Aware Scheduling of Malleable Fork-Join Tasks under

a Deadline Constraint on Heterogeneous Multicores

Hiroki Nishikawa

Graduate School of Science and Engineering

 Ritsumeikan University

Kusatsu, Shiga, Japan

Ittetsu Taniguchi
 Graduate School of Information Science and Technology

 Osaka University

Suita, Osaka, Japan

Kana Shimada

Graduate School of Science and Engineering

 Ritsumeikan University

Kusatsu, Shiga, Japan

Hiroyuki Tomiyama
Graduate School of Science and Engineering

Ritsumeikan University
Kusatsu, Shiga, Japan

ABSTRACT

This paper proposes an energy-aware scheduling of malleable

fork-join (MFJ) tasks on heterogeneous multicores. This work

allows a task to be split into multiple sub-tasks for fork-join

parallel execution. The number of the sub-tasks is determined

simultaneously with scheduling. Our scheduling technique aims at

the minimization of energy consumption under a deadline

constraint. In addition, this paper proposes a technique for

simultaneous scheduling and core-type optimization. The

technique optimally decides types of cores (to be either “big” or

“little”) at the same time as MFJ task scheduling in order to

further reduce energy consumption.

KEYWORDS

Energy consumption, parallel task scheduling, heterogeneous

multicores, constraint programming, architecture customization

1 INTRODUCTION

Multicore task scheduling, which decides the execution order

of tasks on multiple cores, has become more important than ever

due to the increasing number of cores in embedded systems. In

general, task scheduling problems are NP-hard [1], and a large

number of researchers have studied task scheduling problems over

several decades. In a classic multicore task scheduling problem,

tasks are scheduled on multiple cores so that the tasks are

executed in parallel on different cores, on the assumption that

each task is executed on one of the multiple cores [2]. Many real-

world tasks such as multimedia ones, however, can be parallelized

by dividing data into multiple small pieces which can be

processed independently in a fork-join fashion. On this direction,

some researchers have studied scheduling of fork-join tasks where

each task can be split into multiple sub-tasks and executed on

multiple cores.

This paper presents a task scheduling technique for malleable

fork-join (MFJ) tasks on heterogeneous architectures consisting of

big cores and little cores. A task is called malleable if the number

of the sub-tasks is not fixed prior to scheduling. In other words,

the technique presented in this paper decides the number of sub-

tasks for each task, at the same time as scheduling. Our goal is

minimization of energy consumption under a deadline constraint.

The proposed scheduling technique is based on constraint

programming. This paper also proposes a technique for

simultaneous task scheduling and multicore architecture

customization. The technique decides types of cores (to be either

big or little) at the same time as MFJ task scheduling.

The rest of this paper is organized as follows. Section 2

describes the related work on task scheduling. Section 3 proposes

a MFJ task scheduling technique. Section 4 proposes a technique

for simultaneous MFJ task scheduling and core-type optimization.

Section 5 describes experiments, and Section 6 concludes this

paper.

2 RELATED WORK

In [2], classic techniques on task scheduling for multicore

architectures are extensively surveyed. Multiple tasks which are

independent of each other are executed in parallel on different

cores. However, it is assumed that each task is not parallelized

and is executed on a single core. Scheduling of parallelized tasks

is studied in [3-13]. In [3], Liu et al. proposed list-based

scheduling algorithms for data-parallel tasks. Their work assumes

that a set of dependent tasks is given in the form of a task-graph,

where each task is assigned a fixed number of cores. Then, they

attempt to minimize the overall schedule length (a.k.a. makespan).

Yang and Ha’s work in [4] also focuses on scheduling of data-

parallel tasks. Unlike the work in [3], their work in [4] assumes

that tasks are malleable, which means that the number of cores for

each task is not given, but is determined at the same time as

scheduling. Their goal is to minimize hardware cost with meeting

deadline constraints. In [5], the authors take advantage of data-

parallelism and proposed a technique for pipelined task

scheduling and mapping on heterogeneous MPSoCs. Chen and

Chu in [6] designed a polynomial-time approximation algorithm

for malleable tasks to find a minimum makespan. The authors of

[7] and [8] studied scheduling of malleable tasks based on integer

linear programming and constraint programming, respectively. In

[9], fork-join task scheduling for real-time systems is studied. The

work aims at evaluation of the tractable and intractable fork-join

real-time task model. Lakshmanan et al. in [10] developed an

algorithm for malleable fork-join tasks in OpenMP. Saifullah et al.

EWiLi’18, 4 October 2018, Torino, Italy.

Copyright held by Owner/Author

in [11] proposed a real-time task scheduling model, which

assumes that a task holds the various numbers of threads. Shimada

in [12] studies malleable fork-join task scheduling based on

integer linear programming.

Another direction of studies on multicore task scheduling is for

heterogeneous multicores [13-16]. In [13], Yan et al. studied a

task scheduling problem on heterogeneous multiple processors for

real-time applications, which tries to minimize whole energy

consumption with two heuristic algorithms under deadline

constraints. Thomas et al. [14] developed a scheduler based on

constraint programming for heterogeneous high performance

computing machines. Their work improves a commercial

scheduler with greedy approaches to maximize performance and

quality-of-service. The work in [15] also studies task scheduling

on heterogeneous multicores for makespan minimization. Barbosa

et al. [16] proposed list-based static scheduling algorithms for

malleable tasks. Their work aims to minimize the total schedule

length of a given set of malleable tasks, whose dependencies are

represented by a direct acyclic graph on heterogeneous clusters.

In contrast, this paper studies malleable fork-join task

scheduling for energy minimization under a deadline constraint on

heterogeneous multicore architectures. To the best of our

knowledge, this is the first paper which addresses the topic.

Another contribution which differentiates this paper from past

literature is that this paper also proposes simultaneous MFJ task

scheduling and heterogeneous multicore customization.

3 SCHEDULING OF MALLABLE FORK-JOIN

TASKS ON HETEROGENEOUS

MULTICORES

3.1 Problem Description

 Figure 1 shows an example of scheduling of malleable fork-

join (MFJ) tasks on heterogeneous multicores. In Figure 1 (a), a

set of dependent tasks is represented as a direct acyclic graph, so

called a task-graph. Each task is associated with the execution

time which is a function of the number and the type of cores to

execute the task. The tasks labelled “S” and “E” are empty nodes

which represent entry and exist points, respectively. Figure 1 (b)

shows a table of the execution time of task 1. If task 1 is assigned

a single little core, its execution time is 32 time-units. The

execution time of task 1 on a single big core is 21. It is assumed

that task 1 can be parallelized and partitioned into multiple sub-

tasks. If task 1 is partitioned into two sub-tasks, the execution

time of the sub-task on a little core is 18, while that on a big core

is 12. The two sub-tasks can be executed on two little cores, two

big cores, or one big core and one little core. This work assumes

that, for each task, a table of execution time as shown in Figure 1

(b) is given. This work also assumes that, for each task, a table of

energy consumption as shown in Figure 1 (c) is given. The table

in Figure 1 (c) indicates that task 1 consumes 16 units of energy

when the task is not parallelized and is executed on a little core.

When task 1 is partitioned into two sub-tasks and executed on a

little core and a big core, the task consumes a total energy of 30 (=

9 + 21). In order to minimize energy consumption without taking

care of performance, task 1 should be executed on a single little

core without parallelization. On the other hand, if performance is

the first priority, the task should be parallelized and big cores

should be used as much as possible. There are a large number of

choices between the minimum-energy solution and the maximum-

performance one, even when we focuses on a single task. The

trade-off between performance and energy consumption should be

considered during scheduling.

This work assumes that a deadline constraint is given. The

overall schedule length (i.e., makespan) must be shorter than or

equal to the given deadline. Given a set of malleable tasks and a

deadline constraint, this work decides the number of sub-tasks for

each task, and schedules the sub-tasks on heterogeneous

multicores so that the total energy consumption is minimized

while meeting the deadline constraint.

An example of schedule result for the task-graph in Figure 1

(a) is shown in Figure 1 (d). In the figure, it is assumed that the

hardware consists of two little cores and two big cores. Task 2 is

parallelized on all of the four cores, while task 3 is executed on a

single big core.

This paper assumes that a deadline constraint is given to the

entire task-graph. However, it should be noted that this work can

be easily extended in such a way that individual tasks in a task-

graph have their own deadline constraints.

3.2 Constraint Programming Approach

This work solves the MFJ task scheduling problem with

constraint programming (CP). The performance of CP solvers has

been improved remarkably in the last few decades [17]. One of

the most advanced CP solvers at present is ILOG CP Optimizer

from IBM. ILOG CP Optimizer efficiently solves CP problems on

multicore host computers. Also, ILOG CP Optimizer features

several built-in functions for scheduling problems. With the built-

(a) Task-graph

sub-

tasks

Little Big

1 32 21

2 18 12

3 13 9

4 11 7

(b) Execution time of task 1

sub-

tasks

Little Big

1 16 36

2 9 21

3 7 16

4 5 12

(c) Energy consumption of task 1

(d) Schedule result

Figure 1: Scheduling example for malleable fork-join tasks

S

1 2

53

E

4

T1

Little Core 0

T5

T5

Little Core 1

T2

T2

T2

T2

T1

Time

Big Core 0

Big Core 1 T3

T4

Deadline

in functions, ILOG CP Optimizer efficiently finds solutions in a

shorter time. In this work, we take advantage of such advanced

features of ILOG CP Optimizer. In the rest of this section, we

presents CP formulation for our scheduling problem for ILOG CP

Optimizer.

Interval variables are one of the most important concepts in

scheduling with ILOG CP Optimizer. An interval variable has a

start time, an end time and a size (length) of execution. An

important feature of interval variables is that they can be

annotated as either present or absent. If an interval variable is

marked as absent, the variable is ignored during the scheduling

process. If the interval variable is marked as present, the variable

is taken into account in scheduling.

Let 𝑡𝑎𝑠𝑘𝑖𝑗 denote an interval decision variable for 𝑗-th sub-

task in task 𝑖 . We assume that tasks may have precedence

dependency. A precedence constraint that task 𝑖1 must be finished

before task 𝑖2 starts is expressed with endBeforeStart function, as

follows.

 ∀ 𝑗1 , 𝑗2 𝑒𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝑡𝑎𝑠𝑘𝑖1𝑗1, 𝑡𝑎𝑠𝑘𝑖2𝑗2) (1)

Let 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑘𝑗𝑡 denote an interval decision variable which

decides the number of sub-tasks and type of core (either little or

big) for 𝑗-th sub-task in task 𝑖. Subscript 𝑘 denotes the number of

sub-tasks. Then, 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑘𝑗𝑡 is absent for 𝑗 ≤ 𝑘 . Subscript 𝑡

denotes the type of core, being 1 for a little core and 2 for a big

core. 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑘𝑗,𝑡=1 is absent if the sub-task j in task 𝑖 is

assigned a big core. Similarly, 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑘𝑗,𝑡=2 is absent if the

sub-task j in task 𝑖 is assigned a little core.

𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 function is one of built-in functions in ILOG CP

Optimizer. For example, 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒(𝑎, {𝑏1 … 𝑏𝑛}) shows a

constraint that exactly one of intervals {𝑏1 … 𝑏𝑛} is present

provided that interval 𝑎 is present. The start and the end times of

interval 𝑎 are synchronized with those of 𝑏𝑖 which is chosen to be

present. If all of 𝑏𝑖 are absent, 𝑎 must be absent as well. Using the

alternative function, we can guarantee that one of 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑘𝑗𝑡 is

present for each task, as shown below.

∀𝑖, 𝑗 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒(𝑡𝑎𝑠𝑘𝑖𝑗 , ⋃𝑘,𝑡{𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑘𝑗𝑡}) (2)

If a task is split into k sub-tasks, j-th sub-task for 𝑗 ≤ 𝑘 must

be present on either little or big core.

∀𝑖, 𝑘, 𝑗 (𝑗 ≤ 𝑘)

𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑘𝑗 1) ⋁ 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑘𝑗 2) (3)

The numbers of little and big cores are limited. This resource

constraint is expressed with 𝑝𝑢𝑙𝑠𝑒 and 𝑐𝑢𝑚𝑢𝑙𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 functions

of ILOG CP Optimizer. Figure 2 shows the concept of the pulse

function. Let a be an interval variable and h be a scalar value. The

value of pulse(a, h) is h during the interval a. If h is omitted, h is

considered to be 1 by default. When a is absent, the pulse value is

0. The 𝑐𝑢𝑚𝑢𝑙𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 function accumulates the specified value

which varies over time. Then, the resource constraint is described

as follows, where 𝑁𝑐𝑜𝑟𝑒𝑠𝑡 denote the number of cores of type 𝑡

in the target hardware.

∀𝑡

𝑐𝑢𝑚𝑢𝑙𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛{∑ ∑ ∑ 𝑝𝑢𝑙𝑠𝑒(𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑘𝑗𝑡)𝑗𝑘𝑖 } ≤ 𝑁𝑐𝑜𝑟𝑒𝑠𝑡 (4)

 Another important constraint in this work is the deadline. All

of the tasks must be completed before the deadline. This deadline

constraint is given as follows.

𝑚𝑎𝑥
𝑖𝑗

{𝑒𝑛𝑑𝑂𝑓(𝑡𝑎𝑠𝑘𝑖𝑗)} ≤ 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 (5)

This problem aims to minimize total energy consumption. The

consumed energy is sum by both Little cores and Big cores. The

following formulation is the object function of this problem.

Minimize: ∑ ∑ ∑ 𝑠𝑖𝑧𝑒𝑂𝑓(𝑡𝑎𝑠𝑘𝑖𝑗)𝑗𝑘𝑖

× {𝛼 × 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑘𝑗1)

+𝛽 × 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑘𝑗2)} (6)

𝑆𝑖𝑧𝑒𝑂𝑓 is a built-in function of the CP Optimizer, which is

described as the execution time of 𝑗th sub-task in task 𝑖.

Coefficients 𝛼 and 𝛽 are power consumption of a little core

and a big core, respectively, and are assumed to be given.

Now, our scheduling problem is formally defined for ILOG CP

Optimizer. Given the formulas and a task-graph, the solver finds

the optimal schedule.

4 SIMULTANEOUS SCHEDULING AND

CORE-TYPE OPTIMIZATION

The scheduling problem addressed in Section 3 assumes that

the heterogeneous multicore architecture is given. However, in

some cases of embedded system design, the hardware architecture

is customized in order for application programs to run more

efficiently in terms of performance, energy consumption and so

on.

This section presents an approach to hardware/software

codesign for heterogeneous multicore systems. This work

optimizes the types of cores simultaneously with malleable task

scheduling. The total number of cores is assumed to be given, but

the types of the cores are flexible. This work optimally decides the

types of the cores to be either little or big, at the same time with

MFJ task scheduling in a single optimization framework. Given a

set of malleable tasks, the total number of cores, and a deadline

constraint, this work performs core-type optimization and task

scheduling so that the total energy consumption is minimized.

The simultaneous core-type customization and scheduling are

performed with constraint programming, by slightly extending the

formulation presented in Section 3.

Figure 2: Pulse function in ILOG CP Optimizer

h

0

a

pulse(a,h)

Let 𝐿𝑐𝑜𝑟𝑒s and 𝐵𝑐𝑜𝑟𝑒𝑠 be decision variables indicating the

numbers of little cores and big cores, respectively. Let 𝑁𝑐𝑜𝑟𝑒𝑠

denote the total number of cores, and is assumed to be given.

Then, formula (4) is replaced with the following three formulas

for the simultaneous core-type customization and scheduling

problem.

𝑐𝑢𝑚𝑢𝑙𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛{∑ ∑ ∑ 𝑝𝑢𝑙𝑠𝑒(𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑘𝑗 1)𝑗𝑘𝑖 } ≤ 𝐿𝑐𝑜𝑟𝑒𝑠 (7)

𝑐𝑢𝑚𝑢𝑙𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛{∑ ∑ ∑ 𝑝𝑢𝑙𝑠𝑒(𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑘𝑗 2)𝑗𝑘𝑖 } ≤ 𝐵𝑐𝑜𝑟𝑒𝑠 (8)

𝐿𝑐𝑜𝑟𝑒𝑠 + 𝐵𝑐𝑜𝑟𝑒𝑠 = 𝑁𝑐𝑜𝑟𝑒𝑠 (9)

5 EXPERIMENTS

5.1 Experimental Setup

In order to evaluate this work, we have conducted a set of

experiments. Nine random task-graphs generated by TGFF [18]

and three task-graphs derived from real applications in STG [19]

are used as benchmark task-graphs. There exist no scheduling

algorithm which addresses the same problems as this paper.

Therefore, the following four techniques are compared although

the underlying hardware architectures are different from each

other.

 All-Big: MFJ task scheduling on big-only homogeneous

multicores. This scheduling is solved with constraint

programming. We modified the ILP formulation in [12] into

constraint programming one for deadline-constrained energy

minimization.

 All-Little: MFJ task scheduling on little-only homogeneous

multicores. This scheduling is solved in the same way as All-

Big above.

 Little-and-Big: MFJ task scheduling on heterogeneous

multicores presented in Section 3 of this paper. Half cores

are little, and another half are big.

 Little-and-Big-Customized: Simultaneous core-type

customization and MFJ task scheduling presented in Section

4 of this paper.

All of the four scheduling techniques are performed with

ILOG CP Optimizer 12.6.2 on dual Xeon E2650 processors (32

threads in total) with 128GB memory. In general, ILOG CP

Optimizer finds exactly-optimal solutions. However, for large

task-graphs, the solver cannot find exactly-optimal solution in a

practical time. In our experiments, therefore, we limit the CPU

runtime of ILOG CP Optimizer up to 10 hours, and the best

solutions found at that time are employed.

In our experiments, the deadline constraint is varied according

to the following formula.

𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 = 𝑋𝐵 + (𝑋𝐿 − 𝑋𝐵) × 𝐷 (10)

In this formula, XL and XB denote the shortest schedule

lengths on little-only multicores and big-only multicores,

respectively. XL and XB are obtained with ILOG CP Optimizer

for up to 100 hours). D is a parameter indicating the tightness of

deadline. The smaller D is, the tighter the deadline constraint is. In

our experiments, D is set to be 100%, 87.5%, 75% and 50%. The

power consumptions of little and big cores, i.e., 𝛼 and 𝛽 in

Formula (6), are set to be 1 and 3.375 in our experiments.

5.2 Experimental Results

Experimental results are presented in Figures 3, 4, 5 and 6. The

X-axis of the graphs shows the task-graphs, where the numbers in

parentheses denote the numbers of nodes in the task-graphs. The

Y-axis shows the energy consumption of the scheduling results

obtained by the four techniques. The energy consumption is

normalized to the All-Big technique. In many cases, no solution is

found. There are two reasons. One reason is that there is no

feasible solution for the deadline constraint. Another reason is that

the CP solver cannot find any feasible solution within the limited

time even if feasible solutions do exist.

Figure 3 (a) and (b) show the results under the deadline

constraint D=100% on four cores and eight cores, respectively.

Since the deadline constraint is loose, the All-Little method

achieves the lowest energy in many cases. Theoretically speaking,

Little-and-Big-Customized must be the best since the solution

space of Little-and-Big-Customized covers those of the other

methods. However, because of the limited CPU runtime of ILOG

CP Optimizer, Little-and-Big-Customized sometimes fails to find

as good solutions as All-Little.

When the deadline constraint R is 87.5% as shown in Figure 4,

All-Little does not find any solution. Little-and-Big finds lower-

energy solutions than All-Big by up to 28%. In most cases, Little-

and-Big-Customized achieves the lowest energy consumption.

Compared with All-Big, Little-and-Big-Customized finds lower-

energy schedule by up to 41%.

When the deadline constraint is 75% and 50% as shown in

Figures 5 and 6, Little-and-Big fails to find any solution in most

cases. Still, Little-and-Big-Customized finds good solutions in

many cases.

Note that the experimental results in Figures 3, 4, 5 and 6 do

not mean that Little-and-Big-Customized is the best scheduling

algorithm among the four since the hardware architectures are

different from each other. The results show that heterogeneous

multicore architecture is a good approach to the design of low-

energy real-time systems and also that customization of

heterogeneous multicore architecture further improves energy

efficiency. The scheduling techniques presented in this paper help

system designers develop such energy-efficient systems in a

systematic way.

6 CONCLUSIONS

This paper proposes a technique for energy-aware scheduling

of malleable fork-join tasks on heterogeneous multicores. This

paper also proposes a technique for simultaneous multicore

customization and task scheduling. Our experiments show the

effectiveness of our proposed techniques.

Since our techniques are based on constraint programming and

rely on a general-purpose solver, the techniques sometimes fail to

find solutions. In future, we plan to develop fast heuristic

algorithms for the scheduling problems.

(a) Scheduling results on 4 cores

(b) Scheduling results on 8 cores

Figure 3: Scheduling results under deadline constraint D=100%

(a) Scheduling results on 4 cores

(b) Scheduling results on 8 cores

Figure 4: Scheduling results under deadline constraint D =87.5%

(a) Scheduling results on 4 cores

(b) Scheduling results on 8 cores

Figure 5: Scheduling results under deadline constraint D =75%

0

0.2

0.4

0.6

0.8

1

1.2

tg
ff

-1
 (

6)

tg
ff

-2
 (

7)

tg
ff

-3
 (

7)

tg
ff

-4
 (

7)

tg
ff

-5
 (

11
)

tg
ff

-6
 (

11
)

tg
ff

-7
 (

12
)

tg
ff

-8
 (

14
)

tg
ff

-9
 (

17
)

ro
b

o
t

(8
8

)

sp
ar

se
 (

9
6)

fp
p

p
p

 (
3

34
)

N
o

rm
al

iz
ed

 e
n

er
gy

 c
o

n
su

m
p

ti
o

n

All-Big All-Little Little-and-Big Little-and-Big-Customized

0

0.2

0.4

0.6

0.8

1

1.2

tg
ff

-1
 (

6)

tg
ff

-2
 (

7)

tg
ff

-3
 (

7)

tg
ff

-4
 (

7)

tg
ff

-5
 (

11
)

tg
ff

-6
 (

11
)

tg
ff

-7
 (

12
)

tg
ff

-8
 (

14
)

tg
ff

-9
 (

17
)

ro
b

o
t

(8
8

)

sp
ar

se
 (

9
6)

fp
p

p
p

 (
3

34
)

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

All-Big All-Little Little-and-Big Little-and-Big-Customized

0

0.2

0.4

0.6

0.8

1

1.2

tg
ff

-1
 (

6)

tg
ff

-2
 (

7)

tg
ff

-3
 (

7)

tg
ff

-4
 (

7)

tg
ff

-5
 (

11
)

tg
ff

-6
 (

11
)

tg
ff

-7
 (

12
)

tg
ff

-8
 (

14
)

tg
ff

-9
 (

17
)

ro
b

o
t

(8
8

)

sp
ar

se
 (

9
6)

fp
p

p
p

 (
3

34
)

N
o

rm
al

iz
ed

 e
n

er
gy

 c
o

n
su

m
p

ti
o

n

All-Big All-Little Little-and-Big Little-and-Big-Customized

0

0.2

0.4

0.6

0.8

1

1.2

tg
ff

-1
 (

6
)

tg
ff

-2
 (

7
)

tg
ff

-3
 (

7
)

tg
ff

-4
 (

7
)

tg
ff

-5
 (

1
1

)

tg
ff

-6
 (1

1
)

tg
ff

-7
 (1

2
)

tg
ff

-8
 (1

4
)

tg
ff

-9
 (1

7
)

ro
b

o
t

(8
8

)

sp
ar

se
 (

9
6

)

fp
p

p
p

 (
3

3
4

)

N
o

rm
al

iz
ed

 e
n

er
gy

 c
o

n
su

m
p

ti
o

n

All-Big All-Little Little-and-Big Little-and-Big-Customized

0

0.2

0.4

0.6

0.8

1

1.2

tg
ff

-1
 (

6)

tg
ff

-2
 (

7)

tg
ff

-3
 (

7)

tg
ff

-4
 (

7)

tg
ff

-5
 (

11
)

tg
ff

-6
 (

11
)

tg
ff

-7
 (

12
)

tg
ff

-8
 (

14
)

tg
ff

-9
 (

17
)

ro
b

o
t

(8
8

)

sp
ar

se
 (

9
6)

fp
p

p
p

 (
3

34
)

N
o

rm
al

iz
ed

 e
n

er
gy

 c
o

n
su

m
p

ti
o

n

All-Big All-Little Little-and-Big Little-and-Big-Customized

0

0.2

0.4

0.6

0.8

1

1.2

tg
ff

-1
 (

6)

tg
ff

-2
 (

7)

tg
ff

-3
 (

7)

tg
ff

-4
 (

7)

tg
ff

-5
 (

11
)

tg
ff

-6
 (

11
)

tg
ff

-7
 (

12
)

tg
ff

-8
 (

14
)

tg
ff

-9
 (

17
)

ro
b

o
t

(8
8

)

sp
ar

se
 (

9
6)

fp
p

p
p

 (
3

34
)

N
o

rm
al

iz
ed

 e
n

er
gy

 c
o

n
su

m
p

ti
o

n

All-Big All-Little Little-and-Big Little-and-Big-Customized

ACKNOWLEDGMENT

This work is in part supported by KAKENHI 15H02680.

REFERENCES

[1] M. R. Garey and D. S. Johnson, Computers and Intractability: A

Guide to the Theory of NP-Completeness, W. H. Freeman & Co.,

1979.

[2] M. Drozdowski, “Scheduling multiprocessor tasks: An overview.”
European Journal of Operational Research, vol. 94, 1996.

[3] Y. Liu, L. Meng, I. Taniguchi and H. Tomiyama, “Novel list

scheduling strategies for data parallelism task graphs,” International

Journal on Networking and Computing, vol. 4, no. 2, 2014.

[4] H. Yang and S. Ha, “ILP based data parallel multi-task
mapping/scheduling technique for MPSoC,” International SoC

Design Conference, 2008.

[5] H. Yang and S. Ha, “Pipelined data parallel task mapping/scheduling

technique for MPSoC," Design Automation and Test in Europe
(DATE), pp.69-74, 2009.

[6] C. Chen and C. Chu, “A 3.42-Approximation algorithm for

scheduling malleable tasks under precedence constraints,” IEEE

Transactions on Parallel and Distributed Systems, vol. 24, no. 8,
2013.

[7] K. Shimada, S. Kitano, I. Taniguchi and H. Tomiyama, “ILP-based

scheduling for parallelizable tasks,” IEICE Transactions on

Fundamentals, vol. E100-A, no. 7, 2017.

[8] H. Nishikawa, K. Shimada, I. Taniguchi, H. Tomiyama, “Scheduling
of malleable tasks based on constraint programming,” IEEE Region

10 Conference (TENCON), 2018.

[9] J. Sun, N. Guan, Y. Wang, Q. Deng, P. Zeng and W. Yi, “Feasibility

of fork-join real-time task graph models: Hardness and algorithms,”
ACM Transactions on Embedded Computing Systems (TECS),

vol.15, no. 1, 2016.

[10] K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling parallel
real-time tasks on multi-core processors,” IEEE Real-Time Systems

Symposium, 2010.

[11] A. Saifullah, K. Agrawal, C. Lu and C. Gill, “Multi-core real-time

scheduling for generalized parallel task models,” IEEE Real-Time
Systems Symposium, 2011.

[12] K. Shimada, I. Taniguchi and H. Tomiyama. “ILP-based scheduling
for malleable fork-join tasks,” to appear in ACM SIGBED Review.

[13] W. Yan, L. Kenli, C. Hao, H Ligang and L. Keqin “Energy-aware

data allocation and task scheduling on heterogeneous multiprocessor

systems with time constraints.” IEEE Transactions on Emerging
Topics in Computing, vol. 2, no. 2, pp. 134-148, 2014.

[14] B. Thomas, B. Andrea, L. Michele, M. Michela and B. Luca “A

constraint programming scheduler for heterogeneous high-

performance computing machines,” IEEE Transactions on Parallel
and Distributed Systems, vol. 27, no. 10, pp. 2781-2794, 2016.

[15] S. AlEbrahim and I. Ahmad. “Task scheduling for heterogeneous

computing systems,” The Journal of Supercomputing, vol. 73, no. 6,

pp. 2313-2338, 2017.

[16] J. Barbosa, C. Morais, R. Nobrega, and A.P. Monteiro “Static
scheduling of dependent parallel tasks on heterogeneous clusters,”

IEEE International conference on Cluster Computing, 2005.

[17] I. J. Lustig and J-F. Puget, “Program does not equal program:

Constraint programming and its relationship to mathematical
programming,” Journal on Interfaces, vol. 31, no. 6, 2001.

[18] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: task graph for free,”

International Workshop on Hardware/Software Codesign, 1998.

[19] T. Tobita and H. Kasahara, “A standard task graph set for fair

evaluation of multiprocessor scheduling algorithms,” Journal of
Scheduling, vol. 5, no. 5, 2002.

(a) Scheduling results on 4 cores

(b) Scheduling results on 8 cores

Figure 6: Scheduling results under deadline constraint D =50%

0

0.2

0.4

0.6

0.8

1

1.2

tg
ff

-1
 (

6)

tg
ff

-2
 (

7)

tg
ff

-3
 (

7)

tg
ff

-4
 (

7)

tg
ff

-5
 (

11
)

tg
ff

-6
 (

11
)

tg
ff

-7
 (

12
)

tg
ff

-8
 (

14
)

tg
ff

-9
 (

17
)

ro
b

o
t

(8
8

)

sp
ar

se
 (

9
6)

fp
p

p
p

 (
3

34
)

N
o

rm
al

iz
ed

 e
n

er
gy

 c
o

n
su

m
p

ti
o

n

All-Big All-Little Little-and-Big Little-and-Big-Customized

0

0.2

0.4

0.6

0.8

1

1.2

tg
ff

-1
 (

6)

tg
ff

-2
 (

7)

tg
ff

-3
 (

7)

tg
ff

-4
 (

7)

tg
ff

-5
 (

11
)

tg
ff

-6
 (

11
)

tg
ff

-7
 (

12
)

tg
ff

-8
 (

14
)

tg
ff

-9
 (

17
)

ro
b

o
t

(8
8

)

sp
ar

se
 (

9
6)

fp
p

p
p

 (
3

34
)

N
o

rm
al

iz
ed

 e
n

er
gy

 c
o

n
su

m
p

ti
o

n

All-Big All-Little Little-and-Big Little-and-Big-Customized

