
Routing Heuristics for Load-balanced Transmission in
TSN-Based Networks

Mubarak Adetunji Ojewale
mkaoe@isep.ipp.pt

Patrick Meumeu Yomsi
pmy@isep.ipp.pt

CISTER Research Centre, ISEP
Polytechnic Institute of Porto, Portugal

ABSTRACT
A carefully designed routing synthesis can help system de-
signers achieve a better load balancing in TSN-based net-
works and avoid congestion. To this end purpose, this work
proposes two heuristics referred to as (1) LB-DRR, which
aims at achieving a better load balancing and compute as
much disjoint routing paths as possible for each replicated
flow; and (2) CR-DRR, which recomputes paths for time-
sensitive flows in congestion situations. Extensive simula-
tions demonstrate that the proposed approach outperforms
the classical Shortest Path (SPA) and the weighted Equal
Cost Multi-path (wt-ECMP) algorithms in terms of the max-
imum load transmitted on a link by more than 70% and 20%,
respectively.

Keywords
Time Sensitive Networking; Routing Algorithms; Conges-
tion; Load-Balancing

1. INTRODUCTION
Ethernet in its original specification was not designed with

real-time communication in mind. The IEEE Time Sensi-
tive Networking (TSN) Task Group [7] acknowledged this
fact and has been investing considerable workforce to come
up with a set of new standards to address this limitation.
In this context, the group has designed sophisticated mech-
anisms to achieve temporally predictable and reliable trans-
mission of packets over switched Ethernet networks. Specif-
ically, key features like flow-synchronization; -management;
-control; and -integrity, have been instanced. For a given
network, deriving an efficient and cost-effective flow control
scheme is paramount. It would make it possible for users
and operators to centrally and dynamically discover; con-
figure; monitor; and report on the capabilities of switches
and end-stations (a.k.a. nodes) [9]. In a nutshell, the TSN
flow control mechanism can be considered from two per-
spectives: (1) the scheduling (i.e., when each flow shall be
transmitted); and (2) the routing (i.e., on which path each
flow shall be transmitted). Dürr et al. [2] demonstrated that
the scheduling problem of real-time (a.k.a. time-sensitive)
flows can be reduced to the No-Wait Job Shop Problem
(NW-JSP), which is NP-Hard. On another front, Wang
and Crowcroft [14] proved that any routing problem that is

Copyright retained by the authors.
RTN’2019, Stuttgart, Germany

subject to two or more independent additive or multiplica-
tive tree constraints is NP-Hard. This is the case for time-
sensitive flows, unfortunately. They are subject to timing,
bandwidth, cost and reliability constraints. Consequently,
seeking for an exact solution is very challenging and com-
putationally expensive. Designing efficient heuristics is the
only viable alternative.

In recent years, the scheduling problem has received signif-
icantly more attention by the research community than the
routing. However, Nayak et al. [10], Singh [12], and Gavriluţ
et al. [4] among others raised voices and stressed on the im-
portance of routing in achieving low latency, predictability,
and reduced architecture cost. In this work, we follow the
same path and focus on the routing problem of TSN flows
as an improper routing strategy may increase the number
of transmission operations, thereby incurring additional de-
lay. Also, it may increase the blocking time of flows in the
network if too many flows try to simultaneously traverse the
same path. We believe that a strategy that minimizes the
number of transmission operations and the blocking times
suffered by each flow would help get around and/or mitigate
these situations.

. Limitations of the state-of-the-art. The TSN stan-
dard on path control and reservation [8] recommends the
Constrained Shortest Path First (CSPF) routing scheme for
the transmission of time-sensitive flows (see page 71). It
dictates that this scheme

“essentially performs shortest path routing on the
topology that only contains the links meeting the
constraint(s).”

From this quote, it follows that CSPF is similar to the
Shortest Path Algorithm (SPA) in its operation. Conse-
quently, it is also exposed to congestion and increased block-
ing time for flows. To illustrate this claim, let us consider
the network topology in Figure 1, where six nodes (Node 1
to Node 6) and six switches (S1 to S6) are connected by
full duplex links. Nodes communicate through flow trans-
missions over the links and switches. In this example, we
consider three flows – flow f1 (green) is transmitted from
Node 1 to Node 6; f2 (yellow) from Node 2 to Node 5; and fi-
nally, flow f3 (brown) is transmitted from Node 4 to Node 4.
We assume that the CSPF routing policy is adopted and all
valid paths from each source to each destination node al-
lows each flow to satisfy its end-to-end timing requirement.
Then, all these flows are transmitted via the “direct link”
(in red) between S1 and S6, thus increasing the eventual
blocking time over this link for each flow. This state of facts

Figure 1: Congestion under CSPF routing policy.

makes this link the potential single point of failure of the
network and may cause congestion despite the high level of
connectivity. The same limitation applies to the Equal Cost
Multi-Path (ECMP) and the weighted ECMP (wt-ECMP)
routing schemes [12], unfortunately. The basic idea of these
two routing schemes is as follows. Under ECMP, instead of
computing a single shortest route like this is the case with
SPA, multiple shortest routes are computed and from these,
one or several routes are selected arbitrarily. The wt-ECMP
scheme distinguishes itself from ECMP only in the selection
mechanism. Here, for all the computed shortest routes, a
“weight” is assigned to each route to make sure that selec-
tion is not performed in an arbitrary manner.

. Our contribution. To get around the aforementioned
hurdles and to fully take advantage of the network connec-
tivity, we suggest the adoption of a routing strategy that
ensures load balancing, i.e., a strategy that distributes the
transmission operations among the links as even as possible.
In addition, this approach ensures that no link becomes the
only potential point of failure of the network. In this scope,
this paper proposes two heuristics, referred to as LB-DRR
and CR-DRR, with the following objectives:

. LB-DRR: which aims at finding a feasible route for
each flow so that the traffic on each link is minimized1.

. CR-DRR: which aims at computing alternative routes
for each flow in a situation of congestion at run-time.

Although the proposed routing schemes are motivated by
the limitations observed in the specifications of TSN, they
can be ported (with minor efforts) to a large portion of real-
time Ethernet networks.

. Paper organization. The rest of this paper is structured
as follows. Section 2 presents the model of computation and
introduces the notations adopted in this work. Our proposed
heuristics (LB-DRR and CR-DRR) are detailed in Section 3.
Section 4 reports on the experiments carried out and discus-
sions about these. Section 5 discusses the related works on

1This heuristic also makes sure that replicated flows are
transmitted on routes as disjoint as possible.

the topic in the literature. Finally, Section 6 concludes the
paper and provides future research directions.

2. MODEL OF COMPUTATION
In this section, we define the network topology and the

flows specification assumed throughout this paper. Also, we
introduce the notations and parameters necessary for a good
and crystal clear understanding of our proposed heuristics.

. Network topology specification. We modelled the net-
work as an undirected graph G = (V,E), where the set
V = N ∪ S of vertices in G is composed of a finite set N
of nodes and S of switches (see Figure 1 for an example).
The vertices are connected by a set E of full duplex links
or edges. This means that each edge e ∈ E is defined by a
couple (v1, v2) ∈ V × V of two connected nodes.

. Flow specification. By default, every TSN-based net-
work addresses recurrent (periodic and/or sporadic) flows
grouped in classes (e.g., CDT, Audio/Video, etc.). These
flows are transmitted within so-called cycles2 and within a
cycle, each flow is treated individually (irrespective of its
period) [10]. When all flows are released simultaneously (as
assumed in this work), we can safely restrict our attention
to a single cycle (the first one). As such, we consider a set of

n aperiodic time-sensitive flows F
def
= {f1, f2, . . . , fn}. Each

flow fi
def
= (srci, dsti, repi, Ci, Ti, Di) ∈ F is characterized

by a 5-tuple, where: (1) srci is the source node; (2) dsti is
the destination node; (3) repi is the replication level (i.e.,
the number of replicates of fi allowed to be transmitted
from srci to dsti); (4) Ci is the size; and finally (5) Di is the
deadline of the flow, i.e., the latest time instant by which
at least one copy (original or replicates) of fi must reach
dsti. We assume all flows are uni-cast, i.e., each flow has
a unique destination. We define the set of replicates of fi

as repfi
def
= {fi,1, fi,2, . . . , fi,repi} and assume that each flow

and all its replicates are transmitted simultaneously over the
network.

2The length of each cycle is computed as the Least Common
Multiple (L.C.M.) of the periods of all flows.

3. PROPOSED SOLUTION
In this work, we assume that all edges are homogeneous

(i.e., they all have the same characteristics and are inter-
changeable). Before we detail our proposed routing strat-
egy, let us first define a number of concepts for a better
understanding of our approach from the reader standpoint.

Definition 1 (Route). A route ri of flow fi is defined
as an ordered list 〈(srci, vi,1), (vi,1, vi,2), . . . , (vi,p, dsti)〉 of
edges that can be traversed by fi from its source to its desti-
nation.

Definition 2 (Valid route). A valid route for fi is
defined as any route ri that meets its timing requirement Di.

Definition 3 (Length of a route). The length of a
route ri denoted by len(ri) is defined as the number of edges
along the route.

Definition 4 (load of a edge). For every edge e =
(v1, v2) ∈ V ×V , we define the load of e, denoted by load(e),
the sum of the sizes of all flows traversing e. Formally, the
load of edge e is defined by Equation 1.

load(edge)
def
=

∑
fi traversing edge

Ci (1)

Definition 5 (MaxLoad of a route). The MaxLoad
of a route ri, denoted by Maxload(ri), is defined as the max-
imum load of all edges in ri. Formally, the MaxLoad of
route ri is defined by Equation 2.

Maxload(ri)
def
= max

edge∈ri
{load(edge)} (2)

At this stage, we have all the tools we need to describe
our proposed routing solution. The basic idea is as follows.
In contrast to the traditional routing schemes (e.g., SPA,
ECMP and wt-ECMP), where the underlying strategy is to
focus on finding the shortest route for each flow, here we
explore all the valid routes. If we denote by Ri the set of all
valid routes for flow fi, then our routing strategy consists in
selecting the route that results in the best load distribution
in Ri, i.e., the route that minimizes the cost function defined
in Equation 3.

Cost(ri,K)
def
= Maxload(ri) + K · len(ri) (3)

In this Equation 3, parameter K > 0 is a penalty constant
value defined by the user. This parameter is meant to pe-
nalize the routes with longer lengths. To make a long story
short, it must be looked at as trade-off. It must be set in
such a way that the weight of K · len(ri) in the cost func-
tion is significant and Maxload(ri) does not dominate it
and vice-versa. In the latter case, if K · len(ri) dominates
Maxload(ri), then the cost function would behave like wt-
ECMP. On the other front, Maxload(ri) is computed to pe-
nalize solutions where some edges in the route are transmit-
ting a high number of flows3. Last but not least, if several
routes return the same lowest-cost value, then we select one
of these routes in an arbitrary manner. Formally, for each
flow fi, its best route Best(fi) is defined by Equation 4.

Best(fi)
def
= min

ri∈valid routes
{Cost(ri,K)} (4)

3Hence making these edges become potential bottlenecks.

In this equation, variable “valid routes” denotes the set of
all valid routes for flow fi. Consequently, wt-ECMP is a
special case of the proposed approach, where parameter K
is sufficiently large and K · len(ri) dominates Maxload(ri).
Now, we can proceed with the details of our proposed rout-
ing schemes.

./ On load-balancing (Algorithm 1). The load balanc-
ing routing scheme (LB-DRR) takes three components as
inputs, namely: (1) the network topology G; (2) the set F
of flows to be routed; and finally (3) the user-defined penalty
variable K. In the description of the algorithm, the notation
|A| refers to the cardinal of set A.

For each flow fi, after the initialization phase (lines 1
to 3), LB-DRR computes the best route by using Equa-
tion 4 (line 6). Then, the load of all edges on this route
is updated (line 8) and the selected route is appended to
the list of best routes Ri of flow fi. If the number of repli-
cas of fi is strictly greater than zero, then all the edges
that have already been traversed by the original flow fi are
recorded in variable used edge (line 12). Next, all the valid
routes are computed (line 13) and the route ri,j that has
the minimum overlap with used edges is selected for replica
fi,j (with j ∈ [1, repi]) (line 15). If several routes return the
same minimum overlap with used edges, then one of these
routes is selected arbitrarily and the load of all edges on
ri,j is updated (line 17). Note that the edges belonging to
used edges are also updated so as to take into account those
traversed by replica fi,j (line 19). Thereafter, route ri,j is
appended to Ri (line 20) and Ri, which is the list of selected
routes for fi and its replicas, is appended to the list R of the
selected routes for all flows (line 23). When this process is
completed for all fi to be transmitted, the algorithm returns
the list R (line 25).

./ On congestion recovery (Algorithm 2). This algo-
rithm, referred to as CR-DRR, is based on the Tabu meta-
heuristic [5] and is reactive in that it aims at re-routing the
flows caught in a congestion situation. In a nutshell, the
main intuition behind any tabu-based meta-heuristic is to
temporarily mark some moves as forbidden so as to force the
algorithm to seek for alternative solutions, potentially bet-
ter in comparison to the current one with respect to a given
metric. With this concept in mind, the CR-DRR scheme op-
erates as follows. It takes five components as input: (1) the
network topology G; (2) the original routing configuration
for all flows R; (3) the congestion threshold cgst threshold4;
(4) the list of the loads on each edge (load); and finally
(5) the user-defined penalty variable K. All congested edges
according to parameter cgst threshold are stored as “tabu-
edges” (csgt edges) and are temporarily removed from the
network topology (line 2). For every congestion situation,
we initialized the set of congested routes csgt routes (i.e.,
all routes containing at least one congested edge); the set
of flows (csgt flows) traversing the congested routes; and
the new set of routes Rnew to include all routes in R except
the congested routes (lines 3 to 5). Then, we seek for alter-
native routes on the new topology for each congested flow
fi ∈ cgst flows (line 7). From these alternative route(s),
we select the best route5 ri by using Equation 3 (line 9).

4This parameter defines the upper-limit of the load admis-
sible on an edge, otherwise it is deemed as congested.
5Again, if several routes return the same minimum cost,
then we select one of these in an arbitrary manner.

Algorithm 1: LB-DRR routing scheme.

Data: Network topology G; Set of flows F ; Constant K
Result: List of best routes for each flow in F

1 R← empty list[];
2 edges← Set of all edges in G;
3 load← zeros[|edges|];
4 foreach fi ∈ F do
5 Ri ← [];
6 Compute ri = Best(fi) (see Equation 4);
7 foreach edge ∈ ri do
8 load[edge] = load[edge] + Ci;
9 end

10 Ri.append(ri);
11 if repi > 0 then
12 used edges← {edge ∈ ri};
13 routes = valid routes(G, srci, dsti);
14 for j = 1 to repi do
15 ri,j = arg min

r∈routes
(|used edges ∩ {edge ∈ r}|);

16 foreach egde ∈ ri,j do
17 load[edge] = load[edge] + Ci;
18 end
19 used edges = used edges ∪ {edge ∈ ri,j};
20 Ri.append(ri,j);

21 end

22 end
23 R.append(Ri);

24 end
25 return R

We check if re-routing flow fi will not cause congestion on
any edge in ri (line 10). If it does, we leave fi on its original
route old ri (line 24). At the end of this process, we update
the list load in two phases: (i) on the old route old ri: we
deduct Ci from all edges (line 12) and (ii) on the new route
ri: we augment Ci to all the edges (line 15). We update
cgst edges (lines 17 to 22). In case there is no alternative
route for fi in New Topology, it is kept on its original route
old ri (line 27). Finally, the computed route is appended
to Rnew (line 29) and when all congested flows have been
re-routed, the list Rnew is returned for all flows (line 31).

4. EXPERIMENTAL RESULTS
In this section, we report on the experiments conducted

on synthetic workloads to evaluate the performance of the
proposed heuristics (LB-DRR and CR-DRR) in terms of
maximum load transmitted on an edge against SPA and wt-
ECMP. Then, we assessed the scalability of the proposed
algorithms to demonstrate their applicability.

. Setup. We considered a TSN network, modeled as an
Erdős-Rényi graph [3] with 50 nodes and a connectivity level
falling in the interval [0.15, 0.35]. We set K = 100 and ran-
domly generated up to 1000 real-time flows in the window
[25, 200]. For each flow, we assume that its size is between
200 and 1000 bytes and its replication level is randomly cho-
sen between 0 and 2. Also, to constrain the solution space
(i.e., to limit the set of valid routes for each flow), we con-
sider the deadline of each flow in the range of 2 to 5 time
units and assume a constant traversal time of 1 time unit
per edge. In the first batch of experiments, we assumed the

Algorithm 2: CR-DRR routing scheme.

Data: Network topology G; Original routing
configuration R; List of loads on each edge
(load); Congestion threshold cgst threshold;
Constant K

Result: A new routing configuration Rnew

1 cgst edges← {edge inG | load(edge) > cgst threshold};
2 New Topology ← G \ cgst edges;
3 cgst routes← {r ∈ R | r ∩ cgst edges 6= ∅};
4 cgst flows← {fi traversing a route in cgst routes};
5 Rnew ← R \ cgst routes;
6 foreach fi ∈ cgst flows do
7 routes← valid routes(New Topology, srci, dsti);
8 if (routes 6= ∅) then
9 ri = arg min

r∈routes
(Cost(r,K));

10 if (Maxload(ri) ≤ cgst threshold) then
11 foreach edge ∈ old ri do
12 load[edge] = load[edge]− Ci ;

13 end
14 foreach edge ∈ ri do
15 load[edge] = load[edge] + Ci ;
16 end
17 foreach edge ∈ cgst edges do
18 if (load(edge) ≤ cgst threshold) then
19 New Topology =

New Topology.add(edge);
20 cgst edges = cgst edges \ {edge};
21 end

22 end

23 else
24 ri = old ri
25 end

26 else
27 ri = old ri
28 end
29 Rnew.add(ri);

30 end
31 return Rnew

LB-DRR routing scheme and the second batch, we assumed
the SPA routing scheme. In the latter case, we applied the
CR-DRR algorithm to re-route the flows under congestion
situations.

. Results and discussion. From the first batch of exper-
iments, we observed that LB-DRR reduces the maximum
load transmitted on an edge (Maxload) by 70.3% and 23.3%
in average as compared to SPA and wt-ECMP, respectively.
Figure 2a shows the Maxload for each routing scheme when
the numbers of flows varies and LB-DRR clearly dominates
both SPA and wt-ECMP. By varying the connectivity level
of the network (see Figure 2b), we observed that LB-DRR
performs better as the network connectivity increases and
its Maxload decreases significantly. Note that higher con-
nectivity brings about longer run-time overhead due to the
increasing number of routes to be considered.

Figure 3a illustrates the scalability of LB-DRR w.r.t. in-
creasing number of flows. Regarding the increase of the
number of flows, we observed that LB-DRR scales linearly,
but very slowly (it took only 26 seconds to compute routes

(a) Load balancing: LB-DRR vs. SPA and wt-ECMP. (b) Performance improvement w.r.t. network connectivity.

Figure 2: Load balancing and performance improvement of LB-DRR.

(a) Scalability w.r.t. number of flows. (b) Scalability w.r.t. number of nodes.

Figure 3: Scalability of LB-DRR.

for 1000 flows). Now, regarding the increase of the number
of nodes, we set the network connectivity level to 0.2 and
consider 100 real-time flows. Figure 3b shows that the exe-
cution time of LB-DRR grows exponentially as the number
of nodes exceeds 75. However, it could still compute routes
for 125 nodes in 11 minutes.

From the second batch of experiments, we routed 750 real-
time flows by using SPA, and we observed a huge congestion
on the selected routes. Figure 4 shows the congestion recov-
ery and the load redistribution results. In Figure 4a, the net-
work load was initially unbalanced (see the red curve) with
several flows routed only on a limited number of edges (see
the peak on the far-left), while several edges were left unused
(see the long tail to the far-right). By applying the CR-DRR
scheme, a tremendous improvement has been observed (see
the black curve). Figure 4b shows the load distribution of
the congested network before and after CR-DRR is applied.
From this figure, the load distribution curve of CR-DRR
is close to the normal distribution. Finally, CR-DRR pre-
sented the same behavior as LB-DRR in terms of scalability.

5. RELATED WORK
Traffic routing of time sensitive (real-time) flows is non

trivial [9]. Routing optimization has been well studied in lit-

erature and sophisticated techniques have been proposed [6,
13]. However, contributions on TSN routing schemes have
started less than a decade ago. In this context, both the
rapid spanning tree protocol and shortest path bridging al-
gorithms have widely been adopted in practice [11]. On
another front, the IEEE802.1 Qca standard [8] specifies the
Constrained Shortest Path First routing algorithm for TSN
transmissions, but this algorithm does not prevent conges-
tion situations and can increase contention in the network,
unfortunately. Arif and Atia [1] proposed a methodology
to evaluate the routes of a TSN end-to-end connection, but
load-balancing was not part of their objectives.

Nayak et al. [10] explored ILP-based algorithms for rout-
ing time sensitive flows in TSN networks with Time Aware
Shapers (a.k.a. IEEE-802.1Qbv). The proposed approach
in their work differs from ours in that it does not address
the congestion and load-balancing problems. Targeting a
better load balancing for a TSN network, Singh [12] pre-
sented an algorithm, based on meta-heuristics, capable of
routing new traffic flows at runtime with minimal overhead.
But, the proposed approach adopts the shortest path algo-
rithm (SPA) as initial solution and not all feasible routes
are considered. This limits the solution search-space, un-
fortunately. Gavrilut et al. [4] also took the same path and

(a) CR-DRR adopted to recover from congestion (b) Load distribution under CR-DRR.

Figure 4: CR-DRR Congestion recovery.

proposed heuristic methods for topology and routing synthe-
sis. Their method tries to achieve an optimal usage of the
switches and links as well as an efficient routing of flows.
However, they did not consider load-balancing. This paper
fills this gap: it solves the problem of load-balancing, dis-
joint routing for duplicated flows and dynamic re-routing in
congestion situation.

6. CONCLUSION
In this work, we proposed two routing heuristics, referred

to as LB-DRR and CR-DRR, in order to address the prob-
lems of load-balancing and congestion in TSN-based net-
works. We evaluated the performance of the proposed schemes
against the popular SPA and wt-ECMP routing algorithms
and showed an improvement of more than 70% and 20%, re-
spectively. This improvement has been observed w.r.t. the
maximum load transmitted on an edge. On another front,
the proposed heuristics exhibited high scalability w.r.t. an
increase in the number of flows. Given these promising re-
sults, we plan to investigate both the routing and schedul-
ing of time-sensitive flows simultaneously. Also, it would be
interesting to address multicast flows; develop techniques
to reduce the search space of valid routes as the number
of nodes increases and finally quantify the impact of these
techniques on the end-to-end timing requirements.

Acknowledgment
This work was partially supported by National Funds through
FCT/MCTES (Portuguese Foundation for Science and Tech-
nology), within the CISTER Research Unit (UID/CEC/04234)

7. REFERENCES
[1] F. A. R. Arif and T. S. Atia. Load balancing routing

in time-sensitive networks. In Problems of Inf. Science
and Technology (PIC S&T), Third Int. Scientific
Practical Conf., pages 207–208. IEEE, 2016.

[2] F. Dürr and N. G. Nayak. No-wait packet scheduling
for ieee time-sensitive networks (TSN). In Proc. of the

24th Int. Conf. on RTNS, pages 203–212. ACM, 2016.

[3] L. Erdős, A. Knowles, H.-T. Yau, J. Yin, et al.
Spectral statistics of erdős–rényi graphs i: local
semicircle law. The Annals of Probability,
41(3B):2279–2375, 2013.

[4] V. Gavrilut, B. Zarrin, P. Pop, and S. Samii.
Fault-tolerant topology and routing synthesis for
IEEE time-sensitive networking. In 25th Int. Conf. on
RTNS, pages 267–276. ACM, 2017.

[5] F. Glover. Tabu search: A tutorial. Interfaces,
20(4):74–94, 1990.

[6] M. D. Grammatikakis, D. F. Hsu, M. Kraetzl, and
J. F. Sibeyn. Packet routing in fixed-connection
networks: A survey. Journal of Parallel and
Distributed Computing, 54(2):77–132, 1998.

[7] IEEE. Time-Sensitive Networking Task Group.

[8] IEEE. IEEE Standard for Local and metropolitan area
networks— Bridges and Bridged Networks -
Amendment 24. IEEE, 2016.

[9] A. Nasrallah, A. Thyagaturu, Z. Alharbi, C. Wang,
X. Shao, M. Reisslein, and H. Elbakoury. Ultra-Low
Latency (ULL) Networks: The IEEE TSN and IETF
DetNet Standards and Related 5G ULL Research.
IEEE Comm. Surveys & Tutorials, pages 1–59, 2018.

[10] N. G. Nayak, F. Duerr, and K. Rothermel. Routing
Algorithms for IEEE802. 1Qbv Networks. RTN
workshop, ECRTS, 2017.

[11] P. Pop, M. L. Raagaard, S. S. Craciunas, and
W. Steiner. Design optimisation of cyber-physical
distributed systems using IEEE time-sensitive
networks. IET Cyber-Physical Systems: Theory &
Applications, 1:86–94, 2016.

[12] S. Singh. Routing Algorithms for Time Sensitive
Networks. Master’s thesis, Univ. of Stuttgart, 2017.

[13] B. Wang and J. C. Hou. Multicast routing and its qos
extension: problems, algorithms, and protocols. IEEE
network, 14(1):22–36, 2000.

[14] Z. Wang and J. A. Crowcroft. Quality-of-service
routing for supporting multimedia applications. IEEE
Journal on Sel. Areas in Comm., 14:1228–1234, 1996.

