
A Survey of Embedded Systems Tools
Embedded systems must operate under special constraints beyond those which usually
apply to general-purpose computers. Such constraints might limit aspects of the
hardware architecture, including its cost, power consumption, processor speed, and
memory size. Other constraints might require the embedded software to meet real-time
deadlines or avoid unsafe system states. A number of free downloadable tools have been
developed by research institutions to help system designers face the daunting task of
creating embedded systems which can comply with these types of restrictions. These
tools allow system designers to specify, verify, analyze, and simulate complex real-time,
distributed, and embedded systems. This article provides a brief survey of a few such
tools, including the Generic Modeling Environment, Giotto, HyTech, Metropolis, Mocha,
POLIS, and Ptolemy II. For more information or to download one of the tools, visit the
appropriate provided URL.

The ESCHER institute, a consortium of university and industrial participants in
embedded systems research, also maintains a repository of peer-reviewed, quality-
controlled tools and software for embedded systems. This repository includes several of
the tools reviewed by this article as well as a number of additional tools and software.
More information about ESCHER may be found at www.escherinstitute.org.

GME: www.isis.vanderbilt.edu/Projects/gme/
The Generic Modeling Environment (GME) is a configurable tool framework for creating
domain-specific modeling, model analysis, and model transformation environments. The
configuration is accomplished by using formal metamodels to specify the abstract and
concrete syntax of a modeling paradigm, or domain-specific modeling language (DSML).
The modeling paradigm contains all the concrete and abstract syntax information of the
domain, including which concepts will be used to construct models, what relationships
may exist among those concepts, how the concepts may be organized and viewed by the
modeler, and what well-formedness rules govern the construction of models. GME also
provides high-level C++ and Java interfaces for writing plug-in components to traverse,
manipulate, and interpret models.

GME is widely used in embedded systems research. Example projects include the
Automatic Integration of Reusable Embedded Software toolkit (AIRES) developed at the
University of Michigan and the EAST Architecture Definition language (EAST ADL)
built for the EAST-EEA project.

Giotto: http://www-cad.eecs.berkeley.edu/~tah/giotto/
Control applications typically consist of periodic software tasks grouped with a mode
switching behavior for enabling and disabling specific tasks. Giotto is a tool-supported
methodology for the development of distributed real-time embedded control systems
using time-triggered task invocations and mode switches. The Giotto system consists of
a time-triggered programming language with a formal semantics, a compiler, and a
runtime system. Giotto’s programming language provides a strict separation between

platform-specific scheduling and communication issues and platform-independent
functionality and timing concerns such as sensor readings, task invocations, actuator
updates, and mode switches. This separation of concerns permits flexibility in the choice
of the control platform and facilitates significant automation in the validation and
synthesis of control software. Because the time-triggered nature of Giotto achieves
timing predictability, the Giotto system is especially suitable for designing safety-critical
applications.

HyTech: www-cad.eecs.berkeley.edu/~tah/hytech/
HyTech, a symbolic model checker for linear hybrid automata, is an automatic tool for
embedded systems analysis. HyTech provides model-checking facilities which do more
than simply determine if a system satisfies its correctness constraints – they also provide
relevant diagnostic information to facilitate design and debugging. If a linear hybrid
system description contains design parameters with unspecified values, HyTech can
automatically compute the conditions under which the system satisfies its temporal
requirements. If system verification fails, then HyTech generates a diagnostic error trace.

Metropolis: www.gigascale.org/metropolis/
Metropolis is an environment for designing complex embedded systems. It allows users
to define various levels of abstraction to formally represent and refine the system from
design through implementation. Metropolis also allows users to formulate the problems
to be addressed at and across these different abstraction levels. The Metropolis design
environment includes a modeling language, infrastructure, libraries and tools. The core
of the Metropolis infrastructure is a metamodel of computation, which allows users to
model various communication and computation semantics in a uniform manner. It also
includes a tool interface for integrating new tools (e.g., verification) with the Metropolis
environment, a simulator for verifying temporal properties with the SPIN model checker,
and libraries providing typical application services such as FIFO communication
semantics. Metropolis provides multiple tools for model simulation, analysis and
verification, and synthesis.

Mocha: www-cad.eecs.berkeley.edu/~tah/mocha/
Mocha is an interactive software environment for the specification and verification of
embedded systems. It serves as a tool for developing new verification algorithms and
approaches. Mocha allows the specification of heterogeneous synchronous,
asynchronous, and real-time systems using a language of hierarchical components. It
provides a temporal logical language for the formal specification of design constraints as
well as verification through model checking. Mocha also enables user-guided and/or
automatic system execution. jMocha, a Java implementation of Mocha, provides a
graphical proof manager and a new scripting language for rapid, structured symbolic
algorithm development.

POLIS: www-cad.eecs.berkeley.edu/Respep/Research/hsc
POLIS, a tool for hardware/software co-design, centers on a concurrent finite state
machine-like representation called Co-design Finite State Machines (CFSM). Designers

may implement their specifications in a higher-level language such as ESTEREL and
directly convert them into CFSMs. POLIS incorporates a formal verification
methodology which uses certain CFSM-specific abstractions and assumptions to verify
large, complex designs. POLIS also includes a translator from the language of CFSMs
FSMs which can interface with external FSM-based verification systems. Designers can
simulate systems using POLIS based on design decisions such as choice of CPU and
scheduler. POLIS supports hardware synthesis, application-specific real-time operating
system synthesis, and software synthesis in the form of C code.

Ptolemy II: ptolemy.eecs.berkeley.edu/ptolemyII/
Ptolemy II is a Java-based infrastructure for experimenting with concurrent real-time
embedded system design techniques. It supports the heterogeneous modeling,
simulation, and design of systems through the assembly of concurrent components.
Users may specify a heterogeneous mixture of different models of computation to govern
the concurrency model and inter-component communication mechanisms. Ptolemy II
includes an extensible library of ready-made components, and new components may be
specified using Java, Python, MATLAB, or a component definition language called Cal.
It also includes an extensible library of interoperable models of computation. The
Ptolemy II graphical user interface is extensible too, allowing custom visualizations of
components, component interactions, and model data.

