Research Challenges in Embedded and Hybrid Systems

Insup Lee and Oleg Sokolsky
Department of Computer and Information Science
University of Pennsylvania

1. Introduction

An embedded system consists of a collection of com-
ponents that interact with each other and with their
environment through sensors and actuators. Many em-
bedded systems are part of safety-critical applications,
e.g., avionic systems, manufacturing, automotive con-
trollers, and medical devices. There are several fac-
tors that complicate the design and implementation
of embedded systems. First, the software complexity
of embedded systems has been increasing steadily as
microprocessors become more powerful. To mitigate
the development cost of software, embedded systems
are being designed to flexibly adapt to different envi-
ronments. The requirements for increased functional-
ity and adaptability make the development of embed-
ded software complex and error-prone. Second, tight re-
source constraints distinguish embedded systems from
most other computer-based systems. The need to sat-
isfy the system requirements and still stay within the
resource constraints makes the design space more com-
plicated. Multi-dimensional trade-offs between differ-
ent resources are hard to capture within exiting de-
sign technologies. Third, embedded systems are in-
creasingly networked to improve functionality, reliabil-
ity and maintainability. Networking makes embedded
software even more difficult to develop, since composi-
tion and abstraction principles are poorly understood.

Embedded software systems have been developed
traditionally in an ad-hoc manner by practicing engi-
neers and programmers. Knowledge of system behav-
ior and functionality is contained in the mind of the
domain-expert designer, and is only imperfectly cap-
tured and translated into system products by the engi-
neer and programmer. Design based on mathematical
modeling plays a critical role in other engineering disci-
plines, such as structural engineering. Although much
progress in developing formalisms and tools based on
them have been made during the last three decades,
their use has been limited by the expense (i.e., time,
computational resources, and expertise) required to
employ them. The complexity of embedded software

systems has increased to a point where it is not possi-
ble to envision the development of high-quality embed-
ded software systems without using such techniques in
the future.

Embedded systems are being developed by control
engineers and software engineers. Traditionally, control
engineers view the problem as designing of robust con-
trollers using continuous dynamics, whereas software
engineers have a discrete view of the problem. Their
approach is to abstract physical characteristics of the
environment and to treat the system as reactive sys-
tems. Hybrid system modeling combines these two ap-
proaches and is believed to be natural for specifica-
tion of embedded systems. In hybrid systems, continu-
ous evolutions are specified by sets of differential and
also possibly by algebraic constraints, while discrete
changes in an execution are captured by transitions
that jump from one set of continuous constraints to an-
other. Continuous dynamic evolve over time, whereas
discrete transitions are instantaneous while changing
model variables during the jump. As larger embed-
ded systems are being modeled, modeling languages
are designed with advanced features from the program-
ming language domain. For example, modular model-
ing techniques such as hierarchy, concurrency, instan-
tiation, and scoping are used to structure the model in
a more intuitive way and make it mode compact. Cou-
pled with modular modeling are compositional seman-
tic definitions that enable modular analysis of models,
making verification problems easier to tackle.

Ezxample application area. As an illustration of the im-
portance of the embedded and hybrid systems area,
consider the medical industry. The medical industry is
especially significant because it represents 20 cents of
every dollar spent in the United States. Software is in-
volved in the management and production of medical
products, as well as in the products themselves. Medi-
cal devices with embedded processors are safety-critical
systems requiring high reliability and correctness with
respect to the requirements. Typically, such a device
consists of sensors that monitor the human body (for



example, glucose level or blood pressure), software that
makes decisions based on these readings, and actua-
tors that execute the corrective action (for example,
release of insulin or other drugs). The high-level de-
sign of the control algorithm needs to account for the
the constantly changing human body. Complex contin-
uous models are used to represent such body systems
as heart or kidneys. Development of dependable med-
ical devices can benefit from integrated hybrid models
of the software and its environment. Furthermore, the
medical industry needs certification methods that are
scientifically well-founded and also practical for users
with a diverse set of skill levels. As technology evolves,
medical devices are becoming more complex and au-
tonomous and are increasingly being built from Off-
the-Shelf software components. In order for the Center
for Devices and Radiological Health (CDRH), within
the FDA, to perform its regulatory function, credible
and timely evidence is needed for assurance that the
device software will perform as intended [9].

There are several hybrid modeling techniques
that have been developed in recent years (e.g.,
CHARON [1], CheckMate [2], Masaccio [8], Mod-
elica [5], SHIFT [3], Simulink/Stateflow [14], etc.).
With the hybrid modeling approach, it is possi-
ble to model faithfully both the system and its
environment. This is important since, in an embed-
ded system, computation by software components is
to react to the continuous evolution of physical com-
ponents and system environment. It is the inter-
play between continuous and discrete behaviors that
are critical in the correct functioning of an embed-
ded system. There are many challenges to elevate
the use of hybrid system models as common prac-
tice of embedded systems development such as
medical devices. In the rest of the paper, these chal-
lenges are grouped and discussed under modeling and
analysis, implementation and validation, and certifica-
tion.

2. Modeling Challenges

An embedded system can be modeled on a variety
of levels and using a plethora of formalisms. Some vi-
sual formalisms, such as Statecharts [6], are targeted at
easy comprehension of the model by the users. Other
formalisms may facilitate analysis of the model, some-
times at the expense of readability. Yet others may be
suitable for code generation, often at the expense of for-
mal sophistication. It is commonly believed that no sin-
gle formalism will solve all the modeling problems. Dif-
ferent modeling assumptions are suitable for each mod-
eling task. For example, hybrid systems formalisms of-

ten used in behavioral analysis of embedded systems
(for example, CHARON [1]), abstract away computa-
tion time, assuming that sensor readings, actuation,
mode switches, etc., happen instantaneously. This as-
sumption greatly simplifies analysis, but may make the
model physically unrealizable. Furthermore, a hybrid
system model usually models both the embedded sys-
tem and its environment. Such a model, when used
for code generation, has to “forget” the environment
part. On the other hand, a formalism for schedulabil-
ity analysis, such as ACSR [10], does not have to model
details of computation, instead capturing only compu-
tation times and periodicity of task executions. Such a
model, of course, cannot be used, for example, in code
generation.

Eliciting formal models from informal requirements.
The development of most systems starts with infor-
mal requirements that specify how the system (con-
sisting of hardware and software) and the user or
environment are expected to behave and their inter-
actions. Research is needed to facilitate the elicita-
tion of design models from such informal requirements
(with appropriate NLP techniques and tools to facil-
itate the process). It is important for the elicitation
process to be intuitive for the domain engineers of em-
bedded systems. Furthermore, the resulting require-
ments specification should be amenable to analysis and
refinement during subsequent stages of the design pro-
cess. Balancing these aspects is the first challenging
problem since the goals are often contradictory. For ex-
ample, formalisms that make the analysis easier are
usually far removed from the problem domain. Fur-
thermore, requirements start as informal description
but need to be formalized to support analysis. An-
other challenging problem is how to facilitate the
translation from informal description to formal speci-
fications and to capture assumptions made by domain
experts in informal requirements.

Model validation. The model must be verified and val-
idated to ensure it is correct and consistent with its
intended purposes. Such analysis can be done using
model checking and simulation on design specifications.
However, tools supporting these techniques need to be
improved to handle complex embedded systems. Fur-
thermore, there is much work done on how to vali-
date that models are indeed the ones that are intended.
Also, it should be possible to use the same models to
validate an implementation. The requirements, design,
and implementation need to be related such that if one
can show that the design model satisfies the require-
ments and the implementation conforms to the design,
then the implementation meets the requirements.



Multiple uses of modeling artifacts. One of the reasons
why formal methods techniques are not used in practice
is that formal models are only used at the design phase,
but become useless down the development process. We
need to explore ways to reuse the various design ar-
tifacts during the other development phases, such as
coding and testing phases. The potential promising ar-
eas include the use of models for automatic test gener-
ation and code generation, as well as the use of hybrid
models validated at the design time for run-time veri-
fication. We need to explore how to ensure that invest-
ments on hybrid systems models and analysis pay off
directly in the final product development.

Sharing of modeling artifacts. We believe that it is eas-
ier (in theory) to share models than code. This is be-
cause models are at higher level of abstraction than
code, and thus, tied less with target platforms. There
has not been much support and effort with open model
(ala open source) development so far. Such an endeavor
should help to elevate model-based development into
main-stream activities.

Composable models. The notion of composition is nec-
essary to deal effectively with designing of large com-
plex systems. Thus, design models should be compos-
able to facilitate reuse and sharing, as well as just to
be able to put together a complex system using simpler
components. The composition of design can be either
for homogeneous models or for heterogeneous models.
Traditionally, formal method research has concentrated
in composing specifications in the same modeling lan-
guage or paradigm. To elevate the modeling to a high
level, it is important that we start investigating how to
compose models with different purposes (e.g., one de-
sign model for the physical layout of a sensor network
and another design model for the protocol used be-
tween sensor nodes) to determine interaction between
different views and to understand the overall design.

Certification based on model. To be able to evaluate the
quality of embedded systems, we need to develop a cer-
tification process based on sound scientific foundations.
The certification can be done in two steps: first certify
that a design has the right properties, and then, cer-
tify that an implementation conforms to the design.
With proper scientific foundations, it should be possi-
ble to measure quantitatively how well a system meets
its requirements.

3. Implementation and Validation Chal-
lenges

A model-based approach is an emerging paradigm
for developing robust software, and has been the fo-

cus of increasing research effort. Models are used dur-
ing the design phase to ensure systems under consid-
eration have desired properties. Benefits of high-level
modeling can be significantly improved if models can
be used for code generation as well as the validation of
implementation.

Code generation. One promising approach is to gen-
erate code from models. However, precise translation
from hybrid system models to code is difficult because
there is a gap between the platform-independent se-
mantics of a hybrid model and the implementation
of the model. For example, models are defined in
the continuous-time domain whereas code executes on
computers with discrete time. A common approach is
to associate a model with a sampling rate before code
generation, and rely on an approximate algorithm that
computes the next state numerically. Depending on the
choice of the sampling rate and the algorithm, the be-
havior of the code may vary significantly due to nu-
merical errors, different sampling rates, and real-time
scheduling. In the worst case, discrepancy between be-
haviors at model-level and code-level could render anal-
ysis results at the model level meaningless for imple-
mentation since implementation may exhibit behaviors
that are not possible in the model. The problem is
compounded if components are to be executed in dis-
tributed systems due to communication and synchro-
nization delays. Since the correspondence between the
model and the generated and synthesized code is rarely
formalized, it makes difficult to reason about the dis-
crepancy between the model and the code. Bridging
this gap is a research challenge.

Implementation validation with respect to models. There
is a gap between design and implementation since the
implementation contains a lot more details than the
design. In particular, there is no guarantee that an
implementation is consistent with a design model un-
less the implementation is derived automatically from
the design model. Since it is not yet possible to com-
pletely generate an implementation from design, it is
important to ensure the implementation is consistent
with the design model. There are two ways to use a
design model to validate an implementation: model-
based testing and model-based run-time monitoring
and checking. The former is to generate a test suite
from a design model and then apply tests to an im-
plementation. The latter is to observe the execution
of a running system and ensure that its run-time be-
havior is consistent with those described in the design
specification, and is also known as run-time verifica-
tion.



Test generation from hybrid system models. Testing is
the most widely used validation technique in practice.
We can improve the rigor of testing-based validation
by using system models as the source of test cases.
For embedded systems, testing is usually performed in
a controlled environment; therefore, the most natural
medium for test generation is a hybrid system model,
capturing the expected behavior of the environment as
well as the prescribed behavior of the implementation.

There are several challenges for automatic genera-
tion of tests from hybrid system models: 1) Observabil-
ity and controllability for the continuous variables: A
system-under-test may not have adequate API to allow
the tester to control and observe behaviors. It is some-
times necessary to insert test code to support testing,
which in turn can affect the system behavior. 2) Ap-
proximating reachable regions by abstraction: A test is
a trajectory through the reachable state space of a hy-
brid system model. The size of the reachable state space
is usually too large, and thus, it is necessary to group
states into regions by abstraction techniques. 3) Identi-
fying test coverage criteria: Tests are generated by ap-
plying test criteria. For example, state and transition
coverage criteria are used for the control-flow model of
the program, whereas definition and use coverage cri-
teria are used for the data-flow model of the program.
Coverage of continuously changing inputs needs to be
studied better.

Run-time wverification of embedded systems. Run-
time verification is a novel assurance technology
for computer-based systems that has gained signifi-
cant attention in recent years. The underlying premise
of the run-time verification approach is that cor-
rectness of a system cannot be fully guaranteed
by design-time methods. On the one hand, complex-
ity of real-world systems will always exceed capabilities
of analysis tools. On the other hand, design-time anal-
ysis is usually applied to system models, and there is
always a possibility of a mismatch between the sys-
tem model and its implementation. Unpredictable en-
vironments make design-time analysis even more com-
plex for embedded systems.

Run-time verification offers the possibility of check-
ing the system implementation that is operating on
real inputs from its environment. This eliminates all
effects of model mismatches, since no model is in-
volved in the analysis process. Several methodologies
for run-time verification have emerged recently, most
notably [4, 7, 11]. Most of these approaches target
single-processor systems and are not suitable, in their
present form, for checking of networked embedded sys-
tems. Furthermore, run-time validation of continuous
trajectories has not been systematically addressed.

A major concern for run-time verification of em-
bedded systems is monitoring overhead. Most run-time
verification approaches rely on instrumentation of the
system code to extract observations. Tight real-time
constraints found in some embedded systems may not
allow for extensive instrumentation. The overhead of
instrumentation can make the system violate its timing
constraints or even make it unschedulable. The chal-
lenge is to reliably predict the effect of run-time verifi-
cation on the system performance and find systematic
ways to reduce overhead.

4. Certification Challenges

Safety-critical computer systems must inevitably
meet certain government regulatory requirements. Ex-
amples in the United States are regulation of medi-
cal devices by the FDA, regulation of nuclear power
plants by the DOE, and regulation of civil aircraft by
the FAA. Regulatory authorities require a comprehen-
sive system safety program, which includes as one com-
ponent design assurance (assuring the absence of de-
sign defects, where a software defect is considered a de-
sign defect in this context). Strictly speaking, the FAA
(for example) does not legally mandate specific techni-
cal means for demonstrating design correctness; to do
so might limit both innovation and manufacturer liabil-
ity. However, civil aircraft certification may be stream-
lined by demonstrating compliance with FAA-approved
guidelines, the two most relevant to our proposal being
RTCA/DO-178B for software and RTCA/DO-254 for
digital hardware[12, 13]. These guidelines specify plan-
ning and development and supporting process activi-
ties that must be conducted (e.g., requirements, design,
verification, configuration management); together with
specific requirements, methods, work products, and de-
liverables for those activities. Verification at high levels
of assurance must include multiple independent means
of verification, as well as review, analysis, and testing
activities. There is a great deal of flexibility in meet-
ing guideline requirements, and in practice each devel-
opment organization has its own specific process that
must be shown to be compliant with the guidelines.

A long-known shortcoming of current development
practices is the use of informal, largely textual top-
level specifications. Such specifications typically con-
tain many ambiguities, do not completely cover all pos-
sible situations, and often contain internal inconsisten-
cies. However, extensive formalization has proven dif-
ficult, largely because the available formal notations
are not simultaneously comprehensible (easily written
and understood by typical engineers), concise (descrip-
tions can be short and rely on common domain knowl-



edge and notations), and comprehensive (all aspects of
a system can be specified in the notation) [15].

Another major shortcoming of current development
practices is the large amount of error-prone manual
effort spent deriving various specifications from each
other. More formal behavioral specifications may be de-
rived from the informal top-level specification, but this
involves additional work, including additional verifica-
tion activities to show that the derived formal speci-
fication is consistent with the original informal spec-
ification. Any particular formal specification captures
only a portion of the original informal specifications,
so one must carefully track which top-level specifica-
tions are captured in which derived formal specifica-
tions, and which top-level specifications are not for-
malized in any way. Test specifications are similarly
typically produced by hand, with only review (i.e., hu-
man judgment) to ascertain whether the original spec-
ifications have been correctly and completely captured
in the test specifications. Automatic execution of tests
from test specifications is common in practice, but ini-
tial test results are typically checked by hand, or com-
pared with an oracle (e.g., a system simulation) that
was itself developed largely by hand at great expense
with many defects. For this reason, certification guide-
lines require extensive effort to establish traceability
and consistency between the various work products.
However, there is little technology for rigorous and au-
tomated traceability and consistency checking other
than the use of a database of relationships that have
been entered by hand [15].

Formal modeling techniques have great promise of
alleviating the above shortcomings; however, much re-
search is needed to realize this promise. Also, traceabil-
ity considerations need to be built into the formalism
rather than be an external concern.

5. Conclusions

There are many advantages for using hybrid sys-
tem models during the development of embedded sys-
tems. To benefit from them, however, many challenges
including those described in this paper need to be ad-
dressed.

References

[1] R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur,
F. Ivancic, V. Kumar, I. Lee, P. Mishra, G. Pappas, and
O. Sokolsky. Hierarchical modeling and analysis of em-
bedded systems. Proceedings of the IEEE, 90(1):11-28,
Jan. 2003.

[2] A. Chutinan and B. Krogh. Verification of polyhedral-
invariant hybrid automata using polygonal flow pipe

approximations. In Hybrid Systems: Computation and
Control, Second International Workshop, LNCS 1569,
pages 76-90, 1999.

[3] A. Deshpande, A. Gollu, and L. Semenzato. The shift
programming language and run-time system for dy-
namic networks of hybrid automata. Technical Report
UCB-ITS-PRR-97-7, University of California at Berke-
ley, 1997.

[4] D.Drusinsky. The Temporal Rover and the ATG Rover.
In Proceedings of 7'h International SPIN Workshop,
LNCS 1885, volume 1885, pages 323-329, 2000.

[6] H. Elmqvist, S. E. Mattsson, and M. Otter. Modelica
— The new object-oriented modeling langugae. In Pro-
ceedings of the 12th European Simulation Multiconfer-
ence, pages 127-131, 1998.

[6] D. Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming, 8:231-274,
1987.

[7] K. Havelund and G. Rosu. Monitoring Java Programs
with JavaPathExplorer. In Proceedigns of the Workshop
on Runtime Verification, volume 55 of Electronic Notes
in Theoretical Computer Science, 2001.

[8] T.Henzinger. Masaccio: A formal model for embedded
components. In Proceedings of IFIP International Con-
ference on Theoretical Computer Science, pages 549—
563, 2000.

[9] P. Jones. Personal Communication, March 24 2003.

[10] I.Lee, P. Brémond-Grégoire, and R. Gerber. A Process
Algebraic Approach to the Specification and Analysis of
Resource-Bound Real-Time Systems. Proceedings of the
IEEE, pages 158-171, Jan 1994.

[11] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and
M.Viswanathan. Runtime assurance based on formal
specifications. In Proceedings of the Int. Conf. on Paral-
lel and Distributed Processing Techniques and Applica-
tions - PDPTA’99, June 1999.

[12] Radio Technical Committee for Aeronautics.
RTCA/DO-178B, Software Considerations in Air-
borne Systems and Equipment Certification, December
1992.

[13] Radio Technical Committee for Aeronautics.
RTCA/DO-254, Design Assurance Guidance for
Airborne Electronic Hardware, April 2000.

[14] The Mathworks Inc. http://www.mathworks.com.

[15] S. Vestal. Personal Communication, Nov 2001.



