
Middleware R&D Challenges for Distributed Real-time and Embedded Systems

Douglas C. Schmidt and Aniruddha Gokhale
Electrical Engineering & Computer Science Department

Vanderbilt University
Nashvill e, TN 37203, USA

{ d.schmidt,a.gokhale} @vanderbilt .edu

Richard E. Schantz and Joseph P. Loyall
BBN Technologies
10 Moulton Street

Cambridge, MA 02138, USA
{ schantz, jloyall} @bbn.com

Introduction
Some of the most challenging problems facing the embed-
ded systems community are those associated with producing
software for real-time and embedded systems in which com-
puter processors may control physical, chemical, or biologi-
cal processes or devices. Examples of such systems include
airplanes, automobiles, nuclear reactors, oil refineries, and
patient monitors, or even CD players and cellular phones. In
most of these systems, the right answer delivered too late
becomes the wrong answer, i.e., achieving end-to-end qual-
ity of service (QoS) is essential. In addition, embedded de-
vices have historically had limited memory (e.g., 64-512
KB) available for the platform and applications.

Although real-time and embedded systems have historically
been relatively small-scale and standalone, the trend is to-
ward significantly increased functionali ty, complexity, and
scalabili ty. In particular, real-time and embedded systems
are increasingly being connected via wireless and wireline
networks to create large-scale distributed real-time and em-
bedded (DRE) systems, such as tele-immersion environ-
ments, fly-by-wire aircraft, industrial process automation,
and total ship computing environments. These DRE sys-
tems include many interdependent levels, such as net-
work/bus interconnects, many coordinated local and remote
endsystems, and often multiple layers of software, that to-
gether derive the following challenges:
• As distributed systems, DRE systems require capabiliti es

to manage connections and message exchange between
(possibly heterogeneous) networked computing devices.

• As real-time systems, DRE systems require predictable
and efficient control over end-to-end system resources,
such as memory, CPU, and network bandwidth.

• As embedded systems, DRE systems have size, weight,
cost, and power constraints that often limit their comput-
ing and memory resources. For example, embedded sys-
tems often cannot use conventional virtual and automatic
memory techniques because of space or timing con-
straints, since software must fit on low-capacity storage
media, such as EEPROM or NVRAM.

DRE systems have historicall y been developed and vali-
dated using relatively static development and analysis tech-
niques (such as function-oriented design and rate monotonic
analysis) to implement, allocate, schedule, and manage their
resources. These static approaches have proven to be ac-
ceptable for closed DRE systems, where the set of applica-
tion tasks that wil l run in the system and the loads they will
place on system resources change infrequently and are
known in advance. They are not well-suited, however, for

the next-generation of open DRE systems, which evolve
more rapidly and must collaborate with multiple remote
sensors, provide on-demand browsing and actuation capa-
biliti es for human operators, and respond flexibly to unan-
ticipated situational factors that arise at run-time.

Many of the most challenging next-generation DRE systems
will operate in large-scale DRE configurations that take in-
put from large numbers of remote sensors and provide geo-
graphically dispersed operators with the abil ity to interact
with the collected information and to control remote effec-
tors. In circumstances where the presence of humans in the
loop is too expensive or their responses are too slow, these
systems must respond autonomously and flexibly to
unanticipated combinations of events at run-time. More-
over, these systems are increasingly being networked to
form long-lived “systems of systems” that must run
unobtrusively and largely autonomously, shielding operators
from unnecessary details, while simultaneously
communicating and responding to mission-critical informa-
tion at heretofore infeasible rates. Examples of these types
of systems include (but are not limited to) metropolitan area
traffic control systems that process sensor data from 1,000s
of vehicles, coordinated swarms of unmanned air vehicles,
command and control systems for theater-level battle man-
agement, home power management, and terrorist tracking
and identification systems. In such systems, it is hard to
enumerate, or often even approximate, all possible physical
system configurations or workload mixes a priori.

Desirable properties of DRE systems include predictabili ty,
controllabili ty, and adaptabil ity of operating characteristics
for applications with respect to such features as time, quan-
tity of information, accuracy, confidence, and synchroniza-
tion. All these issues become highly volatile in large-scale
systems, due to the dynamic interplay of the many intercon-
nected parts that are often constructed from smaller parts.
While it is possible in theory to develop these types of com-
plex systems from scratch, contemporary economic and
organizational constraints, as well as increasingly complex
requirements and competitive pressures, make it infeasible
to do so in practice.

To address the many competing design forces and run-time
QoS demands, sustained R&D efforts on comprehensive
software methodologies, design-/run-time environments,
and hardware/software co-design are required to dependably
compose large, complex, interoperable DRE systems from
QoS-enabled reusable components. Moreover, the compo-
nents themselves must be sensitive to the environments in
which they are packaged, deriving the need for runtime QoS

enabled components as well . Ultimately, what is desired is
to take components that are built independently by different
groups at different times and assemble them to create com-
plete DRE systems that are customized for their require-
ments and environmental conditions. In the longer run,
each complete system often becomes a component embed-
ded in still larger systems of systems. Given the complexity
of this undertaking, various tools and techniques are needed
to configure and reconfigure these systems systematically so
they can adapt to a wider variety of situations than has his-
torically been possible with earlier generations of stand-
alone real-time and embedded systems.

Recent Progress and Current Status

Over the past decade, various technologies have been de-
vised to alleviate many complexities associated with devel-
oping software for DRE systems. Their successes have
added a new category of systems software to the famili ar
operating system, programming language, and networking
offerings of the previous generation. In particular, some of
the most successful of emerging technologies have centered
on middleware, which is systems software that resides be-
tween the applications and the underlying operating sys-
tems, network protocol stacks, and hardware. The primary
role of middleware is to
1. Functionall y bridge the gap between application programs

and the lower-level hardware and software infrastructure
in order to coordinate how parts of applications are con-
nected and how they interoperate.

2. Enable and simplify the integration of components devel-
oped by multiple technology suppliers.

3. Provide a common reusable accessibili ty for functionality
and patterns that formerly were placed directly in appli -
cations, but in actuali ty are application independent and
need not be developed separately for each new applica-
tion.

Middleware was invented originally to help simplify the
development and management of distributed computing
systems, and bring those capabiliti es within the reach of
many more developers than the few experts at the time who
could master the complexities of these environments. Mid-
dleware was necessary since complex system integration
requirements were not being met from either (1) the appli-
cation perspective, where it was too diff icult and not reus-
able, or (2) the network or host operating system perspec-
tives, which were necessarily concerned with providing the
communication and endsystem resource management layers,
respectively.

Although there are many types of middleware platforms,
their architectures are generally composed of relatively
autonomous software components that can be distributed or
collocated throughout a range of networks and bus intercon-
nects. Clients invoke operations on target components to
perform interactions and invoke functionali ty needed to
achieve application goals. When implemented properly,
middleware can help to:

• Shield software developers from low-level, tedious, and
error-prone platform details, such as socket-level network
programming.

• Amortize software li fecycle costs by leveraging previous
development expertise and capturing implementations of
key patterns in reusable frameworks, rather than rebuild-
ing them manually for each use.

• Provide a consistent set of higher-level network-oriented
abstractions that are much closer to application require-
ments to help simplify the development of distributed
systems.

• Provide different communication paradigms, such as re-
quest-response, asynchronous messaging and pub-
lish/subscribe, that can be used to address different appli -
cation QoS requirements.

• Provide a wide array of reusable developer-oriented ser-
vices, such as logging and security that have proven nec-
essary to operate effectively in a networked environment.

• Amortize software li fecycle costs by leveraging previous
development expertise and capturing implementations of
key patterns in reusable frameworks, rather than rebuild-
ing them manually for each use.

Some notable successes in the middleware domain include:
• Component middleware (such as Java 2 Enterprise Edi-

tion (J2EE), CORBA, and .NET), which have introduced
advanced software engineering capabiliti es to the main-
stream IT community and which incorporate various lev-
els of middleware as part of the overall development
process.

• World Wide Web middleware standards (such as web
servers, HTTP protocols, and web services frameworks),
which enable easil y connecting independently developed
browsers and web pages.

• Grid computing (such as Globus), which enables scien-
tists and high performance computing researchers to col-
laborate on grand challenge problems, such as global cli-
mate change modeling.

Unresolved Issues

Despite all the advances in the past decade (which have
largely been applied to simpli fy desktop and enterprise
business computing), there remain significant challenges to
applying today’s middleware to meet the needs of new and
planned DRE systems. For example, conventional compo-
nent middleware has only partial support for performance-
critical DRE systems. The world wide web is often the
world wide wait, because little systems engineering or at-
tention has been paid to enforcing end-to-end QoS issues,
and Grid computing architectures and tools are not aligned
with mainstream COTS middleware and moreover do not
support the stringent QoS requirements of DRE systems.
More fundamentally, there are no mature engineering prin-
ciples, solutions, or established conventions to enable large-
scale DRE systems to be repeatably, predictably, and cost
effectively created, developed, validated, operated, and en-
hanced. As a result, we are witnessing a complexity thresh-

old that is stunting our abil ity to create large-scale DRE
systems successfully.

Some of the inherent complexities that contribute to com-
plexity threshold of DRE systems include: (1) discrete plat-
forms that must be scaled to provide seamless end-to-end
solutions, (2) integration of heterogeneous components is
the norm, (3) partial failures of distributed components are
the norm, (4) dynamically changing operating environments
and configurations are the norm, (5) large-scale systems
must operate continuously, even during upgrades, (6) end-
to-end properties must be satisfied in time and resource con-
strained environments, and (7) maintaining system-wide
QoS concerns is becoming expected. To address these com-
plexities, we must create and deploy a new generation of
middleware-oriented solutions and engineering principles as
part of the commonly available software infrastructure that
is needed to develop, validate, and deploy many different
types of large-scale DRE systems successfully.

Specific R&D Challenges

An essential part of what is needed to alleviate the inherent
complexities outlined above is the integration and extension
of concepts and capabiliti es that have been found tradition-
ally in network management, data management, distributed
operating systems, and object-oriented programming lan-
guages. The payoff will be reusable middleware that signifi-
cantly simplifies the development and evolution of large-
scale DRE systems. The following are some specific R&D
challenges associated with achieving this payoff:

• Demand for end-to-end QoS support, not just compo-
nent-level QoS. This area represents the next great wave
of evolution for middleware. There is now widespread
recognition that effective development of large-scale DRE
applications requires the use of COTS infrastructure and
service components. Moreover, the (re)usabili ty of the re-
sulting products depends heavily on the properties of the
whole as derived from its parts. This type of environment
requires visible, predictable, flexible, and integrated re-
source management strategies within and between the
pieces. Despite the ease of connectivity provided by mid-
dleware, however, constructing integrated DRE systems
remains hard since it requires significant customization of
non-functional QoS properties, such as predictable la-
tency/jitter/throughput, scalabili ty, dependabili ty, and se-
curity. In their most useful forms, these properties extend
end-to-end and thus have elements applicable to (1) the
network substrate, (2) the platform operating systems and
system services, (3) the programming system in which
they are developed, (4) the applications themselves, and
(5) the middleware that integrates all these elements to-
gether. The basic premises underlying the push towards
end-to-end QoS support mediated by middleware are that
different levels of service are possible and desirable under
different conditions and costs and the level of service in
one property must be coordinated with and/or traded off
against the level of service in another to achieve the in-
tended overall results.

• Adaptive and reflective solutions that handle both vari-
ability and control. DRE systems today often work well
as long as they receive all the resources for which they
were designed in a timely fashion, but fail completely un-
der the slightest anomaly. There is littl e flexibility in
their behavior, i.e., most of the adaptation is pushed to
end-users or administrators. Instead of hard failure or in-
definite waiting, what is required is either reconfiguration
to reacquire the needed resources automaticall y or
graceful degradation if they are not available. Recon-
figuration and operating under less than optimal condi-
tions both have two points of focus: individual and aggre-
gate behavior. Moreover, there is a need for interopera-
bili ty of control and management mechanisms. To date
interoperabili ty concerns have focused on data interop-
erabili ty and invocation interoperabilit y. Little work has
focused on mechanisms for controlli ng the overall be-
havior of integrated DRE systems, which is needed to
provide “control interoperabili ty.” There are require-
ments for interoperable control capabiliti es to appear in
individual resources first, after which approaches can be
developed to aggregate these into acceptable global be-
havior.

To manage the broader range of QoS demands for next-
generation DRE systems, middleware must become more
adaptive and reflective. Adaptive middleware is software
whose functional and QoS-related properties can be modi-
fied either: (1) statically, e.g., to reduce footprint, leverage
capabiliti es that exist in specific platforms, enable func-
tional subsetting, and minimize hardware/software infra-
structure dependencies or (2) dynamically, e.g., to opti-
mize system responses to changing environments or re-
quirements, such as changing component interconnec-
tions, power levels, CPU/network bandwidth, la-
tency/jitter; and dependability needs.

In mission-critical DRE systems, adaptive middleware
must make such modifications dependably, i.e., while
meeting stringent end-to-end QoS requirements. Reflec-
tive middleware goes further to permit automated exami-
nation of the capabiliti es it offers, and to permit auto-
mated adjustment to optimize those capabil ities. Reflec-
tive techniques make the internal organization of sys-
tems–as well as the mechanisms used in their construc-
tion–both visible and manipulatable for middleware and
application programs to inspect and modify at run-time.
Reflective middleware therefore supports more advanced
adaptive behavior and more dynamic strategies keyed to
current circumstances, i.e., necessary adaptations can be
performed autonomously based on conditions within the
system, in the system' s environment, or in system QoS
policies defined by administrators or end-users.

• More universal adoption of standard middleware. To-
day, it is too often the case that a substantial percentage of
the effort expended to develop DRE systems goes into
building ad hoc and proprietary middleware, or additions
for missing middleware functionali ty. As a result, subse-
quent composition of these ad hoc capabiliti es is either in-
feasible or prohibitively expensive. One reason why rede-

velopment persists is that it is still often relatively easy to
pull together a minimalist ad hoc solution, which remains
largely invisible to all except the developers. Unfortu-
nately, this approach can yield substantial recurring life-
cycle costs, particularly for complex and long-lived DRE
systems. One of the most immediate challenges is there-
fore to establish and eventually standardize middleware
interfaces that support QoS attributes. It is important to
have a clear understanding of the QoS information so that
it becomes possible to identify the users’ requirements at
any particular point in time and understand whether or not
these requirements are being (or even can be) met.

It is also essential to aggregate these requirements, mak-
ing it possible to form decisions, policies, and mecha-
nisms that begin to address a more global information
management organization. Meeting these requirements
will require flexibili ty on the parts of both the application
components and the middleware resource management
strategies used across heterogeneous systems of systems.
A key direction for addressing these needs is through the
concepts associated with managing adaptive behavior,
recognizing that not all requirements can be met all of the
time, yet still ensuring predictable and controllable end-
to-end behavior.

• Leveraging and extending the installed base. In addition
to the R&D challenges described above, there are also
pragmatic considerations, including incorporating new
QoS-enabled middleware interfaces and implementations
to various building blocks that are already in place for the
networks, operating systems, security, and data manage-
ment infrastructure, all of which continue to evolve inde-
pendently. Ultimately, there are two different types of re-
sources that must be considered: (1) those that wil l be
fabricated as part of application development and (2)
those that are provided and can be considered part of the
substrate currently available.

While not much can be done in the short-term to change
the direction of the hardware and software substrate that’s
installed today, a reasonable approach is to provide the
needed services at higher levels of middleware-based ab-
straction. This architecture will enable new components
to have properties that can be more easily included into
the controllable applications and integrated with each
other, leaving less lower-level complexity for application
developers to address and thereby reducing system devel-
opment and ownership costs. Consequently, the goal of
next-generation middleware for DRE systems is not sim-
ply to build a better network, better resource manager, or
better security service in isolation, but rather to pull these
capabiliti es together and deliver them to applications in
ways that enable them to realize this model of adaptive
behavior with tradeoffs between the various QoS attrib-
utes. As the evolution of the underlying system compo-
nents change to become more controllable, we can expect
a refactoring of the implementations underlying the en-
forcement of adaptive control.

Middleware Research Areas for DRE Systems

The following concepts are central to addressing the R&D
challenges described above:

• Contracts via meta-programming. Information must be
gathered for particular applications or application families
regarding user requirements, resource requirements, and
system conditions. Multiple system behaviors must be
made available based on what is best under the various
conditions. This information provides the basis for the
contracts between users and the underlying system sub-
strate. These contracts provide not only the means to
specify the degree of assurance of a certain level of ser-
vice, but also provide a well-defined, high-level middle-
ware abstraction to improve the visibili ty of adaptive
changes in the mandated behavior. Model-based engi-
neering techniques can provide the means to model these
contracts while providing the abili ty to analyze and verify
them for system correctness. Generative techniques can
then be used to synthesize appropriate middleware arti-
facts that applications can use for their adaptive behavior.

• Adaptive control and graceful degradation. Well -estab-
lished theory and practice on control engineering can be
applied to monitor DRE systems and enforce contracts via
feedback or feedforward techniques so that application
services can adapt their behavior or degrade gracefully (or
augment) as conditions change, according to a prear-
ranged contract governing that activity. The initial chal-
lenge here is to establish the idea in the minds of develop-
ers and users that multiple behaviors are both feasible and
desirable. The next step is to put into place the additional
middleware support – including connecting to lower-level
network and operating system enforcement mechanisms –
necessary to provide the right behavior effectively and ef-
ficiently given current system conditions.

• Prioritization and physical world constrained load
invariant performance. Some systems are highly corre-
lated with physical constraints and have little flexibili ty in
some of their requirements for computing assets, includ-
ing QoS. Deviation from requirements beyond a narrowly
defined error tolerance can sometimes result in catastro-
phic failure of the system. The challenge is in meeting
these invariants under varying load conditions. This often
means guaranteeing access to some resources, while other
resources may need to be diverted to insure proper opera-
tion. Generally collections of such components will need
to be resource managed from a system (aggregate) per-
spective in addition to a component (individual) perspec-
tive.

Although it is possible to satisfy contracts, achieve graceful
degradation, and globally manage some resources to a lim-
ited degree in a limited range of systems today, much R&D
work remains. The strategies needed to deliver these goals
can be divided into the seven research areas described be-
low:

1. Individual QoS requirements, which deals with develop-
ing mechanisms related to the end-to-end QoS needs from

the perspective of a single user or application. The speci-
fication requirements include multiple contracts, negotia-
tion, and domain specificity. Multiple contracts are
needed to handle requirements that change over time and
to associate several contracts with a single perspective,
each governing a portion of an activity. This capabili ty is
particular important for mobile applications, where the
bandwidth restrictions of wireless connectivity and
interferences may require a significant number of coordi-
nated contracts. Different application operation modes or
users running the same application in different configura-
tions may have different QoS requirements emphasizing
different benefits and tradeoffs, often depending on cur-
rent configurations. Such dynamic behavior must be taken
into account and introduced seamlessly into next-genera-
tion DRE systems.

General negotiation capabiliti es that offer convenient
mechanisms to enter into and control a negotiated behav-
ior (as contrasted with the service being negotiated) need
to be available as COTS middleware packages. The most
effective way for such negotiation-based adaptation
mechanisms to become an integral part of QoS is for them
to be “user friendly,” e.g., requiring a user or administra-
tor to simply provide a list of preferences via higher level
abstractions, such as modeling tools.. This area is likely
to become domain-specific and even user-specific, but
can be enabled by general purpose, common tools. Other
challenges that must be addressed as part of delivering
QoS to individual applications include: (1) translation of
requests for service among and between the various enti-
ties on the distributed end-to-end path, (2) managing the
definition and selection of appropriate application func-
tionali ty and system resource tradeoffs within a “fuzzy”
environment, and (3) maintaining the appropriate behav-
ior under composabil ity.

 Translation addresses the fact that complex DRE systems
are being built in layers. At various levels in a layered ar-
chitecture the user-oriented QoS must be translated into
requests for other resources at a lower level. A key R&D
challenge is how to accomplish this translation from user
requirements to system services. A logical place to begin
is at the application/middleware boundary, which closely
relates to the problem of matching application resources
to appropriate distributed system resources. As system
resources change in significant ways, either due to
anomalies or load, tradeoffs between QoS attributes (such
as timeliness, precision, and accuracy) may need to be
(re)evaluated to ensure an effective level of QoS, given
the circumstances. Mechanisms need to be developed to
identify and perform these tradeoffs at the appropriate
time. Last, but certainly not least, a theory of effectively
composing systems from individual components in a way
that maintains application-centric end-to-end properties
needs to be developed, along with efficient realizations of
the theory in the form of working middleware.

2. Run-time requirements. From a system lifecycle perspec-
tive, decisions for managing QoS are made at design time,

at configuration/deployment time, and/or at run-time. Of
these, the run-time requirements are the most challenging
since they have the shortest time scales for decision-
making, and collectively we have the least experience
with developing appropriate solutions. They are also the
area most closely related to advanced middleware con-
cepts. This area of research addresses the need for run-
time monitoring, feedback, and transition mechanisms to
change application and system behavior, e.g., through dy-
namic reconfiguration, orchestrating degraded behavior,
or even off -line recompilation. The primary requirements
here are measurement, reporting, control, feedback, and
stability. Each of these plays a significant role in deliv-
ering end-to-end QoS, not only for an individual applica-
tion, but also for an aggregate system. A key part of a
run-time environment centers on a permanent and highly
tunable measurement and resource status services as a
common middleware capabili ties, oriented toward various
granularities for different time epochs and with abstrac-
tions and aggregations appropriate to its use for run-time
adaptation.

 In addition to providing the capabiliti es for enabling
graceful degradation, these same underlying mechanisms
also hold the promise to provide flexibili ty that supports a
variety of possible behaviors, without changing the basic
implementation structure of DRE applications. This re-
flective flexibili ty reduces the dependence on diminishes
the importance of many initial design decisions by offer-
ing late- and run-time-binding options to accommodate
actual operating environments at the time of deployment,
instead of only anticipated operating environments at de-
sign time. In addition, it anticipates changes in these
bindings to accommodate new behavior.

3. Aggregate requirements. This area of research deals with
the system view of collecting necessary information over
the set of resources across the system, and providing re-
source management mechanisms and policies that are
aligned with the goals of the system as a whole. While
middleware itself cannot manage system-level resources
directly (except through interfaces provided by lower-
level resource management and enforcement mecha-
nisms), it can provide the coordinating mechanisms and
policies that drive the individual resource managers into
domain-wide coherence. With regards to such resource
management, policies need to be in place to guide the de-
cision-making process and the mechanisms to carry out
these policy decisions.

 Areas of particular R&D interest include: (1) reserva-
tions, which allow resources to be reserved to assure cer-
tain levels of service such as maintaining end-to-end pri-
orities, (2) admission control mechanisms, which allow or
reject certain users access to system resources, (3) en-
forcement mechanisms with appropriate scale, granularity
and performance, and (4) coordinated strategies and poli-
cies to allocate distributed resources that optimize various
properties. Moreover, policy decisions need to be made
to allow for varying levels of QoS, including whether

each application receives guaranteed, best-effort, condi-
tional, or statistical levels of service. Managing property
composition is essential for delivering individual QoS for
component based applications, and is of even greater con-
cern in the aggregate case, particularly in the form of lay-
ered resource management within and across domains.

4. Integration requirements. Integration requirements ad-
dress the need to develop interfaces with key building
blocks used for system construction, including the OS,
network management, security, and data management.
Many of these areas have partial QoS solutions underway
from their individual perspectives. The problem today is
that these partial results must be integrated into a common
interface so that users and application developers can tap
into each, identify which viewpoint will be dominant un-
der which conditions, and support the tradeoff manage-
ment across the boundaries to get the right mix of attrib-
utes. Currently, tools working with component middle-
ware provide end-to-end syntactic interoperation and rela-
tively seamless linkage across the networks and subsys-
tems. There is no managed QoS, however, making these
tools and middleware useful largely for resource rich,
best-effort environments.

 To meet varying requirements for integrated behavior,
advanced tools and mechanisms are needed that permit
requests for different levels of attributes with different
tradeoffs governing this interoperation. Model-based
analysis, verification, and generative tools can provide the
system (re)configuration and integration needed to deliver
the requested end-to-end QoS. Likewise, they can indicate
the inabili ty to deliver that level of service, perhaps of-
fering to support an alternative QoS, or triggering appli -
cation-level adaptation. For all of this to work together
properly, multiple dimensions of the QoS requests must
be understood within a common framework to translate
and communicate those requests and services at each
relevant interface. Advanced integration middleware
provides this common framework to enable the right mix
of underlying capabil ities.

5. Adaptivity requirements. Many of the advanced capabili -
ties in next-generation information environments will re-
quire adaptive behavior to meet user expectations and
smooth the imbalances between demands and changing
environments. Adaptive behavior can be enabled through
the appropriate organization and interoperation of the ca-
pabiliti es of the four research areas described above.
There are two fundamental types of adaptation required:
(1) changes beneath the applications to continue to meet
the required service levels despite changes in resource
availabili ty and (2) changes at the application level to ei-
ther react to currently available levels of service or re-
quest new ones under changed circumstances. In both
instances, the system must determine if it needs to (or
can) reallocate resources or change strategies to achieve
the desired QoS. Applications need to be built i n such a
way that they can change their QoS demands as the con-
ditions under which they operate change. Mechanisms

for reconfiguration need to be put into place to implement
new levels of QoS as required, mindful of both the indi-
vidual and the aggregate points of view, and the conflicts
that they may represent.

 Part of the effort required to achieve these goals involves
continuously gathering and instantaneously analyzing
pertinent resource information collected as mentioned
above. A complementary part is providing the algorithms
and control mechanisms needed to deal with rapidly
changing demands and resource availabili ty profiles and
configuring these mechanisms with varying service
strategies and policies tuned for different environments.
Control theoretic techniques, in particular hybrid systems
modeling, have gained significant importance for control-
ling the behavior of large-scale complex physical sys-
tems. Many of these techniques can be encapsulated as
middleware- or application-level controllers that can pro-
vide verifiable QoS adaptation. Ideally, such changes can
be dynamic and flexible in handling a wide range of con-
ditions, occur intell igently in an automated manner, and
can handle complex issues arising from composition of
adaptable components. Coordinating the tools and meth-
odologies for these capabiliti es into an effective adaptive
middleware for DRE systems should be a high R&D pri-
ority.

6. System engineering methodologies and tools. Advanced
middleware by itself will not deliver the capabiliti es envi-
sioned for next-generation embedded environments. We
must also advance the state of the system engineering dis-
cipline and tools that come with these advanced environ-
ments used to build large-scale DRE systems. This area
of research specifically addresses the immediate need for
system engineering approaches and tools to augment ad-
vanced middleware solutions. These include:
• View-oriented or aspect-oriented programming tech-

niques, to support the isolation (for specialization and
focus) and the composition (to mesh the isolates into a
whole) of different projections or views of the proper-
ties the system must have. The abili ty to isolate, and
subsequently integrate, the implementation of different,
interacting features will be needed to support adapting
to changing requirements.

• Design time tools and models, to assist system develop-
ers in understanding their designs, in an effort to avoid
costly changes after systems are already in place (this is
partially obviated by the late binding for some QoS de-
cisions referenced earlier [1]).

• Generative tools, which use higher level models to syn-
thesize (1) middleware-specific glue code, (2)
customized middleware that satisfies QoS and resource
constraints, and (3) controllers for QoS adaptation.

• Interactive tuning tools, to overcome the challenges
associated with the need for individual pieces of the
system to work together in a seamless manner [2]

• Composability tools, to analyze resulting QoS from
combining two or more individual components

• Modeling tools for developing system performance
models as adjunct means (both online and offline) to

monitor and understand resource management, in order
to reduce the costs associated with trial and error

• Debugging tools, to address inevitable problems.

7. Reliability, trust, validation, and certifiability. The dy-
namically changing behaviors we envision for next-gen-
eration large-scale, DRE systems are quite different from
what we currently build, use, and have gained some de-
grees of confidence in. Before they can be deployed, con-
siderable effort must therefore be focused on validating,
and certifying for operational safety, the correct func-
tioning of the adaptive behavior, and on understanding the
properties of large-scale systems that try to change their
behavior according to their own assessment of current
conditions, before they can be deployed. But even before
that, longstanding issues of adequate reliabili ty and trust
factored into our methodologies and designs using off-
the-shelf components have not reached full maturity and
common usage, and must therefore continue to improve.

Conventional strategies organized around anticipation of
long life cycles with minimal change and exhaustive test
case analyses are clearly inadequate for next-generation
dynamic DRE systems with stringent QoS requirements.
An integrated approach involving model-based tools and
middleware can therefore help alleviate stringent certifi-
abili ty and reliabili ty requirements. For example, model-
based formalisms are easily amenable to verification for
system correctness and empirical benchmark generation
for verifying the configured middleware properties.

Concluding Remarks

Over the past decade, middleware has emerged as a set of
reusable software layers that help resolve problems associ-
ated with heterogeneity and interoperabilit y. It has also
contributed considerably to better environments for building
distributed real-time and embedded (DRE) systems and
managing their distributed resources effectively. A major
trend driving researchers and practitioners involves moving
toward a multi-layered architecture (i.e., applications, mid-
dleware, network and operating system infrastructure) that
is oriented around application composition from reusable
components, and away from traditional architectures where
DRE applications were developed directly atop the network
and operating system abstractions. This middleware-centric,
multi-layered architecture descends directly from the adop-
tion of a network-centric viewpoint brought about by the
emergence of the Internet and the componentization and
commoditization of hardware and software.

This article has presented a research agenda to meet the
R&D challenges associated with developing middleware,
aided by modeling, analysis, and synthesis tools, to support
DRE systems. Since challenges facing the embedded sys-
tems community change constantly, in terms of resources
and expectations, we do not have the luxury of being able to
design DRE systems to perform highly specific functions
and then expect them to have li fe cycles of 20 years with
minimal change. In fact, we more routinely expect DRE
systems to behave differently under different conditions,

and complain when they just as routinely do not. These
changes have raised a number of issues, such as end-to-end
oriented adaptive QoS, and construction of DRE systems by
composing off-the-shelf parts that have promising solutions
involving significant new middleware-based capabiliti es and
services.

The ultimate goals of the research agenda described in this
article are to (1) reliably and repeatably construct and com-
pose DRE systems that can meet and adapt to more diverse,
changing requirements/environments and (2) enable the
affordable construction and composition of the large num-
bers of these systems that society will demand, each pre-
cisely tailored to specific domains. To accomplish these
goals, we must overcome not only the technical challenges,
but also the educational and transitional challenges, and
eventually master and simplify the immense complexity as-
sociated with large-scale DRE system environments, as we
integrate an ever growing number of hardware and software
components together via middleware.

Acknowledgements

The middleware research agenda presented in this paper is
based in part on discussions that took place in conjunction
with the Software Design and Productivity Coordinating
Group Workshop on New Visions for Software Design and
Productivity: Research and Applications, December 13-14,
2002 Nashville, TN. Participants in this workshop included
Betty Cheng (Michigan State University), Joe Cross
(DARPA), Gary Daugherty (Rockwell Colli ns), Prem
Devanbu (UC Davis), Cordell Green (Kestrel), Thuc Hoang
(DOE), Sally Howe (NCO), Jim Hugunin (PARC), Kane
Kim (UC Irvine), Joe Loyall (BBN Technologies), Mike
Masters (NSWC), Priya Narasimhan (CMU), Martin Rinard
(MIT), Richard Schantz (BBN Technologies), Douglas
Schmidt (Vanderbilt University), and David Sharp (Boeing).

