Middleware R&D Challenges for Distributed Real-time and Embedded Systems

Douglas C. Schmidt and Aniruddha Gokhale
Eledricd Engineaing & Computer Science Department
Vanderbilt University
Nashville, TN 37203, USA
{ d.schmidt,a.gokhale} @vanderbilt .edu

Introduction

Some of the most challenging problems facing the embed-
ded systems community are those asciated with producing
software for red-time and embedded systems in which com-
puter processors may control physicd, chemicd, or biologi-
cd processes or devices. Examples of such systems include
airplanes, automobiles, nuclear readors, oil refineries, and
patient monitors, or even CD players and cdlular phones. In
most of these systems, the right answer delivered too late
becomes the wrong answer, i.e., achieving end-to-end qual-
ity of service (QoS) is essential. In addition, embedded de-
vices have historicdly had limited memory (e.g., 64-512
KB) avail able for the platform and appli cations.

Although red-time and embedded systems have historicdly
been relatively small-scde and standalone, the trend is to-
ward significantly increased functionality, complexity, and
scdability. In particular, red-time and embedded systems
are increasingly being connected via wireless and wireline
networks to creae large-scde distributed red-time axd em-
bedded (DRE) systems, such as tele-immersion environ-
ments, fly-by-wire drcraft, industrial process automation,
and total ship computing environments. These DRE sys-
tems include many interdependent levels, such as net-
work/bus interconneds, many coordinated locd and remote
endsystems, and often multiple layers of software, that to-
gether derive the foll owing challenges:

« As distributed systems, DRE systems require caabiliti es
to manage cnnedions and message exchange between
(posshbly heterogeneous) networked computing devices.

e As real-time systems, DRE systems require predictable
and efficient control over end-to-end system resources,
such as memory, CPU, and network bandwidth.

e As embedded systems, DRE systems have size, weight,
cost, and power constraints that often limit their comput-
ing and memory resources. For example, embedded sys-
tems often cannot use conventional virtual and automatic
memory tedhniques because of space or timing con
straints, since software must fit on low-cgpadty storage
media, such as EEPROM or NVRAM.

DRE systems have historicdly been developed and vali-
dated using relatively static development and analysis tech-
niques (such as function-oriented design and rate monotonic
analysis) to implement, alocate, schedule, and manage their
resources. These static approaches have proven to be ae
ceptable for closed DRE systems, where the set of applica
tion tasks that will run in the system and the loads they will
place on system resources change infrequently and are
known in advance They are not well-suited, however, for

Richard E. Schantz and Joseph P. Loyall
BBN Technologies
10 Moulton Stree
Cambridge, MA 02138 USA
{'schantz, jloyall} @bbn.com

the next-generation of open DRE systems, which evolve
more rapidly and must collaborate with multiple remote
sensors, provide on-demand browsing and aduation capa-
biliti es for human operators, and respond flexibly to unan-
ticipated situational factorsthat arise & run-time.

Many of the most chall enging next-generation DRE systems
will operate in large-scde DRE configurations that take in-
put from large numbers of remote sensors and provide geo-
graphicdly dispersed operators with the aility to interad
with the colleded information and to control remote effec-
tors. In circumstances where the presence of humans in the
loopis too expensive or their responses are too sow, these
systems must respond autonomously and flexibly to
unanticipated combinations of events at runtime. More-
over, these systems are increasingly being networked to
form long-lived “systems of systems’ that must run
unobtrusively and largely autonomously, shielding operators
from unnecessary details, while simultaneoudy
communicaing and responding to mission-criticd informa-
tion at heretofore infeasible rates. Examples of these types
of systems include (but are not limited to) metropditan area
traffic control systems that process ®nsor data from 1,000s
of vehicles, coordinated swarms of unmanned air vehicles,
command and control systems for theaer-level battle man-
agement, home power management, and terrorist tradking
and identification systems. In such systems, it is hard to
enumerate, or often even approximate, all possble physicd
system configurations or workload mixes a priori.

Desirable properties of DRE systems include predictabili ty,
controll abili ty, and adaptability of operating charaderistics
for appli cations with resped to such features as time, quan-
tity of information, accuracy, confidence, and synchroniza-
tion. All these issues become highly volatile in large-scde
systems, due to the dynamic interplay of the many intercon-
neded parts that are often constructed from smaller parts.
Whileit is passible in theory to develop these types of com-
plex systems from scratch, contemporary emnomic and
organizdional constraints, as well as increasingly complex
requirements and competitive presaires, make it infeasible
to dosoin practice.

To addressthe many competing design forces and run-time
QoS demands, sustained R&D efforts on comprehensive
software methoddogies, design/runtime ewironments,
and hardware/software @-design are required to dependably
compose large, complex, interoperable DRE systems from
QoS-enabled reusable cmponents. Moreover, the mmpo-
nents themselves must be sensitive to the environments in
which they are packaged, deriving the need for runtime QoS

enabled components as well. Ultimately, what is desired is
to take components that are built independently by different
groups at different times and assemble them to creae com-
plete DRE systems that are austomized for their require-
ments and environmental conditions. In the longer run,
eath complete system often becomes a component embed-
ded in il larger systems of systems. Given the complexity
of this undertaking, various tools and techniques are needed
to configure and reconfigure these systems systematicdly so
they can adapt to a wider variety of situations than has his-
toricdly been posdble with ealier generations of stand-
aone red-time and embedded systems.

Recent Progress and Current Status

Over the past decale, various technologies have been de-
vised to alleviate many complexities asociated with devel-
oping software for DRE systems. Their successes have
added a new caegory of systems ftware to the familiar
operating system, programming language, and networking
offerings of the previous generation. In particular, some of
the most successful of emerging technologies have centered
on middleware, which is systems ftware that resides be-
tween the gplicaions and the underlying operating sys-
tems, network protocol stacks, and hardware. The primary
role of middewareisto
1. Functionally bridge the gap between appli caion programs
and the lower-level hardware and software infrastructure
in order to coordinate how parts of applications are cn-
neded and how they interoperate.
2.Enable and simplify the integration of components devel-
oped by multi ple technology suppliers.
3.Provide a @mmon reusable accesshility for functionality
and patterns that formerly were placed dredly in appli-
cdions, but in aduality are gplicaion independent and
need not be developed separately for ead new applica
tion.

Middleware was invented originaly to help simplify the
development and management of distributed computing
systems, and kring those cpabiliti es within the read of
many more developers than the few experts at the time who
could master the cmmplexities of these ewironments. Mid-
dleware was necessary since complex system integration
requirements were not being met from either (1) the appli-
cation perspective, where it was too dfficult and not reus-
able, or (2) the network or host operating system perspec-
tives, which were necessarily concerned with providing the
communication and endsystem resource management layers,
respectively.

Although there ae many types of middleware platforms,
their architedures are generally composed of relatively
autonomous software comporents that can be distributed or
coll ocated throughout a range of networks and bus intercon-
neds. Clients invoke operations on target components to
perform interadions and invoke functionality needed to
achieve applicaion goals. When implemented properly,
middleware can help to:

« Shield software developers from low-level, tedious, and
error-prone platform detail s, such as scket-level network
programming.

« Amortize software lifecycle costs by leveraging previous
development expertise and capturing implementations of
key patterns in reusable frameworks, rather than rebuil d-
ingthem manually for eat use.

* Provide a onsistent set of higher-level network-oriented
abstradions that are much closer to applicdion require-
ments to help simplify the development of distributed
systems.

 Provide different communication paradigms, such as re-
guest-response, asynchronous messaging and pub-
lish/subscribe, that can be used to addressdifferent appli-
cdion QoS requirements.

* Provide awide aray of reusable developer-oriented ser-
vices, such as logging and security that have proven nec-
essry to operate dfedively in a networked environment.

« Amortize software lifecycle costs by leveraging previous
development expertise and capturing implementations of
key patterns in reusable frameworks, rather than rebuil d-
ing them manually for ead use.

Some notable successes in the midd eware domain include:

e Component middleware (such as Java 2 Enterprise Edi-
tion (J2EE), CORBA, and .NET), which have introduced
advanced software engineaing capabiliti es to the main-
stream IT community and which incorporate various lev-
els of middleware as part of the overal development
process

* World Wide Web middeware standards (such as web
servers, HTTP protocols, and web services frameworks),
which enable easily conneding independently developed
browsers and web pages.

e Grid computing (such as Globus), which enables scien-
tists and high performance @mputing reseachers to col-
laborate on grand challenge problems, such as global cli-
mate change modeling.

Unresolved Issues

Despite dl the alvances in the past decale (which have
largely been applied to simplify desktop and enterprise
business computing), there remain significant challenges to
applying today’s middleware to mee the needs of new and
planned DRE systems. For example, conventional compo-
nent middleware has only partial suppat for performance-
criticd DRE systems. The world wide web is often the
world wide wait, because little systems engineaing or at-
tention hes been paid to enforcing end-to-end QoS isales,
and Grid computing architedures and tools are not aligned
with mainstream COTS middleware axd moreover do not
suppat the stringent QoS requirements of DRE systems.
More fundamentally, there are no mature engineeing prin-
ciples, solutions, or established conventions to enable large-
scde DRE systems to be repeaably, predictably, and cost
effectively creaed, developed, validated, operated, and en-
hanced. As aresult, we ae witnessing a mmplexity thresh-

old that is gunting our ability to creae large-scde DRE
systems successfully.

Some of the inherent complexities that contribute to com-
plexity threshold of DRE systems include: (1) discrete plat-
forms that must be scded to provide seamless end-to-end
solutions, (2) integration of heterogeneous components is
the norm, (3) partial failures of distributed components are
the norm, (4) dynamically changing operating environments
and configurations are the norm, (5) large-scde systems
must operate @ntinuously, even during upgrades, (6) end-
to-end properties must be satisfied in time and resource ®n-
strained environments, and (7) maintaining system-wide
QoS concerns is beming expeded. To addressthese com-
plexities, we must creae and deploy a new generation of
middleware-oriented solutions and engineering principles as
part of the commonly avail able software infrastructure that
is nealed to develop, validate, and deploy many different
types of large-scde DRE systems guccessfully.

Specific R&D Challenges

An essentia part of what is nealed to aleviate the inherent
complexities outlined above is the integration and extension
of concepts and cgpabiliti es that have been found traditi on-
aly in network management, data management, distributed
operating systems, and oljed-oriented programming lan-
guages. The payoff will be reusable middeware that signifi-
cantly simplifies the development and evolution of large-
scde DRE systems. The following are some spedfic R&D
chall enges associated with achieving this payoff:

e Demand for end-to-end QoS support, not just compo-
nent-level QoS. This arearepresents the next grea wave
of evolution for middleware. There is now widespread
recognition that effedive development of large-scde DRE
applicaions requires the use of COTS infrastructure and
service @mponents. Moreover, the (re)usabili ty of the re-
sulting products depends heavily on the properties of the
whole & derived from its parts. This type of environment
requires visible, predictable, flexible, and integrated re-
source management strategies within and between the
pieces. Despite the ease of connedivity provided by mid-
dleware, however, constructing integrated DRE systems
remains hard sinceit requires sgnificant customizaion of
non-functional QoS properties, such as predictable la
tency/jitter/throughput, scdability, dependability, and se-
curity. In their most useful forms, these properties extend
end-to-end and thus have elements applicable to (1) the
network substrate, (2) the platform operating systems and
system services, (3) the programming system in which
they are developed, (4) the applications themselves, and
(5) the middleware that integrates all these dements to-
gether. The basic premises underlying the push towards
end-to-end QoS suppat mediated by middleware ae that
different levels of service ae possble and desirable under
different conditions and costs and the level of servicein
one property must be aordinated with and/or traded off
against the level of service in another to achieve the in-
tended overall results.

« Adaptive and reflective solutions that handle both vari-
ability and control. DRE systems today often work well
as long as they receve all the resources for which they
were designed in a timely fashion, but fail completely un-
der the dightest anomaly. There is little flexibility in
their behavior, i.e,, most of the alaptation is pushed to
end-users or administrators. Instead of hard failure or in-
definite waiting, what is required is either reconfiguration
to reaquire the needed resources automaticdly or
graceful degradation if they are not available. Reoon
figuration and operating under less than optimal condi-
tions both have two points of focus: individual and aggre-
gate behavior. Moreover, there is a neal for interopera-
bility of control and management mechanisms. To date
interoperability concerns have focused on data interop-
erability and invocaion interoperability. Little work has
focused on mechanisms for controlling the overall be-
havior of integrated DRE systems, which is needed to
provide “control interoperability.” There ae require-
ments for interoperable @ntrol cgpabiliti es to appea in
individual resources first, after which approades can be
developed to aggregate these into acceptable global be-
havior.

To manage the broader range of QoS demands for next-
generation DRE systems, middeware must become more
adaptive and refledive. Adaptive middleware is ftware
whase functional and QoS-related properties can be modi-
fied either: (1) statically, e.g., to reducefootprint, leverage
cgpabiliti es that exist in spedfic platforms, enable func-
tional subsetting, and minimize hardware/software infra-
structure dependencies or (2) dynamically, e.g., to odi-
mize system resporses to changing environments or re-
quirements, such as changing component interconnec-
tions, power levels, CPU/network bandwidth, la-
tency/jitter; and dependability needs.

In mission-criticd DRE systems, adaptive middeware
must make such modificaions dependably, i.e., while
meding stringent end-to-end QoS requirements. Reflec-
tive middleware goes further to permit automated exami-
nation d the caabilities it offers, and to permit auto-
mated adjustment to ogimize those capabilities. Reflec
tive techniques make the internal organization of sys-
tems-as well as the mechanisms used in their construc-
tion—both visible and manipulatable for middieware and
application programs to insped and modify at run-time.
Reflective middeware therefore supports more advanced
adaptive behavior and more dynamic strategies keyed to
current circumstances, i.e., hecessry adaptations can be
performed autonomously based on conditions within the
system, in the system' s environment, or in system QoS
policies defined by administrators or end-users.

e More universal adoption of standard middleware. To-

day, it istoo often the cae that a substantial percentage of
the dfort expended to develop DRE systems goes into
building ad hoc and proprietary middeware, or additions
for missing middleware functionality. As aresult, subse-
guent compositi on of these ad hoc cgpabiliti esis either in-
feasible or prohibitively expensive. One reason why rede-

velopment persistsisthat it is still often relatively easy to
pull together a minimalist ad hoc solution, which remains
largely invisible to all except the developers. Unfortu-
nately, this approach can yield substantial recurring life-
cycle costs, particularly for complex and long-lived DRE
systems. One of the most immediate challenges is there-
fore to establish and eventually standardize middeware
interfaces that suppat QoS attributes. It is important to
have a dea understanding of the QoS information so that
it becomes passble to identify the users' requirements at
any particular point in time and understand whether or not
these requirements are being (or even can be) met.

It is also essential to aggregate these requirements, mak-
ing it posshle to form dedsions, palicies, and mecha-
nisms that begin to address a more globa information
management organization. Meeing these requirements
will require flexibili ty on the parts of both the applicaion
components and the middieware resource management
strategies used aaoss heterogeneous g/stems of systems.
A key diredion for addressng these nedls is through the
concepts associated with managing adaptive behavior,
recognizing that not all requirements can be met all of the
time, yet till ensuring predictable and controllable end-
to-end behavior.

Leveraging and extending the installed base. In addition
to the R&D challenges described above, there ae dso
pragmatic oonsiderations, including incorporating new
QoS-enabled middeware interfaces and implementations
to various building blocks that are dready in placefor the
networks, operating systems, seaurity, and data manage-
ment infrastructure, al of which continue to evolve inde-
pendently. Ultimately, there are two dfferent types of re-
sources that must be mnsidered: (1) those that will be
fabricaed as part of application development and (2)
those that are provided and can be mnsidered part of the
substrate currently avail able.

While not much can be done in the short-term to change
the diredion of the hardware and software substrate that’s
installed today, a reasonable approad is to provide the
needed services at higher levels of middeware-based ab-
stradion. This architecture will enable new components
to have properties that can be more eaily included into
the ontrollable gplications and integrated with each
other, leaving less lower-level complexity for applicaion
developers to addressand thereby reducing system devel-
opment and ownership costs. Consequently, the goal of
next-generation middeware for DRE systems is not sim-
ply to buld a better network, better resource manager, or
better seaurity service in isolation, but rather to pull these
cgpabiliti es together and deliver them to applicaions in
ways that enable them to redize this model of adaptive
behavior with tradeoffs between the various QoS attrib-
utes. As the evolution of the underlying system compo-
nents change to become more controll able, we can exped
a refadoring of the implementations underlying the en-
forcement of adaptive wntrol.

Middleware Research Areas for DRE Systems

The following concepts are central to addressng the R&D
chall enges described above:

» Contracts via meta-programming. Information must be
gathered for particular applications or application families
regarding user requirements, resource requirements, and
system conditions. Multiple system behaviors must be
made available based on what is best under the various
conditions. This information provides the basis for the
contrads between users and the underlying system sub-
drate. These ntrads provide not only the means to
spedfy the degree of assurance of a cetain level of ser-
vice, but also provide awell-defined, high-level midde-
ware astradion to improve the visibility of adaptive
changes in the mandated behavior. Model-based engi-
neeing techniques can provide the means to model these
contrads whil e providing the aility to analyze and verify
them for system corredness. Generative techniques can
then be used to synthesize appropriate middeware ati-
fads that applications can use for their adaptive behavior.

« Adaptive control and graceful degradation. Well-estab-
lished theory and pradice on control engineeing can be
applied to monitor DRE systems and enforce ontradsvia
feaedbadk or feadforward techniques so that applicaion
services can adapt their behavior or degrade gracefully (or
augment) as conditions change, according to a prea-
ranged contrad governing that adivity. The initial chal-
lenge here is to establi sh the ideain the minds of develop-
ers and users that multiple behaviors are both feasible and
desirable. The next step isto put into placethe alditi onal
middleware suppart — including conneding to lower-level
network and operating system enforcement mechanisms —
necessary to provide the right behavior effedively and ef-
ficiently given current system conditi ons.

e Prioritization and physical world constrained load
invariant performance. Some systems are highly corre-
lated with physicd constraints and have little flexibility in
some of their requirements for computing as<ets, includ-
ing QoS. Deviation from requirements beyond a narrowly
defined error tolerance can sometimes result in caastro-
phic failure of the system. The callenge is in meeting
these invariants under varying load conditions. This often
means guarantedng ac@ssto some resources, whil e other
resources may neel to be diverted to insure proper opera-
tion. Generaly collections of such components will need
to be resource managed from a system (aggregate) per-
spedive in addition to a component (individual) perspec-
tive.

Although it is pasdble to satisfy contrads, achieve graceful
degradation, and globally manage some resources to a lim-
ited degreein alimited range of systems today, much R&D
work remains. The strategies needed to deliver these goals
can be divided into the seven reseach areas described be-
low:

1.Individual QoS requirements, which deds with develop-
ing mechanisms related to the end-to-end QoS needs from

the perspedive of a single user or application. The sped-
fication requirements include multiple contrads, negotia-
tion, and domain spedficity. Multiple cntrads are
needed to handle requirements that change over time and
to asoociate several contrads with a single perspective,
ead governing a portion of an adivity. Thiscgpability is
particular important for mobile gplicaions, where the
bandwidth restrictions of wireless connedivity and
interferences may require a significant number of coordi-
nated contrads. Different applicaion operation modes or
users running the same goplication in different configura-
tions may have different QoS requirements emphasizing
different benefits and tradeoffs, often depending on cur-
rent configurations. Such dynamic behavior must be taken
into acount and introduced seamlessly into next-genera-
tion DRE systems.

General negotiation capabilities that offer convenient
medhanisms to enter into and control a negotiated behav-
ior (as contrasted with the service being negotiated) need
to be available & COTS middleware packages. The most
effective way for such negotiation-based adaptation
medhanisms to become an integral part of QoSis for them
to be “user friendly,” e.g., requiring a user or administra-
tor to simply provide alist of preferences via higher level
abstradions, such as modeling todls.. This areais likely
to become domain-spedfic and even user-spedfic, but
can be enabled by genera purpose, common tools. Other
challenges that must be aldressed as part of delivering
QoS to individual applicdions include: (1) trandlation of
reguests for service among and between the various enti-
ties on the distributed end-to-end path, (2) managing the
definition and selection of appropriate gplicaion func-
tionality and system resource tradeoffs within a “fuzzy”
environment, and (3) maintaining the gpropriate behav-
ior under composability.

Trandation addresses the fact that complex DRE systems
are being built in layers. At various levelsin alayered ar-
chitedure the user-oriented QoS must be trandated into
requests for other resources at a lower level. A key R&D
challenge is how to acoomplish this translation from user
requirements to system services. A logical placeto begin
is at the gplication/middeware boundary, which closely
relates to the problem of matching applicaion resources
to appropriate distributed system resources. As system
resources change in significant ways, either due to
anomali es or load, tradeoffs between QoS attributes (such
as timeliness predsion, and acaracy) may need to be
(re)evaluated to ensure an effedive level of QoS, given
the drcumstances. Mechanisms neead to be developed to
identify and perform these tradeoffs at the gpropriate
time. Last, but certainly not least, atheory of effedively
composing systems from individual components in a way
that maintains applicaion-centric end-to-end properties
needs to be developed, aong with efficient redizations of
the theory in the form of working middleware.

2. Run-time requirements. From a system lifecycle perspec
tive, dedsions for managing QoS are made & design time,

at configuration/deployment time, and/or at run-time. Of
these, the run-time requirements are the most challenging
since they have the shortest time scales for dedsion-
making, and colledively we have the least experience
with developing appropriate solutions. They are dso the
area most closely related to advanced middeware @n-
cepts. This area of reseach addresss the need for run-
time monitoring, feedbadk, and transition mechanisms to
change gplication and system behavior, e.g., through dy-
namic recnfiguration, orchestrating degraded behavior,
or even off -line recompil ation. The primary requirements
here ae measurement, reporting, control, feedback, and
stability. Each of these plays a significant role in deliv-
ering end-to-end QaS, not only for an individual applica
tion, but also for an aggregate system. A key part of a
run-time ewvironment centers on a permanent and highly
tunable measurement and resource status services as a
common middeware cgpabili ties, oriented toward various
granularities for different time gochs and with abstrac-
tions and aggregations appropriate to its use for run-time
adaptation.

In addition to providing the capabilities for enabling
gracdul degradation, these same underlying mechanisms
also hold the promise to provide flexibili ty that supparts a
variety of possible behaviors, without changing the basic
implementation structure of DRE applicaions. This re-
fledive flexibility reduces the dependence on diminishes
the importance of many initial design dedsions by offer-
ing late- and run-time-binding options to acammodate
adua operating environments at the time of deployment,
instead of only anticipated operating environments at de-
sign time. In addition, it anticipates changes in these
bindings to acoommodate new behavior.

3. Aggregate requirements. This areaof reseach deds with
the system view of colleding necessary information over
the set of resources aaossthe system, and providing re-
source management mechanisms and pdicies that are
aligned with the goals of the system as a whole. While
middeware itself cannot manage system-level resources
diredly (except through interfaces provided by lower-
level resource management and enforcement mecha-
nisms), it can provide the @ordinating mechanisms and
policies that drive the individual resource managers into
domain-wide mherence With regards to such resource
management, palicies need to be in placeto guide the de-
cison-making process and the mechanisms to cary out
these palicy dedsions.

Areas of particular R&D interest include: (1) reserva-
tions, which allow resources to be reserved to assure ce-
tain levels of service such as maintaining end-to-end pri-
orities, (2) admission control mechanisms, which alow or
rejed certain users access to system resources, (3) en-
forcement mechanisms with appropriate scde, granularity
and performance, and (4) coordinated strategies and poli-
ciesto al ocate distributed resources that optimize various
properties. Moreover, policy dedsions need to be made
to allow for varying levels of QoS, including whether

ead application receives guaranteed, best-effort, condi-
tional, or statisticd levels of service Managing property
compaosition is esential for delivering individual QoS for
component based applications, and is of even greder con-
cern in the aggregate cae, particularly in the form of lay-
ered resource management within and aaossdomains.

4.Integration requirements. Integration requirements ad-
dress the neal to develop interfaces with key building
blocks used for system construction, including the OS,
network management, security, and data management.
Many of these aeas have partial QoS solutions underway
from their individual perspedives. The problem today is
that these partial results must be integrated into a common
interfaceso that users and applicaion developers can tap
into ead, identify which viewpoint will be dominant un-
der which conditions, and suppat the tradeoff manage-
ment aaossthe boundaries to get the right mix of attrib-
utes. Currently, tools working with component middle-
ware provide end-to-end syntactic interoperation and rela
tively seamless linkage acoss the networks and subsys-
tems. There is no managed QoS, however, making these
tods and middeware useful largely for resource rich,
best-eff ort environments.

To med varying requirements for integrated behavior,
advanced tools and medhanisms are needed that permit
requests for different levels of attributes with different
tradeoffs governing this interoperation. Model-based
analysis, verification, and generative todls can provide the
system (re)configuration and integration needed to deliver
the requested end-to-end QoS. Likewise, they can indicae
the inability to deliver that level of service perhaps of-
fering to suppat an aternative QoS, or triggering appli-
caion-level adaptation. For all of this to work together
properly, multiple dimensions of the QoS requests must
be understood within a common framework to translate
and communicae those requests and services at each
relevant interface Advanced integration middeware
provides this common framework to enable the right mix
of underlying cgpabilities.

5. Adaptivity requirements. Many of the advanced cgpabili -
ties in next-generation information environments will re-
quire aaptive behavior to med user expedations and
smocth the imbalances between demands and changing
environments. Adaptive behavior can be enabled through
the gpropriate organization and interoperation of the ca
pabilities of the four reseach areas described above.
There ae two fundamental types of adaptation required:
(1) changes beneah the applications to continue to med
the required service levels despite dchanges in resource
avail ability and (2) changes at the gplication level to ei-
ther read to currently available levels of service or re-
guest new ones under changed circumstances. In bath
instances, the system nust determine if it needs to (or
can) redlocate resources or change strategies to achieve
the desired QoS. Applicaions need to be built in such a
way that they can change their QoS demands as the con-
ditions under which they operate change. Mechanisms

for reconfiguration need to be put into placeto implement
new levels of QoS as required, mindful of both the indi-
vidual and the aggregate points of view, and the anflicts
that they may represent.

Part of the dfort required to achieve these goals involves
continuously gathering and instantaneously analyzing
pertinent resource information colleded as mentioned
above. A complementary part is providing the dgorithms
and control medanisms needed to ded with rapidly
changing demands and resource avail ability profiles and
configuring these mechanisms with varying service
strategies and pdicies tuned for different environments.
Control theoretic techniques, in particular hybrid systems
modeling, have gained significant importance for control-
ling the behavior of large-scde complex physicd sys
tems. Many of these techniques can be encapsulated as
middleware- or application-level controllers that can pro-
vide verifiable QoS adaptation. Idedly, such changes can
be dynamic and flexible in handling a wide range of con-
ditions, occur intelligently in an automated manner, and
can handle complex issues arising from composition of
adaptable components. Coordinating the tools and meth-
oddogies for these caabiliti es into an effedive alaptive
middleware for DRE systems should be ahigh R&D pri-
ority.

6. System engineering methodologies and tools. Advanced
middleware by itself will not deliver the caabiliti es envi-
sioned for next-generation embedded environments. We
must also advancethe state of the system engineeing dis-
cipline and todls that come with these alvanced environ-
ments used to build large-scale DRE systems. This area
of reseach spedficdly addresses the immediate need for
system engineeing approaches and toadls to augment ad-
vanced middleware solutions. These include:

» View-oriented or aspect-oriented programming tech-
niques, to suppat the isolation (for spedalizaion and
focus) and the composition (to mesh the isolates into a
whole) of different projections or views of the proper-
ties the system must have. The aility to isolate, and
subsequently integrate, the implementation of different,
interading feaures will be needed to suppart adapting
to changing requirements.

 Design time tools and models, to assst system develop-
ers in urderstanding their designs, in an effort to avoid
costly changes after systems are dready in place(thisis
partially obviated by the late binding for some QoS de-
cisonsreferenced ealier [1]).

» Generative tools, which use higher level models to syn-
thesize (1) middleware-spedfic glue code, (2)
customized middeware that satisfies QoS and resource
constraints, and (3) controllers for QoS adaptation.

* Interactive tuning tools, to overcome the diallenges
asciated with the need for individual pieces of the
system to work together in a seamless manner [2]

» Composability tools, to analyze resulting QoS from
combining two or more individual components

» Modeling tools for developing system performance
models as adjunct means (both online and offline) to

monitor and understand resource management, in order
to reduce the sts associated with trial and error
» Debugging tools, to addressinevitable problems.

7.Reliability, trust, validation, and certifiability. The dy-
namicdly changing behaviors we ewision for next-gen-
eration large-scde, DRE systems are quite different from
what we aurrently build, use, and have gained some de-
grees of confidencein. Before they can be deployed, con-
siderable dfort must therefore be focused on validating,
and certifying for operational safety, the corred func-
tioning of the alaptive behavior, and on urderstanding the
properties of large-scde systems that try to change their
behavior acording to their own assessment of current
conditions, before they can be deployed. But even before
that, longstanding issues of adequate reliability and trust
factored into our methodologies and designs using off-
the-shelf components have not readed full maturity and
common usage, and must therefore cntinue to improve.

Conventiona strategies organized around anticipation of
long life cycles with minimal change and exhaustive test
case analyses are clealy inadequate for next-generation
dynamic DRE systems with stringent QoS requirements.
An integrated approach involving model-based toadls and
middleware can therefore help aleviate stringent certifi-
ability and reliability requirements. For example, model-
based formalisms are eaily amenable to verificaion for
system corredness and empiricd benchmark generation
for verifying the configured middleware properties.

Concluding Remarks

Over the past decale, middleware has emerged as a set of
reusable software layers that help resolve problems associ-
ated with heterogeneity and interoperability. It has also
contributed considerably to better environments for building
distributed red-time axd embedded (DRE) systems and
managing their distributed resources effedively. A major
trend driving researchers and praditioners involves moving
toward a multi-layered architedure (i.e., applicaions, mid-
dleware, network and operating system infrastructure) that
is oriented around applicaion composition from reusable
components, and away from traditional architedures where
DRE applicaions were developed diredly atop the network
and operating system abstradions. This middleware-centric,
multi-layered architecture descends diredly from the alop-
tion of a network-centric viewpoint brought abou by the
emergence of the Internet and the componentizaion and
commoditi zation of hardware and software.

This article has presented a reseach agenda to meeg the
R&D chalenges asociated with developing middeware,
aided by modeling, analysis, and synthesis todls, to suppart
DRE systems. Since challenges fadng the embedded sys-
tems community change constantly, in terms of resources
and expedations, we do not have the luxury of being able to
design DRE systems to perform highly spedfic functions
and then exped them to have life cycles of 20 yeas with
minima change. In fad, we more routinely exped DRE
systems to behave differently under different conditions,

and complain when they just as routinely do not. These
changes have raised a number of issues, such as end-to-end
oriented adaptive QoS, and construction of DRE systems by
composing off-the-shelf parts that have promising solutions
involving significant new middeware-based cgpabiliti es and
services.

The ultimate goals of the reseach agenda described in this
article ae to (1) reliably and repeaably construct and com-
pose DRE systems that can med and adapt to more diverse,
changing requirements/environments and (2) enable the
affordable cnstruction and composition of the large num-
bers of these systems that society will demand, ead pre-
cisely tailored to spedfic domains. To accomplish these
goals, we must overcome not only the technicd challenges,
but also the educational and transitional challenges, and
eventually master and simplify the immense cmmplexity as-
sociated with large-scde DRE system environments, as we
integrate an ever growing number of hardware and software
components together via middleware.

Acknowledgements

The middeware research agenda presented in this paper is
based in part on discussions that took placein conjunction
with the Software Design and Productivity Coordinating
Group Workshop an New Visions for Software Design and
Productivity: Research and Applicaions, Deember 13-14,
2002 Nashville, TN. Participants in this workshop included
Betty Cheng (Michigan State University), Joe Cross
(DARPA), Gary Daugherty (Rockwell Coallins), Prem
Devanbu (UC Davis), Cordell Green (Kestrel), Thuc Hoang
(DOE), Sdly Howe (NCO), Jm Hugunn (PARC), Kane
Kim (UC Irvine), Joe Loyal (BBN Tedndogies), Mike
Masters (NSWC), Priya Narasimhan (CMU), Martin Rinard
(MIT), Richard Schantz (BBN Tedndogies), Douglas
Schmidt (Vanderbilt University), and David Sharp (Boeing).

