

Open Challenges in Real Time Embedded Systems
Lui Sha, CS, UIUC

May 3, 2004

lrs@cs.uiuc.edu

1.0 Introduction

 “FAA cancelled the AAS program,
casting aside 11 years of development
time and, according to GAO, wasting
more than $1.5 billion of taxpayer
money.” 1

 “F/A-22 problems have limited DOD’s
ability to upgrade its aging tactical
aircraft fleet. If the F/A-22 program had
met its original goals, the Air Force
could have been replacing older aircraft
with F/A-22 aircraft over 7 years ago.
Now, however, it will not begin
replacing aircraft until late 2005 at the
earliest.” 2

Serious problems in developing large and
complex real time systems are not isolated
incidents. Rather, they are now the rule
rather than exceptions. These problems are
the manifestation of building large systems
with a complexity higher than what can be
handled by existing technological
infrastructure. They are the reflection of
under-investment of R&D in this critical
area.

From 80’s to now, we have witnessed the
changing trends in real time mission critical
systems. First, the open system movement
became established. Real time mission
critical systems evolved from vertically
integrated systems towards horizontally
integrated systems in which multiple
vendors supply components based on open
standards or de facto commercial standards

1
http://www.house.gov/transportation/press/press2001/r
elease15.html
2
http://armedservices.house.gov/openingstatementsand
pressreleases/108thcongress/03-04-02li.pdf

set by industry leaders. Technologically, the
system architecture has changed from federated
system architecture to integrated system
architecture during the 90’s, and then to the
current new generation of system of systems. Each
shift has created enormous challenges to the
available technological infrastructure.

2.0 Challenges from Architecture Paradigm
Shifts

Under federated system architectures, a system is
characterized by a collection of private hardware
resources dedicated to a special mission capability,
a small number of high volume and high
variability sensor data streams on dedicated links,
loosely coupled distributed actions, and hardware
based isolation and protections that are the results
of private hardware resources and dedicated
communication links. The existing technological
infrastructure for real time mission critical systems
was mainly developed under Office of Naval
Research’s Real Time Systems Initiative during
the 80’s. In fact, the sample challenge problems to
motivate the research were taken from federated
systems, where the common assumptions are 1)
hard real time periodic messages are dominant
tasks; 2) task sets are relatively static. Online
change of task sets (mode changes) is infrequent
and synchronized; 3) the worst-case execution
times and average execution times for periodic and
aperiodic tasks are known or can be estimated
accurately.

2.1 Challenges from Integrated System
Architectures

In the 90’s, system architectures started shifting
from federated systems architecture to integrated
system architectures, which is characterized by
extensive resource sharing ranging from sensors,
processors to communication channels. Instead of
a small number of high volume and high
variability data flowing on dedicated links, we
now have a large number of high volume high

variability sensor data streams on shared
channels, and the distributed actions become
tightly coordinated. The extensive sharing
and tight integration has stretched the
existing real time resource management
theory and tools to the limit.

In the integrated systems, the large number
of shared processors and networking
channels allows a very large number of
potential configuration options at the design
time and a large number of system
reconfiguration options at runtime. The
existing infrastructure can answer if a
particular configuration is schedulable but
offers little help to the architectural system
decomposition and system configurations, at
which time there is significant uncertainty
about the task set parameters. Integrated
system architecture demands resource
management technologies evolve from
answering schedulability question to
technologies and tools to support system
architecture and configuration optimization
under uncertainties in the task set
parameters. It should be noted that this is not
a simple task like handling parameter
uncertainties in linear programming,
because of the discrete constraints in the
widely used static priority schedulability
analysis. To date, we still do not have a suite
of technological tools to support the
optimized use of resources during the
system design phase for integrated system
architectures.

In addition, the hardware based isolation and
protection under federated architectures has
been mostly replaced by software based
isolation and protection, which could,
unfortunately, be compromised by the all
too frequent software bugs. The integration
of real time and fault tolerance, especially
software fault tolerance, became vital when
resources are extensively shared but poorly
protected. Optimized resource management
must take into the account of stability. That
is, the essential service must be delivered
reliably and cannot be compromised by the
faults and failures from useful but non-
essential features. We are still a long way

off from a matured technological infrastructure
that provides us with dependable and optimized
real time resource management during the design
phase.

2.2 Challenges from System of Systems

Although we yet to have a matured technological
infrastructure to support integrated system
architectures, we are now developing complex
system of systems. Some of the foundations of real
time resource management developed under
federated system architectures are not only
stretched but in fact called into questions. In a
system of systems, each system is autonomous to
others. The assumption of a relative static task set
that changes infrequently and synchronously
becomes questionable. To reason end-to-end
timing delays in a system of systems, we must
view it as a collection of systems with a set of
distributed soft coordination states. That is, in
spite of the coordination settings during runtime,
each system could change its own state
asynchronously in reaction to severe events arising
from its local environment. To handle the
uncertain and variability, we need to shift the
paradigm of real time resource management from
an open loop approach, where we can know
sufficient details ahead of time and plan out
everything in advance, to a feedback approach
designed to deal with uncertainties. It is
encouraging to see the emerging interests from
both computing and control communities on the
feedback control based approach to handle the
performance engineering challenges3. However,
much still needs to be done in this area.

A system of systems is often a large distributed
system, where keeping distributed views and
actions timely and consistently is at the heart of
collaborative actions. Ideally, we would like to
keep distributed views, state transitions and
actions consistency with each others. In business
systems, the consistency of a distributed system is
managed by atomic operations. Simply put, atomic
operations wait for every working component

3 K.E. Årzén, A. Cervin, J. Eker, and L.
Sha: "An introduction to control and
real-time scheduling co-design.'' In CDC
2000, Sydney, Australia, December 2000.

ready and then commit the operations.
However, this may not be viable for real
time systems. The train must leave the
station without waiting for everyone getting
onboard, so to speak. However, those
components that are left behind with
outdated views and states must quickly
resynchronize itself with the system in a
relatively short window of time. If more and
more components are out of
synchronization, the distributed system
would fail. How to handle the interactions
between real time, consistency, divergence
and timely synchronization between
distributed views, states and actions is a
serious challenge. As networked embedded
system of systems grows larger and the
coordination becomes tighter, so will be the
impact of this technological challenge.

Another characteristic of a system of
systems is that a variety of real time, fault
tolerance and security protocols are used in
different systems, because most of systems
of systems are integrated, not built from
scratch. One area that has particularly rapid
changes is security protocols because a
system of systems often faces cyber attacks
from many places at once. Most of these
security technologies have been, however,
developed in the context of general purpose
computing and networking without stringent
real time and dependability requirements. It
is well known that perfectly fine medicines
when taking alone can react badly when
taking together. From time to time,
technologies developed separately can react
badly when used together. For example, the
well-known priority inversion problem in
many systems on earth also nearly doomed
the Mars pathfinder mission4. Pathological
cross-domain technology interaction is a
serious potential threat with wide ranging
implications. However, this is not an easy
problem to solve because the scope of
modern technologies is so large and
complex. To advance any area, one must
specialize. As a result, we have specialized
real time, fault tolerance, security,

4 http://catless.ncl.ac.uk/Risks/19.49.html#subj1

communication and control communities focusing
on improving the results in one dimension with
little attention on how separately developed
protocols may interact. We need to create a forum
for the co-development/integration of real time,
fault tolerant, security, communication and control
protocols. Research is needed to formally verify
that protocols do not invalidate each others’ pre-
conditions when they interact.

3.0 Summary and Conclusion

Technologically, the real time embedded system
architecture has evolved from federated system
architecture to integrated system architecture and
then to system of systems. Each shift has brought
about enormous challenges to the available
technological infrastructures. The current
generation of technological infrastructure is
mostly based on 80’s technologies coming from
ONR’s Real Time System Initiative. It is
inadequate with respect to 90’s integrated system
architecture in the sense that the infrastructure
does not provide designers with the tools to
optimize the resource utilization and create
dependable real time system architecture. We are
now building complex system of systems. The gap
between the technologies that are needed and what
is available further widened. There are many open
problems that need to be addressed.

However, in spite of the significance of real time
mission critical systems, the Federal investment in
this area is woefully inadequate. Apart from the
ONR Real Time System Initiative in the 80’s,
there has not been a focused significant investment
in this area for a very long period of time. Large
real time mission critical systems has become
dependent on commercial products without the
necessary technologies to support the combined
and stringent real time, fault tolerance and security
requirements. At this point, serious quality and
budget overrun problems in large real time
mission critical systems have become the rule
rather than exception. This is unacceptable.

